
Moscow ML Owner's ManualVersion 1.43 of April 1998Sergei Romanenko Peter SestoftRussian Academy of Sciences Royal Veterinary and Agricultural UniversityMoscow, Russia Copenhagen, DenmarkMoscow ML implements the Core language of Standard ML (SML), as de�ned in the 1997 De�nitionof Standard ML, and supports most required parts of the new SML Basis Library. Moscow ML alsoprovides a simple subset of the Standard ML Modules language, restricted to signatures and non-nestedstructures. It supports separate compilation and the generation of stand-alone executables.This document explains how to use the Moscow ML system. A companion document, the MoscowML Language Overview , summarizes Moscow ML syntax and some built-in functions [7]. For a list oftextbooks and other materials on Standard ML programming, see Section 16 below.Acknowledgements: The Caml Light system was instrumental in creating Moscow ML, which usesits runtime system and essentially the same bytecode generator. Many other aspects of the design werederived from Caml Light, developed by Xavier Leroy and Damien Doligez at INRIA, France [3, 4]. TheML Kit helped solving problems of parsing, in�x resolution, and type inference [1].The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html
Contents1 Getting started 31.1 Installation 31.2 The interactive system 31.3 The batch compiler and linker 31.4 A simple module system 31.5 What is new in release 1.43 32 Core language and libraries 42.1 The Standard ML Basis Library 43 The interactive system 43.1 On-line help 43.2 Editing and running ML programs 53.3 Command-line options 53.4 Non-standard primitives in the interactive system 61

4 Modules and compilation units 84.1 Basic concepts 84.2 Units without explicit signature 84.3 Units with explicit signature 84.4 Syntax of unit signatures 94.5 Syntax of unit bodies 104.6 An example program consisting of three units 104.7 Compiling, linking, and loading units 114.8 Organizing programs for compatibility with SML Modules 114.9 Matching a unit body against a signature 125 The batch compiler 135.1 Overview 135.2 Command-line options 146 Recompilation management 156.1 Using `make' to manage recompilation 156.2 An example Make�le for Unix 166.3 An example Make�le for MS DOS 166.4 Unit names and DOS �le names 177 Value polymorphism 188 Weak pointers 199 Dynamic linking of foreign functions 1910 Using GNU gdbm persistent hash tables 1911 Quotations and antiquotations 2012 A lexer generator 2112.1 Overview 2112.2 Hints on using mosmllex 2112.3 Syntax of lexer de�nitions 2112.3.1 Header 2212.3.2 Entry points 2212.3.3 Regular expressions 2212.3.4 Actions 2212.3.5 Character constants 2312.3.6 String constants 2313 A parser generator 2413.1 Overview 2413.2 The format of grammar de�nitions 2413.2.1 Header and trailer 2413.2.2 Declarations 2413.2.3 The format of grammar rules 2513.3 Command-line options of mosmlyac 2513.4 Reporting lexer and parser errors 2514 Copyright and credits 2615 How to get Moscow ML version 1.43 2616 Books and other materials on Standard ML 272

1 Getting started1.1 InstallationGet a copy of the Moscow ML system executables (see Section 15 for instructions) and unpack themin your home directory (under Unix) or in directory C:\ (under MS Windows and DOS). This createsa directory mosml. Read the �le mosml/install.txt. This manual, and the Moscow ML LanguageOverview , are in directory mosml/doc.1.2 The interactive systemThe interactive system is invoked by typing mosml at the shell prompt. It allows you to enter declarationsand evaluate expressions:$ mosmlMoscow ML version 1.43 (April 1998)Enter `quit();' to quit.- fun fac n = if n = 0 then 1 else n * fac (n-1);> val fac = fn : int -> int- fac 10;> val it = 3628800 : int-You can quit the interactive session by typing `quit();' or control-D (under Unix) or control-Z followedby newline (under MS Windows and DOS). Type help "lib"; for an overview of built-in functionlibraries, and e.g. help "Array" for help on Array operations. See Section 3 for further information onmosml.1.3 The batch compiler and linkerThe batch compiler and linker is invoked by typing mosmlc at the shell prompt. It can compile ML source�les separately (mosmlc -c) and link them to obtain executables (mosmlc -o), in a manner similar to Ccompilers. See Section 5 for further information on mosmlc.1.4 A simple module systemMoscow ML provides a simple subset of the Standard ML Modules language, restricted to signatures andnon-nested structures. A Moscow ML program consists of one or more units. A unit U has a signature(or interface) in �le U.sig and a body (or implementation) in �le U.sml. The unit signature correspondsto a Standard ML signature, and the unit body corresponds to a Standard ML structure. Moscow MLsupports type-safe separate compilation and linking. Section 4 gives the syntax and an informal semanticsof compilation units. Section 6 explains automatic recompilation management.1.5 What is new in release 1.43� Weak pointers and arrays of weak pointers (structure Weak); see Section 8.� The load paths can be set from the interactive system, and the system's prompts and responses canbe turned o� (option -quietdec, variable Meta.quietdec). This facilitates writing scripts withmosml.� Prettyprinters can be installed also on base types and abstract types.� The Help facility can be adapted to other uses.� Mosmllex now supports abbreviations for regular expressions (thanks to Ken Larsen).� Added dynamic linking of external functions (structure Dynlib) under Linux, Solaris and OSF/1(thanks to Ken Larsen). See Section 9.� Access to GNU gdbm persistent hashtables (structures Gdbm, Polygdbm); see Section 10. RequiresDynlib.� For other minor changes and �xes, see �le mosml/doc/releases.txt.3

2 Core language and librariesMoscow ML implements the Core language of Standard ML as revised in 1997 [6, 5], and much of theStandard ML Basis Library [2], the most important omission being the functional stream input-outputoperations. The second edition of Paulson's textbook ML for the Working Programmer uses the revisedCore language and the new SML Basis Library.2.1 The Standard ML Basis LibraryThe Standard ML Basis Library is a joint e�ort of the Standard ML of New Jersey, MLWorks, andMoscow ML developers1 to enhance the portability of Standard ML programs.The Moscow ML Language Overview [7] lists the library structures implemented by Moscow ML, andcontains an index to all the identi�ers they de�ne. The same information is available also from mosml'son-line help (Section 3.1) and as hypertext from Moscow ML's homepage.For a comprehensive description of the libraries, see the Basis Library documentation [2], which willbecome available from a commercial publisher. Currently it must be obtained from the Internet; seeSection 16.The Basis Library and the revised Standard ML language are slightly incompatible with both the1990 De�nition of Standard ML and with SML/NJ version 0.93. Invoking Moscow ML with `mosml -Psml90' gives a top-level environment compatible with the 1990 De�nition. Invoking Moscow ML withoption `mosml -P nj93', gives a top-level environment compatible with the old SML/NJ version 0.93.See Section 3.3 for more information on command-line options. An important change in SML'1997 is theadoption of value polymorphism; see Section 7.3 The interactive systemThe interactive system mosml is invoked simply by typing mosml at the command line:$ mosmlMoscow ML version 1.43 (April 1998)Enter `quit();' to quit.-The interactive system can be terminated by typing quit(); and newline, or control-D (under Unix) orcontrol-Z and newline (under MS Windows and DOS). Type `help "";' for help on built-in functions.Invoking the interactive system with command line argumentsmosml file1 : : : filenis equivalent to invoking mosml and, when Moscow ML has started, entering(use "file1"; : : : ; use "filen");3.1 On-line helpIn a mosml session, you may type help "lib"; for an overview of built-in function libraries. To get helpon a particular identi�er, such as fromString, typehelp "fromstring";This will produce a menu of all library structures which contain the identi�er fromstring (disregardingthe lowercase/uppercase distinction):1The Basis Library authors are Andrew Appel (Princeton, USA); Emden Gansner (AT&T Research, USA); John Reppy,Lal George, Lorenz Huelsbergen, Dave MacQueen (Bell Laboratories, USA); Matthew Arcus, Dave Berry, Richard Brooksby,Nick Barnes, Brian Monahan, Jon Thackray (Harlequin Ltd., Cambridge, England); Carsten M�uller (Berlin, Germany);and Peter Sestoft (Royal Veterinary and Agricultural University, Denmark).
4

--------------------------------| 1 | val Bool.fromString || 2 | val Char.fromString || 3 | val Date.fromString || 4 | val Int.fromString || 5 | val Path.fromString || 6 | val Real.fromString || 7 | val String.fromString || 8 | val Time.fromString || 9 | val Word.fromString || 10 | val Word8.fromString |--------------------------------Choosing a number from this menu will invoke the help browser on the desired structure, e.g. Int. Thehelp browser is primitive but easy to use. It works best with a window size of 24 lines.The texts accessed by help are found in directory mosml/lib. For instance, all List functions aredescribed in �le mosml/lib/List.sig.3.2 Editing and running ML programsUnix and Emacs You may run mosml as a subshell under Emacs. You should use the mosml-version ofthe SML mode for Emacs; see �le mosml/utility/emacs for instructions. In case of errors, Emacscan interpret mosml's error messages and jump to the o�ending piece of source code. This is veryconvenient.Window systems In a window-oriented system, such as MacOS, MSWindows, or the X window system,you may run mosml in one window and edit source code in another. After (re-)editing the source�le, you must issue a use command in the mosml window.MS DOS You may use the simple edit script to invoke an editor from inside a mosml session; see �lemosml\utility\dosedit for instructions. You will not need to quit the mosml session to edit asource �le, and the script will automatically reload the newly edited �le.3.3 Command-line options-I directorySpeci�es directories to be searched for interface �les, bytecode �les, and source �les. A call to use,load or loadOne will �rst search the current directory, then all directories speci�ed by option `-I'in order of appearance from left to right, and �nally the standard library directory. (This optiona�ects the variable Meta.loadPath; see Section 3.4).-valuepolySpeci�es that the type checker should use `value polymorphism'; see Section 7. Default.-imptypesSpeci�es that the type checker should distinguish between imperative and applicative type vari-ables, generalize all applicative type variables, and generalize imperative type variables only innon-expansive expressions. See Section 7.-quietdecTurns o� the interactive system's prompt and responses, except for the two-line start-up message,warnings, and error messages. Useful for writing scripts in SML. Sets Meta.quietdec to true; seeSection 3.4.-P unit-setDetermines which library units will be included and open at compile-time. Any library unit in theload path can be used by the compile function for type checking purposes. Thus regardless of the-P option, the compile function knows the type of library functions such as Array.foldl.-P default This provides an initial environment for the new Basis Library. The units Array, Char,List, String, and Vector will be loaded, and units Char, List, and String will be partiallyopened. This is the default. 5

-P sml90 This provides an initial environment which is upwards compatible with that of the1990 De�nition of Standard ML and with pre-1.30 releases of Moscow ML. In particular,the functions chr, explode, implode, and ord work on strings, not characters. The newversions of these functions are still available as Char.chr, Char.ord, String.explode, andString.implode. The math functions and input-output facilities required by the 1990 De�-nition [5, Appendix C and D] are available at top-level. In addition the same (new) librariesare loaded as with -P default.-P nj93 This provides a top-level environment which is mostly compatible with that of SML/NJ0.93. The functions app, ceiling, chr, dec, explode, fold, hd, implode, inc, max, min, nth,nthtail, ord, ordof, revapp, revfold, substring, tl, and truncate have the same typeand meaning as in SML/NJ 0.93. Note that this is incompatible with SML/NJ version 110.The math functions and input-output facilities required by the 1990 De�nition [5, AppendixC and D] are available at top-level. In addition the same (new) libraries are loaded as with -Pdefault. This option does not imply -imptypes.-P full This loads all the libraries marked F in the library list (see [7]), and partially opens theChar, List, and String units.-P none No library units are loaded or opened initially.Additional library units can loaded into the interactive system by using the load function; seeSection 3.4 below.-stdlib stdlib-directorySpecify the standard library directory to be stdlib-directory. The default standard library is usuallymosml/lib under Unix and c:\mosml\lib under MS Windows and DOS.3.4 Non-standard primitives in the interactive systemThe following non-standard primitives are de�ned in unit Meta, loaded (and open by default) only in theinteractive system. Hence these primitives cannot be used from source �les which are compiled separately.The functions compile and load deal with Moscow ML compilation units; see Section 4.compile : string -> unitEvaluating compile "U.sig" will compile and elaborate the unit signature in �le U.sig, producinga compiled signature �le U.ui. During compilation, the compiled signatures of other units will beaccessed if they are mentioned in U.sig.Evaluating compile "U.sml" will elaborate and compile the unit body in �le U.sml, producing abytecode �le U.uo. If there is an explicit signature U.sig, then �le U.ui must exist, and the unitbody must match the signature. If there is no U.sig, then an inferred signature �le U.ui will beproduced also. No evaluation takes place. During compilation, the compiled signatures of otherunits will be accessed if they are mentioned in U.sml.The declared identi�ers will be reported if verbose is true (see below); otherwise compilationwill be silent. In any case, compilation warnings are reported, and compilation errors abort thecompilation and raise the exception Fail with a string argument.exnName : exn -> stringReturns a name for the exception constructor in the exception. Never raises an exception itself.The name returned may be that of any exception constructor aliasing with exn. For instance, letexception E1; exception E2 = E1 in exnName E2 end may evaluate to "E1" or "E2".exnMessage : exn -> stringFormats and returns a message corresponding to the exception. For the exceptions de�ned in theSML Basis Library, the message will include the argument carried by the exception.installPP : (ppstream -> 'a -> unit) -> unitEvaluating installPP pp installs the prettyprinter pp at type ty, provided pp has type ppstream-> ty -> unit. The type ty must be a nullary (parameter-less) type constructor, either built-in(such as int or bool) or user-de�ned. Whenever a value of type ty is about to be printed by theinteractive system, and whenever function printVal is invoked on an argument of type ty, theprettyprinter pp will be invoked to print it. See the example in mosml/examples/pretty.6

load : string -> unitEvaluating load "U" will load and evaluate the compiled unit body from �le U.uo. The resultingvalues are not reported, but exceptions are reported, and cause evaluation and loading to stop. IfU is already loaded, then load "U" has no e�ect. If any other unit is mentioned by U but not yetloaded, then it will be loaded automatically before U. The loaded unit(s) must be in the currentdirectory or in a directory on the loadPath list (see below).After loading a unit, it can be opened with open U. Opening it at top-level will list the identi�ersdeclared in the unit.When loading U, it is checked that the signatures of units mentioned by U agree with the signaturesused when compiling U, and it is checked that the signature of U has not been modi�ed since U wascompiled; these checks are necessary for type safety. The exception Fail is raised if the signaturechecks fail, or if the �le containing U or a unit mentioned by U is not found.loadOne : string -> unitEvaluating loadOne "U" is similar to load "U", but raises exception Fail if U is already loadedor if some unit mentioned by U is not yet loaded. That is, it does not automatically load any unitsmentioned by U. It performs the same signature checks as load.loadPath : string list refThis variable determines the load path: which directories will be searched for interface �les (.ui�les), bytecode �les (.uo �les), and source �les (.sml �les). This variable a�ects the load, loadOne,and use functions. The current directory is always searched �rst, followed by the directories inloadPath, in order. By default, only the standard library directory is in the list, but if additionaldirectories are speci�ed using option -I, then these directories are prepended to Meta.loadPath.printVal : 'a -> 'aThis is a polymorphic function provided as a quick debugging aid. It is an identity function, whichas a side-e�ect prints its argument to standard output exactly as it would be printed at top-level.Output is
ushed immediately. For printing strings, the function print is probably more usefulthan printVal.printDepth : int refThis variable determines the depth (in terms of nested constructors, records, tuples, lists, andvectors) to which values are printed by the top-level value printer and the function printVal. Thecomponents of the value whose depth is greater than printDepth are printed as `#'. The initialvalue of printDepth is 20.printLength : int refThis variable determines the way in which list values are printed by the top-level value printerand the function printVal. If the length of a list is greater than printLength, only the �rstprintLength elements are printed, and the remaining elements are printed as `: : : '. The initialvalue of printLength is 200.quietdec : bool refThis variable, when true, turns o� the interactive system's prompt and responses, except warningsand error messages. Useful for writing scripts in SML. The default value is false; it can be set totrue with the -quietdec command line option; see Section 3.3.quit : unit -> unitEvaluating quit() quits Moscow ML immediately.quotation : bool refDetermines whether quotations and antiquotations are permitted in declarations entered at top-level and in �les compiled with compile; see Section 11. When quotation is false (the default),the backquote character is an ordinary symbol which can be used in ML symbolic identi�ers. Whenquotation is true, the backquote character is illegal in symbolic identi�ers, and a quotation `a bc` will be evaluated to an object of type 'a frag list.system : string -> intEvaluating system "com" causes the command com to be executed by the operating system. If anon-zero integer is returned, this must indicate that the operating system has failed to execute thecommand. Under MS DOS, the integer returned always equals 0.
7

use : string -> unitEvaluating use "f" causes ML declarations to be read from �le f as if they were entered from theconsole. The �le must be in the current directory or in a directory on the loadPath list. A �leloaded by use may, in turn, evaluate calls to use. For best results, use use only at top level, or attop level within a use'd �le.valuepoly : bool refDetermines whether the type checker should use `value polymorphism'; see Section 7. Command-lineoption -valuepoly sets valuepoly to true (the default), whereas option -imptypes sets valuepolyto false; see Sections 3.3 and 5.2.verbose : bool refDetermines whether the signature inferred by a call to compile will be printed. The printedsignature follows the syntax of Moscow ML signatures, so the output of compile "U.sml" can beedited to subsequently create �le U.sig. The default value is false.4 Modules and compilation units4.1 Basic conceptsA Moscow ML program can consist of one or more compilation units , or units for short. A compilationunit consists of an optional unit signature and a unit body . The unit signature speci�es the contents ofthe unit; it is an interface to the unit. The unit body declares the contents of the unit; it provides animplementation of the unit. The following analogies may be helpful:Moscow ML unit signature unit bodyStandard ML signature structureCaml Light module interface module implementationModula-2 interface module implementation moduleThe unit body is always present, whereas the signature can be omitted. When the unit signature ispresent, it is called the explicit signature to distinguish it from the signature inferred when elaboratingthe unit body. When present, the explicit signature must be matched by the body, and only thoseidenti�ers speci�ed in the signature are visible outside the unit. If no signature is given, all identi�ersvisible at the end of the unit body are visible outside the unit.Units are closely associated with �les, as in Modula-2. The body of the unit called `U' is de�ned in a�le called `U.sml', and its explicit signature (if any) in �le `U.sig'.Files containing program text:U.sig unit signature, speci�cationsU.sml unit body, declarations Files created by the compiler:U.ui compiled unit signatureU.uo compiled unit body, bytecode4.2 Units without explicit signatureA unit U without an explicit signature consists of a �le U.sml containingstructure U = struct : : : declarations : : : endThis is the same as a simple SML structure declaration. There must be no corresponding explicit signature�le U.sig.4.3 Units with explicit signatureA unit U with an explicit signature consists of a signature �le U.sig containingsignature U = sig : : : speci�cations : : : endand a �le U.sml, containing 8

structure U :> U = struct : : : declarations : : : endThis is the same as a SML structure declaration with an opaque signature constraint. Note that the�le name, signature name, and structure name must be the same. The notation `U :> U' is an opaquesignature constraint, meaning that other units have no access to the internals of U.sml, only to thesignature U.sig.To illustrate the di�erence between transparent and opaque signature constraints, consider the Stan-dard ML (not Moscow ML) declarations:signature SIG = sig structure S: SIG = structtype t type t = intval x: t val x = 17end; endGiven these declarations, the expression S.x+33 will typecheck. Although the signature SIG just saysthat there exists a type t, constraining S with SIG does not hide the fact that S.x is actually an integer.On the other hand, an opaque signature constraint, as in Moscow ML units, does hide the true natureof t and x:structure M :> SIG = structtype t = intval x = 17endAfter this declaration, M.x+33 would fail to typecheck: the type checker cannot see that M.t is int andM.x is an integer. Often such hiding is just what is needed for software engineering purposes.4.4 Syntax of unit signaturesMoscow ML unit signatures are very similar to Standard ML signatures as de�ned in [6]; the di�erencesare explained below. A unit signature (in �le U.sig) has the form:unitsig ::= signature unitid = sig uspec end named signatureuspec signature (old syntax)uspec ::= val valdesc value speci�cationtype typdesc abstract typetype typbind type abbreviationeqtype typdesc abstract equality typedatatype datbind datatypedatatype datbind withtype typbind datatype with typbindexception exdesc exceptionlocal lspec in uspec end local speci�cationsemptyuspec h;i uspec sequentiallspec ::= open unitid1 � � � unitidn open other unitstype typbind type abbreviationlocal lspec in lspec end local speci�cationsemptylspec h;i lspec sequentialNote:1. Type abbreviations type typbind are permitted in signatures.2. There are no structure speci�cations and no sharing speci�cations.3. No type, value, or exception may be speci�ed twice at top-level.4. A local speci�cation can be used only to restrict the scope of open speci�cations and type abbre-viations. 9

5. An open speci�cation can appear only inside local.6. The `signature unitid = sig' and `end' parts may be left out, although this is not recommended.Restriction (2) is the most signi�cant one. Restriction (3), and restrictions similar to (4) and (5), areimposed by the Standard ML of New Jersey implementation also.4.5 Syntax of unit bodiesA unit body (in �le U.sml) has the form:unitbody ::= structure unitid = struct dec end structurestructure unitid :> unitid = struct dec end structure with signaturedec structure (old syntax)A long identi�er can refer to entities declared in other units. In Moscow ML, the syntax of long identi�ersis: longid ::= id identi�erunitid.id quali�ed identi�erwhere unitid and id are arbitrary SML identi�ers (either symbolic or alphanumeric).A quali�ed identi�er unitid.id denotes an entity id declared in the compilation unit unitid . A quali�edidenti�er can denote either a value variable, a value constructor, an exception constructor, or a typeconstructor. As in Standard ML, a longid appearing in a de�ning position, such as a value variable in apattern, cannot have a quali�er: the identi�er being de�ned will always belong to the current unit.An open declaration has the formopen U1 � � � Unwhere U1 � � � Un are names of units. The units are opened from left to right, in the order U1 � � � Un. Thetext following an open U declaration can reference identi�ers declared in U without explicitly specifyingthe name of the unit, subject to the usual scope rules of Standard ML. That is, one can use id insteadof U.id .In the interactive system, a unit must be loaded before it can be opened. In the batch compilationsystem, the linker links in (only) the needed declarations from opened units.A unit body U.sml must elaborate to a structure S. If there is an explicit signature U.sig correspondingto U.sml, then the resulting structure must match the explicit signature. As in Standard ML (but incontrast to Caml Light), no reference is made to the signature while elaborating the unit body.4.6 An example program consisting of three unitsTo illustrate the module system, we present a tiny program working with arithmetic expressions. Itconsists of three units Expr, Reduce, and Evaluate. This example is in mosml/examples/manual.File Expr.sml below contains structure Expr, which de�nes a datatype expr for representing expres-sions and a function show to display them. It has no signature constraint and therefore exports both thedatatype and the function:structure Expr = structdatatype expr = Cst of int | Neg of expr | Plus of expr * exprfun show (Cst n) = makestring n| show (Neg e) = "(-" ^ show e ^ ")"| show (Plus (e1, e2)) = "(" ^ show e1 ^ "+" ^ show e2 ^ ")"endFile Reduce.sig below contains the signature Reduce, which speci�es a function for reducing expressions.It mentions the type Expr.expr from Expr:
10

signature Reduce = sigval reduce : Expr.expr -> Expr.exprendFile Reduce.sml below contains the structure Reduce, which has a signature constraint, and thereforeexports only the function reduce speci�ed in the signature:structure Reduce :> Reduce = structlocal open Exprin fun negate (Neg e) = e| negate e = Neg efun reduce (Neg (Neg e)) = e| reduce (Neg e) = negate (reduce e)| reduce (Plus (Cst 0, e2)) = reduce e2| reduce (Plus (e1, Cst 0)) = reduce e1| reduce (Plus (e1, e2)) = Plus (reduce e1, reduce e2)| reduce e = eendendFile Evaluate.sig below contains the signature Evaluate, which speci�es a function eval for evaluatingexpressions, and a function test. Note the use of `open Expr' to make the type expr refer to Expr.expr:signature Evaluate = siglocal open Exprin val eval : expr -> intval test : expr -> boolendendFile Evaluate.sml below contains structure Evaluate, which has a signature constraint, and mentionsunit Expr as well as Reduce:structure Evaluate :> Evaluate = structlocal open Exprin fun eval (Cst n) = n| eval (Neg e) = ~ (eval e)| eval (Plus (e1, e2)) = eval e1 + eval e2;fun test e = (eval e = eval (Reduce.reduce e))endend4.7 Compiling, linking, and loading unitsUnits can be compiled and linked using the batch compiler mosmlc; see Section 5. Units compiled withoption -c can be linked together. Use mosml -o mosmlout A.uo to produce a linked executable bytecode�le mosmlout which will invoke the runtime system camlrunm. Use mosml -noheader -o mosmloutA.uo to produce a linked bytecode �le which can be executed by camlrunm mosmlout. The linker willautomatically link any required bytecode �les into mosmlout. See Section 5.2 for more options.Units can also be compiled from and loaded into the interactive system mosml using the primitivescompile and load; see Section 3.4 above.4.8 Organizing programs for compatibility with SML ModulesMoscow ML and Standard ML of New Jersey (version 110) implement the same core language, and manyof the same libraries. Here we give advice on organizing structures and signatures so that they can becompiled by both systems. 11

Assume we have a software system consisting of three structures A, B, and C, where A and B eachhave a signature constraint, but C does not. Assume further that C depends on A and B. (There mustbe no functors or nested structures in A and B). We organize them in �ve �les:Source �le File contentsA.sig signature A = sig : : : endB.sig signature B = sig : : : endA.sml structure A :> A = struct : : : endB.sml structure B :> B = struct : : : endC.sml structure C = struct : : : A.foo : : : B.bar : : : endNow we can compile these �les using mosmlc and load them into a mosml session as follows (where `$' isthe shell prompt and `-' is the ML prompt):$ mosmlc -c A.sig B.sig A.sml B.sml C.sml$ mosml- load "C";Or, we can load and compile them in an SML/NJ session as follows:$ sml- app use ["A.sig", "B.sig", "A.sml", "B.sml", "C.sml"];Hence the same source �les can be used unmodi�ed in both systems.Note that in Moscow ML, mosmlc will create bytecode �les A.ui, A.uo, and so on. The load functiondoes not perform any compilation and hence is very fast. If the source �les do not change, there is noneed to recompile them with mosmlc, which may save much time.If the source �les do change, and have to be recompiled at every use, it may be more practical to usethe function compile:$ mosml- app compile ["A.sig", "B.sig", "A.sml", "B.sml", "C.sml"];- load "C";4.9 Matching a unit body against a signatureA unit body S matches a signature SIG under the conditions described in the De�nition of Standard ML[6]. Roughly, this means:� a value speci�cation val v:t must be matched by a value variable or value constructor or exceptionconstructor v in S whose type generalizes t� a type abbreviation type t = ty must be matched by the same type abbreviation t = ty in S� an abstract type t must be matched by some type t in S� an abstract equality type t must be matched by a type t in S admitting equality� a datatype must be matched by precisely the same datatype in S� an exception constructor E of type t must be matched by an exception constructor E in S whosetype generalizes tMoreover, to facilitate separate compilation, there are some representation constraints:1. If the speci�ed argument type of a value constructor (in a datatype speci�cation) is an explicittuple or record, then the declared argument type must be an explicit tuple or record also, and viceversa. This restriction does not apply if there is only one constructor in the datatype.2. The order of value constructors in a datatype speci�cation must be the same as in the matchingdatatype declaration.
12

5 The batch compilerMoscowML includes a batch compiler mosmlc in addition to the interactive system mosml. It compiles andlinks programs non-interactively, and can turn them into standalone executable �les. The batch compilercan be invoked from a Make�le, which simpli�es the (re)compilation of large programs considerably; seeSection 6.5.1 OverviewThe mosmlc command has a command-line interface similar to that of most C compilers. It acceptsseveral types of arguments: source �les for unit bodies, source �les for unit signatures, and compiled unitbodies.� An argument ending in .sig is taken to be the name of a source �le containing a unit signature.Given a �le U.sig, the compiler produces a compiled signature in the �le U.ui.� An argument ending in .sml is taken to be the name of a source �le containing a unit body. Given a�le U.sml, the compiler produces compiled object code in the �le U.uo. It also produces an inferredsignature �le U.ui if there is no explicit signature U.sig.� An argument ending in .uo is taken to be the name of a compiled unit body. Such �les are linkedtogether, along with the compiled unit bodies obtained by compiling .sml arguments (if any), andthe necessary Moscow ML library �les, to produce a standalone executable program.The linker automatically includes any additional bytecode �les required by the �les speci�ed on thecommand line; option -i makes it report all the �les that were linked. The linker issues a warningif a �le B is required by a �le A that precedes B in the command line. At run-time, the top-leveldeclarations of the �les are evaluated in the order in which the �les were linked; in the absence ofany warning, this is the order of the �les on the command line.The output of the linking phase is a �le containing compiled code that can be executed by the runtimesystem camlrunm. If mosmlout is the name of the �le produced by the linking phase, the commandcamlrunm mosmlout arg1 arg2 : : : argnexecutes the compiled code contained in mosml.out. The list of arguments can be obtained in MoscowML by evaluating the expression CommandLine.arguments ().MS Windows and DOS: If the output �le produced by the linking phase has extension .exe, andoption -noheader is not used, then the �le is directly executable. Hence, an output �le namedmosmlout.exe can be executed with the commandmosmlout arg1 arg2 ... argnThe output �le mosmlout.exe consists of a tiny executable �le prepended to a linked bytecode �le.The executable invokes the camlrunm runtime system to interpret the bytecode. As a consequence,this is not a standalone executable: it still requires camlrunm.exe to reside in one of the directoriesin the path.Unix: The output �le produced by the linking phase is directly executable (unless the -noheader optionis used). It automatically invokes the camlrunm runtime system, either using a tiny executableprepended to the linked bytecode �le, or using the Unix incantation #!/usr/local/bin/camlrunmor similar. In the former case, camlrunm must be in one of the directories in the path; in thelatter case it must be in /usr/local/bin. To create a true stand-alone executable you may simplyconcatenate the runtime system with the bytecode �le produced by mosmlc -noheader, but thisadds 60{150 KB to the size of the executable, depending on your version of Unix:cat /usr/local/bin/camlrunm mosmlout > mosmlbinchmod a+x mosmlbin
13

5.2 Command-line optionsThe following command-line options are recognized by mosmlc.-c Compile only. Suppresses the linking phase of the compilation. Source code �les are turned intocompiled �les (.ui and .uo), but no executable �le is produced. This option is useful for compilingseparate units.-files response-�lePass the names of �les listed in �le response-�le to the linking phase just as if these names appearedon the command line. File names in response-�le are separated by blanks (spaces, tabs, newlines)and must end either in .sml or .uo. A name U.sml appearing in the response �le is equivalent toU.uo. Use this option to overcome silly limitations on the length of the command line (as in MSDOS).-g This option causes some information about exception names to be written at the end of the exe-cutable bytecode �le.-i Causes the compiler to print the inferred signature of the unit body or bodies being compiled. Alsocauses the linker to list all object �les linked. A U.sig �le corresponding to a given U.sml �le can beproduced semi-automatically by piping the output of the compiler to a �le U.out, and subsequentlyediting this �le to obtain a �le U.sig.-noautolinkIn version 1.42 and later, the linker automatically links in any additional object �les required bythe �les explicitly speci�ed on the command line. Option -noautolink reinstates the behaviour ofpre-1.42 versions: all object �les must be explicitly speci�ed in the appropriate order.-stdlib stdlib-directorySpeci�es the standard library directory, which will be searched by the compiler and linker for the .uiand .uo �les corresponding to units mentioned in the �les being linked. The default standard libraryis set when the system is created, and is usually $fHOMEg/mosml/lib under Unix and c:\mosml\libunder MS Windows and DOS.-I directoryAdd the given directory to the list of directories searched for compiled signature �les (.ui) andcompiled object code �les (.uo). By default, the current directory is searched �rst, then the standardlibrary directory. Directories added with -I are searched after the current directory, but before thestandard library directory. When several directories are added with several -I options on thecommand line, these directories are searched from left to right.-valuepolySpecify that the type checker should use `value polymorphism'; see Section 7. Default.-imptypesSpecify that the type checker should distinguish imperative and applicative type variables, gener-alize all applicative type variables, and generalize imperative type variables only in non-expansiveexpressions. See Section 7.-o exec-�leSpecify the name of the output �le produced by the linker. In the absence of this option, a defaultname is used. In MS Windows and DOS, the default name is mosmlout.exe; in Unix it is a.out.-P unit-setDetermines which library units will be open at compile-time. Any library unit in the load path canbe used by the compiler for type checking purposes. Thus regardless of the -P option, the compilerknows the type of library functions such as Array.foldl.-P default The units Char, List, and String will be partially opened. This is the default,permitting e.g. String.concat to be referred to just as concat.
14

-P sml90 Provides an initial environment which is upwards compatible with that of the 1990De�nition of Standard ML and with pre-1.30 releases of Moscow ML. In particular, thefunctions chr, explode, implode, and ord work on strings, not characters. The math functionsand input-output facilities required by the 1990 De�nition [5, Appendix C and D] are availableat top-level. In addition the same (new) libraries are opened as with -P default.-P nj93 Provides a top-level environment which is mostly compatible with that of SML/NJ 0.93.The functions app, ceiling, chr, dec, explode, fold, hd, implode, inc, max, min, nth,nthtail, ord, ordof, revapp, revfold, substring, tl, and truncate have the same typeand meaning as in SML/NJ 0.93. The math functions and input-output facilities required bythe 1990 De�nition [5, Appendix C and D] are available at top-level. In addition the same(new) libraries are opened as with -P default. This option does not imply -imptypes.-P full Same as -P default.-P none No library units are initially opened.Additional directories to be searched for library units can be speci�ed with the -I directory option.-noheaderCauses the output �le produced by the linker to contain only the bytecode, not preceded by anyexecutable code. A �le mosmlout thus obtained can be executed only by explicitly invoking theruntime system as follows: camlrunm mosmlout. This option is primarily used for recompiling thesystem.-q Enables the quotation/antiquotation mechanism; see Section 11.-v Prints the version number of the various passes of the compiler.6 Recompilation managementRecompilation management helps the programmer recompile only what is necessary after a change to aunit signature or unit body.Type-safe linking prevents the programmer from creating unsafe or meaningless programs. The loadfunction and the batch linker ensure probabilistically type-safe linking, so it is virtually impossible tocause the system to create a type-unsafe program.6.1 Using `make' to manage recompilationConsider the example program in Section 4.6 consisting of the three units Evaluate, Expr, and Reduce.Assume their source �les *.sig and *.sml reside in a particular directory. Copy a Make�le stub (see below)to that directory, and change to that directory.1. Edit the Make�le so that the names of the bytecode �les Evaluate.uo, Expr.uo, and Reduce.uoappear on the line beginning with `all:' (see the example make�les below).2. Compute the dependencies among the �les by executing:make depend3. Recompile all those �les which have not yet been compiled, or which have been modi�ed but notyet recompiled, or which depend on modi�ed �les, by executing:makeStep (3) must be repeated whenever you have modi�ed a component of the program system. Step (2)need only be repeated if the inter-dependencies of some components change, or if you add or removean explicit signature �le. Step (1) need only be repeated when you add or delete an entire unit of theprogram system.Old versions of the compiled *.ui and *.uo �les can be removed by executing:make clean 15

The inter-dependencies are computed by a small ML program mosmldep, which correctly handles nestedcomments and strings in the source �les.6.2 An example Make�le for UnixTo use the Make�le below, �rst edit it so that all the required units (.uo �les) appear on the linebeginning with `all:', then proceed as explained in Section 6.1. You do not need to edit any otherpart of the Make�le. In particular, the dependencies following DO NOT DELETE THIS LINE are gener-ated automatically when executing make depend (as above). A copy of the Make�le can be found inmosml/tools/Makefile.stub.You will need only the Unix utility make.# Unix Makefile stub for separate compilation with Moscow ML.MOSMLHOME=$fHOMEg/mosmlMOSMLTOOLS=camlrunm $(MOSMLHOME)/toolsMOSMLC=mosmlc -cMOSMLL=mosmlcMOSMLLEX=mosmllexMOSMLYACC=mosmlyac.SUFFIXES :.SUFFIXES : .sig .sml .ui .uoall: Evaluate.uo Expr.uo Reduce.uoclean: rm -f *.uirm -f *.uorm -f Makefile.bak.sig.ui:$(MOSMLC) $<.sml.uo:$(MOSMLC) $<depend: rm -f Makefile.bakmv Makefile Makefile.bak$(MOSMLTOOLS)/cutdeps < Makefile.bak > Makefile$(MOSMLTOOLS)/mosmldep >> Makefile### DO NOT DELETE THIS LINEEvaluate.ui: Expr.uoEvaluate.uo: Evaluate.ui Expr.uo Reduce.uiReduce.uo: Reduce.ui Expr.uoReduce.ui: Expr.uo6.3 An example Make�le for MS DOSTo use the Make�le below, �rst edit it so that all the required units (.uo �les) appear on the linebeginning with `all:', then proceed as explained in Section 6.1. You do not need to edit any otherpart of the Make�le. In particular, the dependencies following DO NOT DELETE THIS LINE are gener-ated automatically when executing make depend (as above). A copy of this make�le can be found inmosml\tools\makefile.stb.You will need a DOS version of make, such as that from Borland C++ version 2.0 or 3.0.16

DOS Makefile stub for separate compilation with Moscow ML.MOSMLHOME=c:\mosmlMOSMLTOOLS=camlrunm $(MOSMLHOME)\toolsMOSMLC=mosmlc -cMOSMLL=mosmlcMOSMLLEX=mosmllexMOSMLYACC=mosmlyacall: evaluate.uo expr.uo reduce.uoclean: del *.uidel *.uodel makefile.bak.sig.ui:$(MOSMLC) $<.sml.uo:$(MOSMLC) $<depend: del makefile.bakren makefile makefile.bak$(MOSMLTOOLS)\cutdeps < makefile.bak > makefile$(MOSMLTOOLS)\mosmldep >> makefile### DO NOT DELETE THIS LINEevaluate.uo: evaluate.ui expr.uo reduce.uireduce.ui: expr.uoreduce.uo: reduce.ui expr.uoevaluate.ui: expr.uo6.4 Unit names and DOS �le namesRecompilation management for DOS is essentially as for Unix, except for the usual complications thatfollow from the restrictions on the length of �le names, and from their case-insensitivity.Under MS DOS, �lenames are all the same case and can be at most 8 characters long (plus a 3character extension). Since �le names are used as unit names, this may cause problems. We attempt tocircumvent these problems as follows:� Unit names used inside ML programs under DOS are `normalized': the �rst character is made uppercase (if it is a letter), all other characters are made lower case, and the unit name is truncated to eightcharacters. Hence a unit which resides in �le commands.sml can be referred to as unit Commandsinside an ML program, and can also be referred to as CommandStructure, etc., since normalizationtransforms the latter into the former.� The following names are exceptions to this rule: BasicIO, BinIO, CharArray, CharVector,CommandLine, FileSys, ListPair, OS, StringCvt, Substring, TextIO, Word8Array, Word8Vector;they are normalized precisely as shown in this list. This is to accommodate the SML Basis Library.� In DOS make�les, the �le names appearing after all:must be all lower case and at most 8 characterslong (otherwise `make' will not work properly). For instance, the unit CharArray must be calledchararra in a DOS make�le.� A unit name given as argument to load, to compile, or to the batch compiler, is truncated andmade lower case by DOS as usual, so evaluating load "VeryLongName" will load bytecode �leverylong.uo. 17

7 Value polymorphismThe 1997 revision of Standard ML [6] adopts value polymorphism, discarding the distinction betweenimperative ('_a) and applicative ('a) type variables, and generalizing type variables only in non-expansiveexpressions. Consider a val-bindingval x = e;With value polymorphism, the free type variables in the type of x are generalized only if the right-handside e is non-expansive. This is a purely syntactic criterion: an expression is non-expansive if it has theform nexp, de�ned by the grammar below:nexp ::= scon special constantlongid (possibly quali�ed) identi�er{ hnexprowi } record of non-expansive expressions(nexp) parenthesized non-expansive expressioncon nexp constructor application, where con is not refexcon nexp exception constructor applicationnexp : ty typed non-expansive expressionfn match function abstractionnexprow ::= lab = nexp h, nexprowiRoughly, a non-expansive expression is just a value, that is, an expression in normal form. For example,the right-hand side length below is an identi�er, and so is non-expansive. Hence the free type variable'a in the type 'a list -> int of x becomes generalized:- val x = length;> val x = fn : 'a list -> intOn the other hand, the right-hand side (fn f => f) length below, although it evaluates to the samevalue as the previous one, is expansive: it is not derivable from the above grammar. Hence the typevariable 'a will not be generalized, and type checking will fail:- val x = (fn f => f) length;! Toplevel input:! val x = (fn f => f) length;! ^^^^^^^^^^^^^^^^^^^^^^^^^^! Value polymorphism: Free type variable at top levelIn Standard ML, all type variables in types reported at top-level must be universally quanti�ed; theremust be no free type variables. When type checking fails for this reason, there are two remedies: Either(1) insert a type constraint to eliminate the type variables, or (2) eta-expand the right-hand side to makeit non-expansive:- val x1 = (fn f => f) length : bool list -> int;> val x1 = fn : bool list -> int- val x2 = fn ys => (fn f => f) length ys;> val x2 = fn : 'a list -> intIn Moscow ML versions prior to 1.40, the type checker would distinguish imperative and applicativetype variables, generalize all applicative type variables, and generalize imperative type variables only innon-expansive expressions, as required by the 1990 De�nition [5]. To reinstate this behaviour, invokemosml or mosmlc with the option -imptypes. This is useful for compiling old programs.
18

8 Weak pointersMoscow ML supports weak pointers and arrays of weak pointers, using library structure Weak. A weakpointer is a pointer that cannot itself keep an object alive. Hence the object pointed to by a weak pointermay be deallocated by the garbage collector if the object is reachable only by weak pointers.The interface to arrays of weak pointers is the same as that of standard arrays (structure Array), butthe subscript function sub may raise exception Fail if the accessed object is dead. On the other hand,if sub returns a value, it is guaranteed not to die unexpectedly: it will be kept alive by the returnedpointer. Also, the weak array iteration functions iterate only over the live elements of the arrays.One application of weak pointers is to implement hash consing without space leaks. The idea in hashconsing is to re-use pairs: whenever a new pair (a, b) is to be built, an auxiliary table is checked to seewhether such a pair exists already. If so, the old pair is reused. In some applications, this may conservemuch space and time. However, there is a danger of running out of memory because of a space leak: thepair (a, b) cannot be deallocated by the garbage collector because it remains forever reachable from theauxiliary table. To circumvent this problem, one creates a weak pointer from the auxiliary table to thepair, so that the auxiliary table in itself cannot keep the pair alive.For an example, see mosml/examples/weak. See also the Weak signature; try `help "Weak";'.9 Dynamic linking of foreign functionsMoscow ML supports dynamic linking of foreign (C) functions, using library structure Dynlib2. A libraryof functions may be written in C and compiled into a dynamically loadable library, using appropriatecompiler options. With the Dynlib structure one can load this library and call the C functions fromMoscow ML, without recompiling the runtime system.It is the responsibility of the C functions to access and construct SML values properly, using themacroes de�ned in mosml/src/runtime/mlvalues.h. For this reason, the foreign function interface isincluded only with the source distribution. As usual, type or storage mistakes in C programs may crashyour programs.The ML garbage collector may run at any time an ML memory allocation is made. This may causeML values to be moved (from the young generation to the old one). To make sure that ML heappointers needed by your C function are adjusted correctly by the garbage collector, register them usingthe Push_roots and Pop_roots macroes from runtime/memory.h.To modify a value in the ML heap, you must use the Modifymacro from runtime/memory.h; otherwiseyou may confuse the incremental garbage collector and crash your program.When loading the compiled library one must specify the absolute path unless it has been installedas a system library. This may require putting it in a particular directory, such as /lib or /usr/lib, orediting /etc/ld.so.conf and running ldconfig.To compile Moscow ML3 with support for dynamic linking, edit �le mosml/src/Makefile.inc asindicated there.For more information, see the examples in directory mosml/src/dynlibs. See also the Dynlib signa-ture; try `help "Dynlib";'.10 Using GNU gdbm persistent hash tablesMoscowML provides an interface to GNU gdbm persistent hashtables, via structures Gdbm and Polygdbm4.GNU gdbm provides fast access even to very large hashtables stored on disk, ensuring mutual exclusionetc, handy for creating simple databases for use by CGI scripts and similar.GNU gdbm must be installed, and the interface to GNU gdbm de�ned in mosml/src/dynlibs/mgdbmmust be compiled and installed before Gdbm and Polygdbm can be used. For instructions, see �lemosml/src/dynlibs/mgdbm/README.2Thanks to Ken Larsen at Cambridge University, UK and the Technical University of Denmark.3In version 1.43, Dynlib is supported under Linux, Solaris and OSF/1 only, using the dlopen family of primitives.4This requires Dynlib and therefore works only with Linux, Solaris and OSF/1 in version 1.43.19

11 Quotations and antiquotationsMoscow ML implements quotations , a non-standard language feature useful for embedding object lan-guage phrases in ML programs. Quotations are disabled by default. This feature originates in theStandard ML of New Jersey implementation. To enable quotations in the interactive system (mosml),execute quotation := true. This allows quotations to appear in declarations entered at top-level and in�les compiled by the primitive compile. To enable quotations in �les compiled with the batch compilermosmlc, invoke it with option -q as in mosmlc -q.A quotation is a particular kind of expression and consists of a non-empty sequence of (possiblyempty) fragments surrounded by backquotes:exp ::= `frags` quotationfrags ::= charseq character sequencecharseq ^id frags antiquotation variablecharseq ^(exp) frags antiquotation expressionThe charseq is a possibly empty sequence of printable characters or spaces or tabs or newlines. Aquotation evaluates to a value of type ty frag list where ty is the type of the antiquotation variablesand antiquotation expressions, and the type 'a frag is de�ned as follows:datatype 'a frag = QUOTE of string | ANTIQUOTE of 'aA charseq fragment evaluates to QUOTE "charseq". An antiquotation fragment ^id or ^(exp) evaluates toANTIQUOTE value where value is the value of the variable id resp. the expression exp. All antiquotationsin a quotation must have the same type ty.An antiquotation fragment is always surrounded by (possibly empty) quotation fragments; and notwo quotation fragments can be adjacent. The entire quotation is parsed before any antiquotation insideit is evaluated. Hence changing the value of Meta.quotation in an antiquotation inside a quotation hasno e�ect on the parsing of the containing quotation.For an example, say we have written an ML program to analyse C program phrases, and that wewant to enter the C declaration char s[6] = "abcde". We could simply de�ne it as a string:val phrase = "char s[6] = \"abcde\"";but then we need to escape the quotes (") in the C declaration, which is tiresome. If instead we use aquotation, these escapes are not needed:val phrase = `char s[6] = "abcde"`;It evaluates to [QUOTE "char s[6] = \"abcde\""] : 'a frag list. Moreover, suppose we want togenerate such declarations for other strings than just "abcde", and that we have an abstract syntax forC phrases:datatype cprog =IntCst of int| StrCst of string;| ...Then we may replace the string "abcde" by an antiquotation ^(StrCst str), and the array dimension6 by an antiquotation ^(IntCst (size str + 1)), and make the string str a function parameter:fun mkphrase str = `char s[^(IntCst (size str + 1))] = ^(StrCst str)`;Evaluating mkphrase "longer" produces the following representation of a C phrase:[QUOTE "char s[", ANTIQUOTE (IntCst 7), QUOTE "] = ",ANTIQUOTE (StrCst "longer"), QUOTE ""] : cprog frag list
20

12 A lexer generatorThis section describes mosmllex, a lexer generator which is closely based on camllex from the CamlLight implementation by Xavier Leroy. This documentation is based on that of camllex also.12.1 OverviewThe mosmllex command produces a lexical analyser from a set of regular expressions with attachedsemantic actions, in the style of lex. Assume that �le lexer.lex contains the speci�cation of a lexicalanalyser. Then executingmosmllex lexer.lexproduces a �le lexer.sml containing Moscow ML code for the lexical analyser. This �le de�nes one lexingfunction per entry point in the lexer de�nition. These functions have the same names as the entry points.Lexing functions take as argument a lexer bu�er, and return the semantic attribute of the correspondingentry point.Lexer bu�ers are an abstract data type implemented in the library unit Lexing. The functionscreateLexerString and createLexer from unit Lexing create lexer bu�ers that read from a characterstring, or any reading function, respectively.When used in conjunction with a parser generated by mosmlyac (see Section 13), the semantic actionscompute a value belonging to the datatype token de�ned by the generated parsing unit.Example uses of mosmllex can be found in directories calc and lexyacc under mosml/examples.12.2 Hints on using mosmllexA lexer de�nition must have a rule to recognize the special symbol eof, meaning end-of-�le. In general,a lexer must be able to handle all characters that can appear in the input. This is usually achieved byputting the wildcard case _ at the very end of the lexer de�nition. If the lexer is to be used with e.g. MSWindows, MS DOS or MacOS �les, remember to provide a rule for the carriage-return symbol \r. Mostoften \r will be treated the same as \n, e.g. as whitespace.Do not use string constants to de�ne many keywords; this may produce large lexer programs. It is bet-ter to let the lexer scan keywords the same way as identi�ers and then use an auxiliary function to distin-guish between them. For an example, see the keyword function in mosml/examples/lexyacc/Lexer.lex.12.3 Syntax of lexer de�nitionsThe format of a lexer de�nition is as follows:{ header }let abbrev = regexp: : :let abbrev = regexprule entrypoint =parse regexp { action }| : : :| regexp { action }and entrypoint =parse : : :and : : :;Comments are delimited by (* and *), as in SML. An abbreviation (abbrev) for a regular expression mayrefer only to abbreviations that strictly precede it in the list of abbreviations; in particular, abbreviationscannot be recursive.
21

12.3.1 HeaderThe header section is arbitrary Moscow ML text enclosed in curly braces { and }. It can be omitted. If itis present, the enclosed text is copied as is at the beginning of the output �le lexer.sml. Typically, theheader section contains the open directives required by the actions, and possibly some auxiliary functionsused in the actions.12.3.2 Entry pointsThe names of the entry points must be valid ML identi�ers.12.3.3 Regular expressionsThe regular expressions regexp are in the style of lex, but with a more ML-like syntax.`charÀ character constant, with a syntax similar to that of Moscow ML character constants; see Sec-tion 12.3.5. Match the denoted character.Match any character.eof Match the end of the lexer input."string"A string constant, with a syntax similar to that of Moscow ML string constants; see Section 12.3.6.Match the denoted string.[character-set]Match any single character belonging to the given character set. Valid character sets are: sin-gle character constants `c`; ranges of characters `c1` - `c2` (all characters between c1 and c2,inclusive); and the union of two or more character sets, denoted by concatenation.[^ character-set]Match any single character not belonging to the given character set.regexp *Match the concatenation of zero or more strings that match regexp. (Repetition).regexp +Match the concatenation of one or more strings that match regexp. (Positive repetition).regexp ?Match either the empty string, or a string matching regexp. (Option).regexp1 | regexp2Match any string that matches either regexp1 or regexp2. (Alternative).regexp1 regexp2Match the concatenation of two strings, the �rst matching regexp1, the second matching regexp2.(Concatenation).abbrevMatch the same strings as the regexp in the most recent let-binding of abbrev.(regexp)Match the same strings as regexp.The operators * and + have highest precedence, followed by ?, then concatenation, then | (alternative).12.3.4 ActionsAn action is an arbitrary Moscow ML expression. An action is evaluated in a context where the identi�erlexbuf is bound to the current lexer bu�er. Some typical uses of lexbuf in conjunction with theoperations on lexer bu�ers (provided by the Lexing library unit) are listed below.
22

Lexing.getLexeme lexbufReturn the matched string.Lexing.getLexemeChar lexbuf nReturn the n'th character in the matched string. The �rst character has number 0.Lexing.getLexemeStart lexbufReturn the absolute position in the input text of the beginning of the matched string. The �rstcharacter read from the input text has position 0.Lexing.getLexemeEnd lexbufReturn the absolute position in the input text of the end of the matched string. The �rst characterread from the input text has position 0.entrypoint lexbufHere entrypoint is the name of another entry point in the same lexer de�nition. Recursively callthe lexer on the given entry point. Useful for lexing nested comments, for example.12.3.5 Character constantsA character constant in the lexer de�nition is delimited by ` (backquote) characters. The two backquotesenclose either a space or a printable character c, di�erent from ` and \, or an escape sequence:Sequence Character denoted`c` the character c`\\` backslash (\)`\`` backquote (`)`\n` newline (LF)`\r` return (CR)`\t` horizontal tabulation (TAB)`\b` backspace (BS)`\^c` the ASCII character control-c`\ddd` the character with ASCII code ddd in decimal12.3.6 String constantsA string constant is a (possibly empty) sequence of characters delimited by " (double quote) characters.string-literal ::= "strcharseq" non-empty string"" empty stringstrcharseq ::= strchar hstrcharseqi character sequenceA string character strchar is either a space or a printable character c, di�erent from " and \, or an escapesequence:Sequence Character denotedc the character c\\ backslash (\)\" double quote (")\n newline (LF)\r return (CR)\t horizontal tabulation (TAB)\b backspace (BS)\^c the ASCII character control-c\ddd the character with ASCII code ddd in decimal
23

13 A parser generatorThis section describes mosmlyac, a simple parser generator which is closely based on camlyacc from theCaml Light implementation by Xavier Leroy; camlyacc in turn is based on Bob Corbett's public domainBerkeley yacc. This documentation is based on that in the Caml Light reference manual.13.1 OverviewThe mosmlyac command produces a parser from a context-free grammar speci�cation with attachedsemantic actions, in the style of yacc. Assume �le grammar.grm contains a grammar speci�cation; thenexecutingmosmlyac grammar.grmproduces a �le grammar.sml containing a Moscow ML unit with code for a parser and a �le grammar.sigcontaining its interface.The generated unit de�nes a parsing function S for each start symbol S declared in the grammar.Each parsing function takes as arguments a lexical analyser (a function from lexer bu�ers to tokens)and a lexer bu�er, and returns the semantic attribute of the corresponding entry point. Lexical analyserfunctions are usually generated from a lexer speci�cation by the mosmllex program. Lexer bu�ers are anabstract data type implemented in the library unit Lexing. Tokens are values from the datatype token,de�ned in the signature �le grammar.sig produced by running mosmlyac.Example uses of mosmlyac can be found in directories calc and lexyacc under mosml/examples.13.2 The format of grammar de�nitions%{ header%} declarations%% rules%% trailerComments in the declarations and rules sections are enclosed in C comment delimiters /* and */, whereascomments in the header and trailer sections are enclosed in ML comment delimiters (* and *).13.2.1 Header and trailerAny SML code in the header is copied to the beginning of �le grammar.sml, after the token datatypedeclaration; it usually contains open declarations required by the semantic actions of the rules. Any SMLcode in the trailer is copied to the end of �le grammar.sml. Both sections are optional.13.2.2 DeclarationsDeclarations are given one per line. They all start with a % sign.%token symbol : : : symbolDeclare the given symbols as tokens (terminal symbols). These symbols become constructors (with-out arguments) in the token datatype.%token < type > symbol : : : symbolDeclare the given symbols as tokens with an attached attribute of the given type. These symbolsbecome constructors (with arguments of the given type) in the token datatype. The type part isan arbitrary Moscow ML type expression, but all type constructor names must be fully quali�ed(e.g. Unitname.typename) for all types except standard built-in types, even if the proper opendeclarations (e.g. open Unitname) were given in the header section.24

%start symbolDeclare the given symbol as entry point for the grammar. For each entry point, a parsing functionwith the same name is de�ned in the output �le grammar.sml. Non-terminals that are not declaredas entry points have no such parsing function.%type < type > symbol : : : symbolSpecify the type of the semantic attributes for the given symbols. Every non-terminal symbol,including the start symbols, must have the type of its semantic attribute declared this way. Thisensures that the generated parser is type-safe. The type part may be an arbitrary Moscow ML typeexpression, but all type constructor names must be fully quali�ed (e.g. Unitname.typename) forall types except standard built-in types, even if the proper open declaration (e.g. open Unitname)were given in the header section.%left symbol : : : symbol%right symbol : : : symbol%nonassoc symbol : : : symbolDeclare the precedence and associativity of the given symbols. All symbols on the same line aregiven the same precedence. They have higher precedence than symbols declared in previous %left,%right or %nonassoc lines. They have lower precedence than symbols declared in subsequent%left, %right or %nonassoc lines. The symbols are declared to associate to the left (%left), tothe right (%right), or to be non-associative (%nonassoc). The symbols are usually tokens, but canalso be dummy nonterminals, for use with the %prec directive inside the rules.13.2.3 The format of grammar rulesnonterminal :symbol : : : symbol { semantic-action }| : : :| symbol : : : symbol { semantic-action };Each right-hand side consists of a (possibly empty) sequence of symbols, followed by a semantic action.The directive `%prec symbol' may occur among the symbols in a rule right-hand side, to specify thatthe rule has the same precedence and associativity as the given symbol.Semantic actions are arbitrary Moscow ML expressions, which are evaluated to produce the semanticattribute attached to the de�ned nonterminal. The semantic actions can access the semantic attributesof the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute of the �rst(leftmost) symbol, $2 is the attribute of the second symbol, etc. An empty semantic action evaluates to() : unit.Actions occurring in the middle of rules are not supported. Error recovery is not implemented.13.3 Command-line options of mosmlyac-v Generate a description of the parsing tables and a report on con
icts resulting from ambiguities inthe grammar. The description is put in �le grammar.output.-bpre�xName the output �les prefix.sml, prefix.sig, prefix.output, instead of using the default nam-ing convention.13.4 Reporting lexer and parser errorsLexical errors (e.g. illegal symbols) and syntax errors can be reported in an intelligible way by usingthe Location module from the Moscow ML library. It provides functions to print out fragments of asource text, using location information from the lexer and parser. See help "Location.sig" for moreinformation. See �le mosml/examples/lexyacc/Main.sml for an example.
25

14 Copyright and creditsCopyright notice Moscow ML - a lightweight implementation of Core Standard ML. Copyright (C)1994, 1995, 1996, 1997, 1998. Sergei Romanenko, Moscow, Russia and Peter Sestoft, Copenhagen,Denmark.This program is free software; you can redistribute it and/or modify it under the terms of theGNU General Public License as published by the Free Software Foundation; either version 2 of theLicense, or (at your option) any later version.This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULARPURPOSE. See the GNU General Public License for more details.You should have received a copy of the GNU General Public License along with this program; ifnot, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.Note that a number of source �les are derived from the Caml Light distribution, copyright (C) 1993INRIA, Rocquencourt, France. Thus charging money for redistributing Moscow ML may requireprior permission from INRIA; see the INRIA copyright notice in �le copyrght/copyrght.cl.Moscow ML was written by Sergei Romanenko (roman@keldysh.ru), Keldysh Institute of AppliedMathematics, Russian Academy of Sciences, Miusskaya Pl. 4, 125047 Moscow, Russia.and Peter Sestoft (sestoft@dina.kvl.dk), Department of Mathematics and Physics, Royal Veterinary andAgricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Much of thework was done at the Department of Computer Science at the Technical University of Denmark,and while visiting AT&T Bell Laboratories, Murray Hill, New Jersey, USA.Moscow ML owes much to� the CAML Light implementation by Xavier Leroy and Damien Doligez (INRIA, Rocquencourt,France);� the ML Kit by Lars Birkedal, Nick Rothwell, Mads Tofte and David Turner (CopenhagenUniversity, Denmark, and Edinburgh University, Scotland);� inspiration from the SML/NJ compiler developed at Princeton University and AT&T BellLaboratories, New Jersey, USA; and� the good work by Doug Currie, Flavors Technology, USA, on the MacOS port.15 How to get Moscow ML version 1.43� The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html� The Linux executables are in ftp://ftp.dina.kvl.dk/pub/mosml/linux-mos14bin.tar.gz� The MS Windows executables are in ftp://ftp.dina.kvl.dk/pub/mosml/win32-mos14bin.zip� The MS DOS executables are in ftp://ftp.dina.kvl.dk/pub/mosml/mos14bin.zip� The Macintosh/MacOS (68k and PPC) executables are inftp://ftp.dina.kvl.dk/pub/mosml/mac-mos14bin.sea.hqx� The DOS source �les are in ftp://ftp.dina.kvl.dk/pub/mosml/mos14src.zip� The Unix and MS Windows source �les are in ftp://ftp.dina.kvl.dk/pub/mosml/mos14src.tar.gz� The MacOS modi�ed source �les (relative to Unix) are inftp://ftp.dina.kvl.dk/pub/mosml/mac-mos14src.sea.hqx� The MkLinux executables and binaries are available athttp://www.ibg.uu.se/mkarchive/dev/langThe �les are mirrored at ftp://ftp.csd.uu.se/pub/mirror/mosml.
26

16 Books and other materials on Standard MLThe De�nition and Commentary� Robin Milner, Mads Tofte and Robert Harper, The De�nition of Standard ML, MIT Press 1990,ISBN 0-262-63132-6.� Robin Milner, Mads Tofte, Robert Harper, and David B. MacQueen, The De�nition of StandardML (Revised), MIT Press 1997, ISBN 0-262-63181-4.� Robin Milner and Mads Tofte, Commentary on Standard ML, MIT Press 1991, ISBN 0-262-63137-7.Textbooks available from publishers� Richard Bosworth, A Practical Course in Functional Programming Using Standard ML, McGraw-Hill 1995, ISBN 0-07-707625-7.� Greg Michaelson, Elementary Standard ML, UCL Press 1995, ISBN 1-85728-398-8.� Colin Myers, Chris Clack, and Ellen Poon, Programming with Standard ML, Prentice Hall 1993,ISBN 0-13-722075-8.� Lawrence C. Paulson, ML for the Working Programmer , Second edition. Cambridge UniversityPress 1996, ISBN 0-521-56543-X.� Chris Reade, Elements of Functional Programming , Addison-Wesley 1989, ISBN 0-201-12915-9.� Ryan Stansifer, ML Primer , Prentice Hall 1992, ISBN 0-13-561721-9.� Je�rey D. Ullman, Elements of ML Programming , Prentice Hall 1994, ISBN 0-13-184854-2.� �Ake Wikstr�om, Functional Programming Using Standard ML, Prentice Hall 1987, ISBN 0-13-331661-0.Texts available on the net� Emden Gansner and John Reppy (editors): Standard ML Basis Library, hypertext version:http://www.research.att.com/~jhr/sml/basis/sml-std-basis.htmlhttp://www.dina.kvl.dk/~sestoft/sml/sml-std-basis.html (mirror site)� Robert Harper, Introduction to Standard ML, LFCS Report Series ECS-LFCS-86-14, Departmentof Computer Science, University of Edinburgh, November 1986 (revised 1989). Atftp://ftp.cs.cmu.edu/afs/cs/project/fox/mosaic/intro-notes.ps.� Mads Tofte, Four Lectures on Standard ML, LFCS Report Series ECS-LFCS-89-73, Department ofComputer Science, University of Edinburgh, March 1989. Atftp://ftp.diku.dk/pub/diku/users/tofte/FourLectures/� Mads Tofte, Tutorial on Standard ML, Technical Report 91/18, DIKU, University of Copenhagen,December 1991. At ftp://ftp.diku.dk/pub/diku/users/tofte/FPCA-Tutorial/References[1] L. Birkedal, N. Rothwell, M. Tofte, and D.N. Turner. The ML Kit. Technical Report 93/14, DIKU,University of Copenhagen, Denmark, 1993.[2] E. Gansner and J. Reppy. Standard ML Basis Library. Technical report, AT&T Bell Labs, 1996.[3] X. Leroy. The Zinc experiment: An economical implementation of the ML language. RapportTechnique 117, INRIA Rocquencourt, France, 1990. Available asftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/economical-ML-implementation.ps.gz.[4] X. Leroy. The Caml Light system, release 0.6. Documentation and user's manual. INRIA, France,September 1993. Available at ftp://ftp.inria.fr/lang/caml-light.[5] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. The MIT Press, 1990.[6] R. Milner, M. Tofte, R. Harper, and D.B. MacQueen. The De�nition of Standard ML (Revised). MITPress, 1997.[7] S. Romanenko and P. Sestoft. Moscow ML Language Overview, version 1.43, April 1998.
27

