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                            SUMMARY 
 
   This paper describes the structure of, and the ideas behind,  
a  self-applicable  specializer  of programs,  as well  as  the  
principles  of operation of a compiler generator that has  been  
produced  automatically  by specializing the  specializer  with  
respect to itself.  It has been found that the structure of the  
compilers  produced  can  be improved by  making  use  of  such  
devices as introducing different representations for the values  
of  K- and U-parameters,  splitting the subject program into K-  
and U-program, and automatically raising the arity of functions  
in the residual program. 
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0. INTRODUCTION 
 
   Let  Spec be a two-argument function specified by a  program  
and  satisfying the equation F(X,Y) = Spec(F,X)(Y),  where F is  
an  arbitrary two-argument function specified by a  program,  X  
and Y being inputs for F. Such a function Spec will be referred  
to as a "specializer". 
   The  idea that specializers can become a programming tool of  
practical value dates back to the late 1960s [Lom 67], while it  
seems  that the term "specializer" appeared in the early  1970s  
[Dix 71], [ChL 73]. 
   In  1971 it was found by Y.Futtamura that compiling  may  be  
carried  out  by  specializing  interpreters [Fut  71]  in  the  
following  way.  Let  Int be an interpreter  of  a  programming  
language,  i.e. a two-argument function satisfying the equation  
Int(S,D)  = S(D),  where S(D) denotes the result of applying  a  
program S to an input D. According to [Fut 71], Spec(Int,S) can  
be  considered to be the result of compiling the program S into  
the  target language of the specializer,  for Spec(Int,S)(D)  =  
Int(S,D) = S(D). 
   In  the  same paper [Fut 71] Y.Futtamura  pointed  out  that  
interpreters  can  be automatically converted to  compilers  by  
specializing  a  specializer with respect to the  interpreters,  
the  reason  being that  Spec(Spec,Int)(S)  =  Spec(Int,S).  Of  
course,  this  approach implies that the source language of the  
specializer  and the language it is written in  are  identical,  
which makes the self-application of the specializer feasible. 
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   Several  years  later it was realized  [Bec  76],  [Tur  77,  
79, 80] that a compiler generator can be automatically produced  
by   evaluating   Spec(Spec,Spec).   This  compiler   generator  
transforms      interpreters      into      compilers,      for  
Spec(Spec,Spec)(Int) = Spec(Spec,Int). 
   No  matter how attractive this method of producing  compiler  
generators  may seem,  for several years it remained  a  purely  
speculative possibility. 
   Although  there are a few publications reporting success  in  
compiling by specializing interpreters [Fut 71], [Tur 79], [TNT  
82],  [Tur  86],  it is only recently that the group under  the  
leadership  by  N.Jones succeeded in  designing  a  non-trivial  
specializer  that  proved  to be self-applicable  not  only  in  
theory, but also in practice [JSS 85a], [JSS 85b], [Ses 86]. To  
the author's best knowledge,  this specializer was the first to  
be  used  in practice to convert interpreters to  compilers  by  
Futtamura's  method  and  to generate  a  non-trivial  compiler  
generator Spec(Spec,Spec). 
   For brevity's sake, the specializer developed by N.Jones and  
coworkers will be,  henceforth, referred to as the "Copenhagen"  
one.  
   It should be noted that the Copenhagen specializer is not  a  
completely automatic one. It requires a hand-made annotation of  
the  subject  program.  The user has to classify  all  function  
calls  appearing  in  the subject program  as  "eliminable"  or  
"residual".  In  the course of specialization,  the  eliminable  
calls  are unfolded (i.e.  replaced with the reduced equivalent  
of  the called function's body),  while the residual calls  are  
suspended (i.e.  replaced with a call to a residual variant  of  
the  called  function).  Thus,  the  actual  execution  of  the  
residual  calls  is postponed up to the time when the  residual  
program  is  run.  Annotating the subject program  is  done  by  
replacing  the  key word "call"  with the key word "callr"  for  
all residual calls. 
   Classifying  all  function calls as residual  or  eliminable  
proved  to  be a hard problem for the  computer.  This  problem  
seems  to  be  the  main  difficulty  that  impedes  the  self- 
application  of  completely automatic non-trivial  specializers  
[Tur 86]. 
   The  paper [JSS 85a] describes the results obtained by means  
of the Copenhagen specializer as follows. 
   The compilers produced by evaluating Spec(Spec,Int) "have  a  
surprisingly  natural structure";  nevertheless,  as far as the  
compiler generator Spec(Spec,Spec) is concerned,  the situation  
is less satisfactory. Although, the compiler generator produced  
is "of reasonable size",  "its logic is harder to follow"  than  
the logic of the compilers generated. Furthermore, "it contains  
some unexpected constructions (like ''''nil!)". 
   In  early 1986,  by the courtesy of Neil Jones,  the  author  
received a detailed description of the structure and principles  
of  the Copenhagen specializer.  It inspired the author to make  
an attempt to reproduce the results obtained by the  Copenhagen  
group. The original objectives of the project were: 
 
   * To  modify  the Copenhagen technique in order to  make  it  
     applicable to programs written in Refal, rather than Lisp. 
 
   * To  behold compilers generated this way,  especially   the  
     compiler generator, and to examine their structure. 
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   The  availability of detailed information on the  Copenhagen  
specializer  enabled  these objectives to be  achieved  without  
much  difficulty.   However,   in  the  author's  opinion,  the  
compilers  produced  turned out to be unsatisfactory  from  the  
aesthitic  point  of  view.  Whereas the compilers  were  still  
within  the human comprehension,  the ugliness of the  compiler  
generator prevented any attempt at reading it. 
   Nevertheless,  a  strong  desire  to fathom  the  mysterious  
principles  of  operation of the compiler  generator  made  the  
author seek a way to improve the structure of residual programs     
produced  by  the  specializer.   As  a  result,  the  original  
specializer had been revised.  For brevity's sake, the modified  
version of the specializer will be,  henceforth, referred to as  
"the Moscow specializer". 
   The   following   sections  discuss  the   differences   and  
similarities of the two specializers. Finally, a description is  
given  of  the  structure and principles of  operation  of  the  
automatically generated compiler generator. 
 
 
1. THE PRINCIPLES THE TWO SPECIALIZERS ARE BASED UPON 
 
   The   main  feature  of  the  Copenhagen  specializer   that  
distinguishes   it  from  those  previously  presented  in  the  
literature,  and  based  on  partial  evaluation  is  that  the  
specialization is done in several steps. 
  At the first step,  the program is flow analyzed by a  simple  
abstract  interpretation  over a domain consisting of  the  two  
symbols  "K" and "U".  "K" represents a value known at  partial  
evaluation time, and "U" represents a value that may be unknown  
at partial evaluation time. 
   Partial  evaluation  is  meta-evaluation  with  respect   to  
ordinary evaluation,  and KU-evaluation is meta-evaluation with  
respect  to partial evaluation.  Thus,  KU-evaluation is  meta- 
meta-evaluation. 
   The  existence of a meta-meta-level is a peculiarity of  the  
Copenhagen specializer,  for the earlier specializers have only  
dealt with the basic level and the meta-level. 
   The   correspondence   between  the  three  levels  may   be  
characterized as follows. 
   The basic level involves values, evaluation, interpreter. 
   The  meta-level involves meta-values (terms of the  semantic  
metalanguage),   meta-evaluation  (partial  evaluation),  meta- 
interpreter. 
   The meta-meta-level involves meta-meta-values ("K" and "U"),  
meta-meta-evaluation     (meta-specialization),      meta-meta- 
interpreter. 
   The  first  phase computes for each function in the  subject  
program a description classifying the function's parameters  as  
"known"  K-parameters  (eliminable) or  "unknown"  U-parameters  
(residual). 
   The  information obtained by KU-interpretation is then  used  
at  the second step,  when the subject program is  transformed,  
i.e.  annotated .  The essence of annotation is in representing  
the  global  information obtained  by  meta-meta-interpretation  
locally.   In   the   course  of  annotation  the  program   is  
supplemented  with  additional directions meant for  the  meta- 
interpreter. 
   Thus,  instead  of  being  placed  under the  command  of  a  
supervisory device (as,  for example, has been done in [Tur 80,  
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86]), the  meta-interpreter is made to  follow  the  directions  
inserted  into  the  annotated  program.  This  is  the  second  
principle  the  Copenhagen  specializer  is  based  upon.  This  
principle  might  be  referred to as "the  principle  of  self- 
surveillence". 
   The  Moscow specializer is fully faithful to the  two  above  
principles. It adheres to these principles even more thoroughly  
and consistently than the Copenhagen specializer does. For this  
reason,  the Moscow specializer may be considered,  in a sense,  
to  be a more "Copenhagen" one than the Copenhagen  specializer  
is. 
 
 
2. THE SEMANTIC METALANGUAGE RL 
 
   As  has been pointed out by Y.Futtamura [Fut 71],  a  system  
capable  of  producing  compilers  by  self-application  of   a  
specializer  has  to  be  based on  a  "semantic  metalanguage"  
satisfying a number of requirements. The specializer as well as  
all  interpreters to be transformed into compilers have  to  be  
written in this language.  As far as the Copenhagen specializer  
is  concerned,  use  is  made of a dialect of  pure  Lisp,  the  
language L. 
   The  author's  goal was to design a specializer  capable  of  
accepting  programs  in the language  Refal.  Since  Refal  was  
developed  to serve as an "algorithmic metalanguage" [Tur  66],  
[Tur 68],  it may well be used as a semantic metalanguage. As a  
matter of fact,  it has been used this way [Tur 79],  [Tur 80],  
[Tur 86]. 
   Refal   provides  high-level  facilities  (such  as  pattern  
matching), which enables symbolic manipulation algorithms to be  
written  in  the form that is clear and simple from  the  human  
point  of  view.  However,  as far as a  specializer  like  the  
Copenhagen   one  is  concerned,   these  facilities  tends  to  
complicate the operation of the specializer.  This induced  the  
author to choose an alternative approach. 
   The  semantic metalanguage used by the Moscow specializer is  
the language RL, which has been tailored by the author for this  
purpose.   For   this  reason,   a  Refal-program  subject   to  
specialization has to be compiled into RL. 
   RL  is  an  intermediate  language,   which  provides   data  
structures identical to those of Refal,  but,  as compared with  
Refal, is a low-level language. 
   The general structure of programs and the control constructs  
provided  by RL are similar to those of Lisp.  For this reason,  
the name "RL" may be interpreted as "Refal-Lisp". 
   RL  is less convenient for the human programmer than  Refal,  
though  it is not low-level enough to prevent RL programs  from  
being written by hand.  However, RL may well be, in some cases,  
more  suitable than Refal for automatic program generation  and  
transformation. 
   RL  is  easier to implement than  Refal,  so  an  RL-program  
automatically  generated  are  hardly  worth  recompiling  into  
Refal. 
   An  RL-program is a non-empty list of function  definitions.  
The  first function of the program is the goal function.  Input  
to the program is through the parameters of this function,  and  
output is the value returned by it. 
   All  functions  used  in RL-program  may  be  classified  as  
"primitive" or "defined".  A primitive function (or "operator")  
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can be called directly,  whereas a defined function can only be  
called by means of the operator "call". 
   A defined function has a fixed arity,  i.e. a certain number  
of arguments (which is allowed to be equal to zero).  This is a  
peculiarity  of  RL in which it differs  from  Refal,  as   all  
functions defined in a Refal-program are formally one-argument.  
Any  object expression (i.e.  an arbitrary sequence of  symbols  
and  parentheses in which the parentheses are properly  paired)  
can be taken as value by any parameter. 
   Any  primitive function (i.e.  operator) has a fixed  arity.  
Nevertheless,  in  order to reduce the length of RL-program,  a  
call of any unary operator is allowed to be given an  arbitrary  
number of arguments,  in which case the values of the arguments  
are concatenated to form an expression. This expression is then  
taken as value by the parameter of the operator. 
   An operator is either a function call, a conditional "if", a  
constant "quote", a constructor, a selector, or a predicate. 
   A  constructor is a function that builds object  expressions  
from object expressions.  There are the following constructors:  
"br",  which  encloses its input in  parentheses,  and  "expr",  
whose  result  is equal to its input.  Since "expr" is a  unary  
operator, it can be used to concatenate expressions. 
   A  selector  is a function that extracts   a component  from  
its input.  There are the following selectors:  "first",  which  
takes  the first term of an  input  expression,  "last",  which  
takes  the last term of an expression,  "bf",  which takes  all  
terms of an expression but the first one, "bl", which takes all  
terms  of an expression but the last one,  "cont",  which takes  
the contents of a pair of parentheses. 
   A  predicate  is  a  function  that tests  the  truth  of  a  
condition  and produces either the symbol "true" or the  symbol  
"false".  There are the following predicates:  "symbol",  which  
tests  whether its input expression is a symbol,  and  "equal",  
which tests whether its two inputs are equal. 
   The syntax or RL-programs may be described as follows (where  
<XXX>*  is an abbreviation for the construction <XXX>  repeated  
zero or more times). 
 
     <program> ::= 
        <function-definition> <function-definition>* 
     <function-definition> ::= 
        ( <function-name> ( <parameter>* ) <RL-term> ) 
     <function-name> ::= <object-term> 
     <parameter> ::= <RL-variable> 
     <RL-variable> ::= <symbol> 
     <RL-term> ::= 
        <RL-variable> | 
        (abort) | 
        (quote  <object-expression> ) | 
        (br  <RL-expression> ) | 
        (expr  <RL-expression> ) | 
        (first  <RL-expression> ) | 
        (bf  <RL-expression> ) | 
        (last  <RL-expression> ) | 
        (bl  <RL-expression> ) | 
        (cont  <RL-expression> ) | 
        (symbol  <RL-expression> ) | 
        (equal  <RL-term> <RL-term> ) | 
        (call  <function-name> <RL-term>* ) | 
        (if  <RL-term> <RL-term> <RL-term> ) 
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     <RL-expression> ::= <RL-term>* 
     <object-expression> ::= <object-term>* 
     <object-term> ::= 
        <symbol> | ( <object-expression> ) 
 
   Here is given an RL-interpreter written in RL. 
 
(RL-Int (Program Args) 
  (call Call (cont (first Program)) Args Program) 
) 
 
(Call (FnDef Vals Program) 
  (callr Term 
    (last FnDef) 
    (cont (first (bf FnDef))) 
  Vals Program 
  ) 
) 
 
(Term (Term Pars Vals Program) 
  (if (symbol Term) 
    (call LookUpV Term Pars Vals) 
    (call Term- 
      (first (cont Term)) 
      (bf (cont Term)) 
      Pars Vals Program 
    ) 
  ) 
) 
 
(Term- (Key Info Pars Vals Program) 
  (if (equal Key (quote quote)) 
    Info 
  (if (equal Key (quote abort)) 
    (abort) 
  (if (equal Key (quote call)) 
    (call Call 
      (call LookUpF (first Info) Program) 
      (call Pars (bf Info) Pars Vals Program) 
      Program 
    ) 
  (if (equal Key (quote callr)) 
    (call Call 
      (call LookUpF (first Info) Program) 
      (call Pars (bf Info) Pars Vals Program) 
      Program 
    ) 
  (if (equal Key (quote br)) 
    (br    (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote expr)) 
           (call Expr Info Pars Vals Program) 
  (if (equal Key (quote first)) 
    (first (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote bf)) 
    (bf    (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote last)) 
    (last  (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote bl)) 
    (bl    (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote cont)) 
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    (cont  (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote symbol)) 
    (symbol (call Expr Info Pars Vals Program)) 
  (if (equal Key (quote equal)) 
    (equal 
      (call Term  (first Info)      Pars Vals Program) 
      (call Term  (first (bf Info)) Pars Vals Program) 
    ) 
  (if (equal Key (quote if)) 
    (if 
      (call Term  (first Info)           Pars Vals Program) 
      (call Term  (first (bf Info))      Pars Vals Program) 
      (call Term  (first (bf (bf Info))) Pars Vals Program) 
    ) 
  (abort) 
  ))))))))))))) 
) 
 
(Pars (Terms Pars Vals Program) 
  (if (equal Terms (quote)) 
    (quote) 
    (expr 
      (br (call Term (first Terms) Pars Vals Program) ) 
          (call Pars (bf Terms)    Pars Vals Program) 
    ) 
  ) 
) 
 
(Expr (Terms Pars Vals Program) 
  (if (equal Terms (quote)) 
    (quote) 
    (expr 
      (call Term (first Terms) Pars Vals Program) 
      (call Expr (bf Terms)    Pars Vals Program) 
    ) 
  ) 
) 
 
 (LookUpV (Var Pars Vals) 
  (if (equal Pars (quote)) 
    (abort) 
  (if (equal Var (first Pars)) 
    (cont (first Vals)) 
    (call LookUpV Var (bf Pars) (bf Vals)) 
  )) 
) 
 
(LookUpF (FnName Program) 
  (if (equal FnName (first (cont (first Program)))) 
    (cont (first Program)) 
    (call LookUpF FnName (bf Program)) 
  ) 
) 
 
 
3. THE GENERAL STRUCTURE OF THE MOSCOW SPECIALIZER 
 
   In  attempting  to solve a problem,  one should discern  the  
difference between the end in view and the means to be made use  
of.  In  the  context of the present  work,  specialization  of  
 



 452 
programs  is  the end in view,  whereas partial  evaluation  is  
merely one of the techniques applicable. There is  thus no good  
reason   to  believe  that  partial  evaluation  is  the   only  
conceivable  method of specializing programs.  Other means  may  
prove  to  be  of  value  (e.g.  the  traditional  optimization  
techniques). 
   In  fact,  the two major parts of the Moscow specializer are  
the arity reducer and the arity raiser,  only the arity reducer  
being based on partial evaluation (or,  as we prefer to say for  
reasons to be given below, on meta-evaluation). 
   The  arity  reducer is the part that roughly corresponds  to  
the   Copenhagen   specializer.    The   peculiarity   of   the  
specialization  technique based on partial evaluation  is  that  
any  function  appearing in a residual program has at most  the  
same  number  of parameters as the function from which  it  has  
been produced. This accounts for the term "arity reducer". 
   A program produced by the arity reducer is then passed on to  
the  arity raiser,  which is based on  optimization  techniques  
that is fairly traditional. 
   The specializer is called as follows: 
 
         (call Spec Prog Pars-Cl K-Vals U-Types) 
 
where the the arguments have the following meanings: 
 
      Prog is a source RL-program to be specialized; 
      Pars-Cl  is  a sequence of symbols  "K"  and  "U",  which  
         describes  whether the corresponding parameter of Prog  
         will  be  known (K) or unknown (U) in  the  course  of  
         meta-evaluation; 
      K-Vals  is  a  list of object expressions to be  used  as  
         values of the K-parameters; 
      U-Types is a description of types of the U-parameters. 
 
   The  function  Spec  calls other two  functions:  the  arity  
reducer Reduce-Ar and the arity raiser Raise-Ar. 
  
(Spec (Prog Pars-Cl K-Vals U-Types) 
  (call Raise-Ar 
    (call Reduce-Ar Prog Pars-Cl K-Vals) 
    U-Types 
  ) 
) 
 
 
4. THE ARITY RAISER 
 
   The operation of the arity raiser proceeds in three steps. 
 
   * First,  the  types  of the parameters and results  of  all  
     functions are determined. The information obtained is then  
     used at the following steps. 
 
   * Secondly, the parameters of functions are splitted. 
 
   * Finally, local optimization is done. 
 
   For  example,  suppose that,  according to  the  information  
obtained by the type analyzer,  any value of the parameter X is  
bound to have the structure 
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      (e1) e2 t3 
 
where  e1  and e2 are object expressions,  and t3 is an  object  
term.  In this case X is splitted into three parameters X1, X2,  
and X2,  which are to contain the expressions e1,  e2,  and t3.  
Then  all  occurrences  of X in  the  function  definition  are  
replaced with the RL-term 
 
      (expr (br X1) X2 X3) 
 
   Thus the principles upon which the arity raiser is based are  
widely  known.  For this reason,  they will not be discussed in  
more detail in the present paper.  However, there remains a few  
remarks to be made.  
 
   * Being  complementary in their purposes,  the arity  raiser  
     and the arity reducer cooperate in a natural manner. 
 
   * Although  the  techniqes  used by  the  arity  raiser  are  
     straightforward, they considerably improve the readability  
     and efficiency of programs generated by the specializer. 
 
   * The arity raiser is completely automatic, which, as far as  
     the variable splitting is concerned [JSS 85b],  [Ses  86],  
     releaves the user of a hand-made annotation of the subject  
     program. 
 
   From  now  on,  when discussing the differences  between  the  
Moscow  specializer  and  the  Copenhagen  one,  by  the  Moscow  
specializer  we,  for the most part,  shall understand the arity  
reducer, because the Copenhagen specializer does not include any  
automatic arity raiser. 
 
 
5. THE ARITY REDUCER 
 
   The arity reducer removes the K-parameters of each  function  
appearing   in  the  subject  program  to  produce  specialized  
versions  of the function.  Its operation proceeds  in  several  
steps. 
   First,  the meta-meta-interpreter is called, which takes the  
call  annotated subject program and a description telling which  
of  the program's input parameters are known.  Then  the  meta- 
meta-interpreter  computes for each function a safe description  
of its parameters classifying them as K- or U-parameters. 
   Furthermore,  the subject program's functions are classified  
as K- or U-functions.  In the course of meta-interpretation, K- 
functions produce K-values, while U-functions produce U-values. 
 
      This   is  a  feature  of  the  Moscow  specializer  that  
   distinguishes it from the Copenhagen one,  since the  latter  
   classifies parameters, but does not classifies the functions  
   themselves. 
 
   Then the information is gathered about which of the  subject  
program's functions are residual,  i.e.  called by the operator  
"callr" at least at one place in the program. 
   Secondly,  on the basis of the information obtained,  the U- 
functions   are  annotated,   i.e.   transformed  in  order  to  
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facilitate  the operation of the meta-interpreter.  A  detailed  
description  of the way in which the program is annotated  will  
be given later. 
   The meta-meta-interpreter produces a three-term  expression,  
which  is then decomposed and passed on to the meta-interpreter  
in the form of three separate arguments.  The meaning of  these  
arguments will be described later. 
   Thirdly,  the  meta-interpreter builds a specialized version  
of  the  subject program,  the actual values of  the  input  K- 
parameters being given by K-Vals. 
   Finally,  the program generated is passed on to the function  
Rename-Funcs,   which  invents  new,  shorter,  names  for  the  
functions appearing in the residual program. 
   Thus the arity reducer is defined as follows: 
 
(Reduce-Ar (Prog Pars-Cl K-Vals) 
  (call Reduce-Ar- 
    (call MM-Int Prog Pars-Cl) 
    K-Vals 
  ) 
) 
 
 (Reduce-Ar- (Ann-Prog K-Vals) 
  (call Rename-Funcs 
    (call M-Int 
      (cont (first Ann-Prog)) 
      (cont (first (bf Ann-Prog))) 
      (cont (first (bf (bf Ann-Prog)))) 
      K-Vals 
    ) 
  ) 
) 
 
 
6. THE STRUCTURE OF AN ANNOTATED PROGRAM 
 
   An annotated program takes the form: 
 
      ( R-Funcs ) ( K-Prog ) ( U-Prog ) 
 
where  the  expressions R-Funcs,  K-Prog,  and U-Prog have  the  
following meanings. 
 
      R-Funcs  is a list of the residual  functions,  i.e.  the  
         functions  whose specialized versions can appear in  a  
         residual program. 
      K-Prog  is a K-program,  i.e.  definitions  of  functions  
         which have only K-parameters and produce K-values. 
      U-Prog  is  a U-program,  i.e.  definitions of  functions  
         which  have at least one U-parameters and  produce  U- 
         values. 
 
   The definitions appearing in the K-program are,  without any  
change, inherited from the source program. 
   The  definitions appearing in the U-program are  taken  from  
the source program and modified in the following way. 
   Let the source function definition be 
 
      (F (X1 X2 ... XL) T). 
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   It is transformed into 
 
      (F (K1 K2 ... KM) (U1 U2 ... UN) AT), 
 
where  Ki are those Xi that belongs to the class K,  and Ui are  
those Xi that belongs to the class U,  M+N=L,  and AT is an RL- 
term obtained by annotating T. Annotating an RL term is done as  
follows. 
   An  RL-term involving neither U-parameters nor  U-functions'  
calls will be referred to as a K-term. An RL-term that is not a  
K-term will be referred to as an U-term. 
   Let  T  be an RL-term.  The result of annotating T  will  be  
denoted by AT. 
   AT is obtained from T by applying the following rules,  with  
the  precedence of the rules determined by the order  in  which  
they are listed. 
   If T=(quote C), then AT=(quote C). 
   If T=(abort), then AT=(abort). 
   If T is a K-term, then AT=(meta T). 
   If T is a variable, then AT=T. 
   If T=(call F T1 T2 ...  TL),  then AT=(call F (K1 K2 ... KM)  
(AU1 AU2 ...  AUN)),  where M+N=L,  K1 K2 ... KM is the list of  
all  Ti that correspond to the K-parameters of F,  and AU1  AU2  
 ... AUN  is  the  list  of  the terms  that  are  obtained  by  
annotating the terms Ti that correspond to the U-parameters  of  
F. 
   If T=(callr F T1 T2 ... TL), then AT=(callr F (K1 K2 ... KM)  
(AU1 AU2 ...  AUN)),  where M+N=L,  K1 K2 ... KM is the list of  
all  Ti that correspond to the K-parameters of F,  and AU1  AU2  
 ... AUN  is  the  list  of  the terms  that  are  obtained  by  
annotating the terms Ti that correspond to the U-parameters  of  
F. 
   If T=(if T0 T1 T2),  where T0 is a K-term,  then AT=(if-e T0  
AT1 AT2). 
   If T=(if T0 T1 T2),  where T0 is a U-term, then AT=(if-r AT0  
AT1 AT2). 
   If T=(P T1 T2 ... TN), where P is one of the operators "br",  
"expr",  "first",  "bf",  "last",  "bl",  "cont",  "symbol", or  
"equal", then AT=(P AT1 AT2 ... ATN). 
 
   Consider the function 
 
(Zipper (X Y) 
  (if (equal X (quote)) 
    Y 
  (if (equal Y (quote)) 
    X 
    (expr 
      (first X) (first Y) 
      (call Zipper (bf X) (bf Y)) 
    ) 
  )) 
) 
 
   On  condition  that  X  is a K-parameter,  and  Y  is  a  U- 
parameter, the result of annotating Zipper is 
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 (Zipper (X) (Y) 
  (if-e (equal X (quote)) 
    Y 
  (if-r (equal Y (quote)) 
    (meta X) 
    (expr 
      (meta (first X)) (first Y) 
      (call Zipper ((bf X)) ((bf Y)) ) 
    ) 
  )) 
)  
 
 
7. THE META-INTERPRETER 
 
   The meta-interpreter is called as follows: 
 
      (call M-Int R-Funcs K-Prog U-Prog K-Vals) 
 
   The  first  three  arguments contain  an  annotated  program  
subject  to specialization,  and K-Vals contains values of  the  
program's   K-parameters.   The  meta-interpreter  produces   a  
residual  program composed of functions,  each function being a  
specialized  version of a function appearing  in  U-Prog.  More  
specifically, if the definition of a U-function is of the form 
 
      (F (K1 ... KM) (U1 ... UN) T), 
 
it can give rise to function definitions of the form 
 
      ((F (C1) ... (CM)) (U1 ... UN) T') 
 
where  C1,  ...,  CM are object expressions which are values of  
the K-parameters K1,  ...,  KM,  and T' is the result of  meta- 
evaluating T,  with the K-parameters' values being C1, ..., CM,  
and the U-parameters' values being these parameters U1, ..., UN  
themselves.  ((F  (C1)  ...  (CM)) is the name of the  function  
generated.  This  name is to be replaced with a shorter one  at  
the next stage of specialization. 
   Thus, the principal task of the meta-interpreter consists in  
evaluating  RL-terms.  The result of meta-evaluating an RL-term  
is a U-value, i.e. an RL-term. 
   Consider, for example, the above function Zipper. It has the  
K-parameter  X and the U-parameter Y.  Suppose that  the  meta- 
interpreter has to evaluate Zipper,  with the values of X and Y  
being 
 
      X = "ONE TWO";  Y = "VAR". 
 
(From here on,  variable values will be put in double quotation  
marks  for  fear  that they might  be  confused  with  variable  
names.) The above conditions being met,  the meta-evaluation of  
Zipper yields the RL-term 
 
 (if (equal VAR (quote)) 
  (quote ONE TWO) 
  (expr 
    (quote ONE) (first VAR) 
    (if (equal (bf VAR) (quote)) 
      (quote TWO) 
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      (expr 
        (quote TWO) (first (bf VAR)) 
        (bf (bf VAR)) 
      ) 
    ) 
  ) 
) 
 
   In  the  course of meta-evaluating the body of  Zipper,  the  
meta-interpreter has to carry out the recursive call of  Zipper  
twice. When Zipper is called for the first time, the parameters  
take the values 
 
      X = "TWO";  Y = "(bf VAR)", 
 
and  when Zipper is called for the second time,  they take  the  
values 
 
      X = "";  Y = "(bf (bf VAR))". 
 
   Thus,  the most complicated operation performed by the meta- 
interpreter consists in meta-evaluating RL-terms. 
   The   basic  principle  followed  in  designing  the  Moscow  
specializer  is that,  in contrast to an ordinary  interpreter,  
the meta-interpreter should deal with values of two  kinds:  K- 
values  and  U-values.  These values are entirely different  in  
nature,   for  they  belong  to  different   levels:   K-values  
correspond  to the basic level,  whereas U-values correspond to  
the  meta-level.  U-values may,  with respect to  K-values,  be  
regarded as meta-values,  since they are RL-terms, which are to  
produce K-values only at the time the specialized program  will  
be run. 
   Thus  K-values  and  U-values  have to  be  operated  on  in  
entirely  different ways.  For example,  the application of the  
operator "bf" to the K-value "ONE TWO THREE" yields the K-value  
"TWO  THREE",  whereas the application of "bf" to  the  U-value  
"(expr X1 X2)" yields the U-value "(bf (expr X1 X2))", the "bf"  
being treated as a "meta-level" operator. 
   Hence,  the  meta-interpreter  may take advantage  of  using  
entirely  different representations for K-values and  U-values.  
K-values,  naturally,  may be stored and operated on as  "true"  
object  expressions,  the  way they would be dealt with  by  an  
ordinary  RL-interpreter,  while U-values,  naturally,  may  be  
stored as RL-terms. 
   Accordingly,  K-values can be operated on "really", i.e. the  
way an RL-interpreter does, whereas U-values can be operated on  
"nominally",  in  a  "meta"  manner (which may  be  reduced  to  
placing the operator applied before the RL-term). 
 
       Thus,  the  first  principle the Moscow  specializer  is  
    based upon is that,  instead of being mixed,  K-computation  
    and  U-computation ought to be  soroughly  separated.  This  
    principle  may  be referred to as the principle of  unmixed  
    computation. 
 
       The  second  basic  principle is  that  any  computation  
    involving K- or U-values ought to be carried to completion.  
    This is feasible since all K- or U-values dealt with by the  
    meta-interpreter   are  completely  known  to  the   latter  
    (although they are operated on differently). As there is no  
 



 458 
    good reason to regard completed evaluation performed by the  
    meta-interpreter  as partial,  the second principle may  be  
    referred to as the principle of non-partial evaluation. 
 
   The above considerations account for the author's preference  
for   the  term  "meta-evaluation"  over  the   term   "partial  
evaluation" as far as the Moscow specializer is concerned. 
 
   The  general  structure of the meta-interpreter conforms  to  
the  above  principles.  The basis of the  meta-interpreter  is  
formed  by two functions:  Eval-Term and  Spec-Term.  Eval-Term  
computes  the  K-value  of a K-term with respect  to  given  K- 
parameters' values and a K-program.  Spec-Term computes the  U- 
value  of a U-term with respect to given K-parameters'  values,  
U-parameters' values, a K-program and a U-program. 
   Thus the meta-interpreter includes the K-interpreter,  which  
is an ordinary RL-interpreter,  and the U-interpreter, which is  
a meta-interpreter in the true sense of the word. 
   Having  been  called,  the K-interpreter never calls the  U- 
interpreter,  whereas the U-interpreter calls the K-interpreter  
whenever the U-term under interpretation involves K-terms. This  
situation arises when the meta-interpreter runs into one of the  
following constructs: 
 
      (meta K) 
      (if-e K U1 U2) 
      (call  F (K1 ... KM) (U1 ... UN)) 
      (callr F (K1 ... KM) (U1 ... UN)) 
 
   As  the  class  of  any subterm  is  determinable  from  the  
context, there is no need for annotating operators appearing in  
the subject program by replacing each occurrence of an operator  
"p"  either  with  "p-e"  or "p-r" (as  this  is  done  by  the  
Copenhagen  specializer).  The  only exeption is  the  operator  
"if". 
 
 
8. THE RESULTS OBTAINED BY APPLYING THE SPECIALIZER TO ITSELF 
 
   It  is a peculiarity of both the Moscow specializer and  the  
Copenhagen  one that interpreters can be converted to compilers  
by  evaluating Spec(M-Int,Ann-Int) instead  of  Spec(Spec,Int),  
where M-Int is the meta-interpreter, Int is an interpreter, and  
Ann-Int is the result of annotating Int.  Similarly, a compiler  
generator  can be produced by evaluating Spec(M-Int,Ann-M-Int),  
where Ann-M-Int is the result of annotating M-Int,  the  inputs  
of M-Int being classified as follows:  R-Funcs,  K-Prog, and U- 
Prog  are K-parameters,  and K-Vals is an U-parameter.  This is  
feasible  because the meta-interpreter is the only part of  the  
specializer  that has to know the value of the input  parameter  
K-Vals (i.e.  the values of the subject program's K-parameters)  
[JSS 85a], [JSS 85b], [Ses 86]. 
   The  autor succeeded in getting the specializer  to  produce  
several  compilers  from interpreters.  Among the  interpreters  
converted  are a simple interpreter implementing an  imperative  
two-register  machine  (which is essentially the  same  as  the  
interpreter  described in [JSS 85b]),  an interpreter of finite  
automata,   the   RL-interpreter  presented   above,   and   an  
interpreter of the strict Refal [Tur 86]. 
   The structure of all the compilers obtained turned out to be  
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quite natural from the human point of view, the compilers being  
easy to read.  The RL-compiler, as could be expected, proved to  
be an RL-optimizer, rather than a true compiler, its source and  
target languages being the language RL. 
   Then,  by specializing the meta-interpreter with respect  to  
the  meta-interpreter,  a compiler generator was generated.  As  
could  be  expected,  the names of functions appearing  in  the  
compiler generator proved to be,  in many cases, rather insipid  
(for instance,  the names Spec-Term-1,  Spec-Term-2, ..., Spec- 
Term-45). Nevertheless, these names having been replaced by the  
author's hand with more suggestive ones, the compiler generator  
turned out to be quite readable. 
   A  close examination of the compiler generator  enabled  its  
principles  of operation to be fully understood.  As a  result,  
the  way  in  which the interpreters mentioned above  had  been  
converted to compilers became apparent.  Moreover, the compiler  
generator itself having been produced from the meta-interpreter  
in  conformity  with the same  principles,  the  correspondence  
between the meta-interpreter and the compiler generator  became  
clear. 
 
 
9.THE WAY IN WHICH INTERPRETERS ARE CONVERTED TO COMPILERS 
 
   A compiler produced from an interpreter comprises two parts:  
the administrator and the generator. The administrator puts the  
compiler  as  a  whole into operation,  whereas  the  generator  
builds  the  residual program.  The compilers produced  by  the  
Copenhagen specializer have a similar structure [JSS 85b], [Ses  
86]. 
   Being  merely  a slightly specialized version of  the  meta- 
interpreter's  administrative part,  the administrator has  the  
structure that is almost independent of the source interpreter. 
   The  structure  of  the  generator  is,   on  the  contrary,  
completely    dependent   on  the  structure  of   the   source  
interpreter,    being   entirely   different   for    different  
interpreters. 
   As  has been said above,  an annotated interpreter takes the  
form 
 
      ( R-Funcs ) ( K-Prog ) ( U-Prog ) 
 
   The  functions  from  the  K-Prog  are  transferred  to  the  
compiler   with   insignificant  alterations  (such  as   local  
optimizations and renaming of functions and parameters). 
   The   functions  from  U-Prog  are  transformed   and   then  
transferred  to the compiler.  The result of the transformation  
may  be obtained by applying the following rules (modulo  local  
optimizations and renaming of functions and parameters). 
   The   functions   from  U-Prog  will  be  referred   to   as  
"interpreting",   and  the  corresponding  functions  from  the  
compiler will be referred to as "compiling". 
   Let  T  be  an RL-term appearing in  the  definition  of  an  
interpreting  function.  The  result of transforming  T,  which  
corresponds to T in the compiling function,  will be denoted by  
CT. 
   Let the definition of an interpreting function be 
 
      (F (K1 ... KM) (U1 ... UN) T). 
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   It is transformed into the compiling function  
 
      (F (K1 ... KM U1 ... UN) CT), 
 
where  CT  is obtained from T by applying the following  rules,  
with  the  precedence of the rules determined by the  order  in  
which they are listed. 
   If T=(quote C), then CT=(quote (quote C)). 
   If T=(abort), then CT=(quote (abort)). 
   If T=(meta K), then CT=(br (quote quote) K). 
   If T is a variable, then CT=T. 
   If T=(call F (K1 ...  KM) (U1 ...  UN)),  then CT=(call F  K1    
 ... KM CU1 ... CUN)). 
   If T=(callr F (K1 ...  KM) (U1 ...  UN)), then CT=(br (quote  
call) (br (quote F) (br K1) ... (br KM)) CU1 ... CUN). 
   If T=(if-e K U1 U2), then CT=(if K CU1 CU2). 
   If T=(if-r U0 U1 U2), then CT=(br (quote if) CU0 CU1 CU2). 
   If  T=(P U1 ...  UN),  where P is one of the operators "br",  
"expr",  "first",  "bf",  "last",  "bl",  "cont",  "symbol"  or  
"equal", then CT=(br (quote P) CU1 ... CUN). 
 
   For example,  the above function Zipper is transformed  into  
the compiling function 
 
(Zipper (X Y) 
  (if (equal X (quote)) 
    Y 
  (br (quote if) 
    (br (quote equal) Y (quote (quote))) 
    (br (quote quote) X) 
    (br (quote expr) 
      (br (quote quote) (first X)) 
      (br (quote first) Y) 
      (call Zipper (bf X) (br (quote bf) Y) 
    ) 
  )) 
) 
 
   The above principles of transforming interpreting  functions  
into  compiling ones appear to be quite natural.  They,  in all  
probability,  have  been  used  in  the  hand-written  compiler  
generator  reported  in [Bec 76].  However,  in  our  case,  of  
particular interest is the fact that these principles have been  
automatically  "discovered"  by the computer in the  course  of  
specializing a specializer. 
   It  should  be noted that the above principles of  producing  
compiling  functions  are  valid  provided  that  the  compiler  
generator is dealt with in its integrity, with the inclusion of  
the automatic arity raiser.  Had the arity raiser been excluded  
from the compiler generator,  the compiling functions  produced  
would have had two parameters exactly.  The first parameter, K- 
Vals,   would  have  contained  K-values,  whereas  the  second  
parameter, U-Vals, would have contained U-values. 
 
CONCLUSION 
 
   The   main   feature   of  the   Moscow   specializer   that  
distinguishes  it  from the Copenhagen one is more  strict  and  
static  differentiation between K-values and U-values.  It  has  
been achieved by the following means. 
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   * In  addition  to  the separation of K-parameters  from  U- 
     parameters, the separation of K-functions from U-functions  
     has been introduced. 
 
   * Subject programs are annotated in a different way, so that  
     a program is divided into K-program and  U-program.  Thus,  
     there  is  no  need for replacing each  occurrence  of  an  
     operator "P" with either "P-e" or "P-r". 
 
   * The  new method of annotation allowed the meta-interpreter  
     to  be divided into the K-interpreter  and  U-interpreter.  
     Being an ordinary RL-interpreter,  the K-interpreter deals  
     only with K-values. 
 
   * The separation of the K-interpreter from the U-interpreter  
     has  made it possible to choose different  representations  
     for values of K- and U-parameters,  such that a K-value is  
     an object expression, whereas a U-value is an RL-term. 
 
   A  considerable  improvement  in the structure  of  residual  
programs  is,  for the most part,  due to the  automatic  arity  
raiser  and the use of different representations for K- and  U- 
values. 
   As far as the Copenhagen specializer is concerned, K- and U- 
values are treated in a different way:  any value assigned to a  
K-parameter,  instead  of  being  an ordinary  constant,  is  a  
representation  of  the constant in the form of a term  of  the  
semantic metalanguage.  In other words,  instead of a  constant  
"C", use is made of the term "(quote C)". This has a disastrous  
effect  on the size and readability of the compilers generated.  
Let,  for instance, "(first X)" be a term appearing in a source  
interpreter,  X being a K-parameter.  Then,  if K- and U-values  
had the same representation,  this term would give rise to  the  
term 
 
      (br (quote quote) (first (bf (cont X)))) 
 
in the compiler, whereas the compiler generator produced by the  
Moscow specializer transfers this term to the compiler  without  
any change. 
   Additionally,  the  separation of the K-interpreter from the  
U-interpreter eliminated the necessity of performing  immediate  
local  optimizations  of  the U-values being  produced  in  the  
course  of meta-interpretation,  since these optimizations,  in  
any  case,  is to be performed by the  arity  raiser.  Besides,  
these  optimizations  can be done better by the arity  reducer,  
because it can make use of the global information on the  types  
of functions and variables. 
   Thus,  it  can be easily seen from the above  considerations  
that making use of different representations of K- and U-values  
results  in the more clear structure of the compiler  generator  
and compilers produced from interpreters. 
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