
Refal Plus Reference Manual
Ruten Gurin & Sergei Romanenko

© Ruten Gurin & Sergei Romanenko 1991-2007

Contents
Programming in Refal Plus ..4

Your First Refal Plus Program ... 4
Data Structures ..4

Objects vs. Values.. 4
Ground Expressions... 5
Representing Tree Structures... 6
Types of Objects... 7
Garbage Collection... 8

Evaluation and Analysis of Ground Expressions .. 8
Variables... 8
Result Expressions... 9
Patterns... 10

Functions Defined in the Program ...11
Formats of Functions.. 11
Function Definitions.. 13
One-Sentence Function Definitions.. 14
Local Variables... 15
A Syntax-Related Subtlety: Paths, Rests, and Sources................................... 15
Local Variables (Continuation).. 17
Recursion.. 17

Logical conditions ...19
Conditions and Predicates.. 19
Conditionals.. 20
Logical Connectives.. 21
Example: Formal Differentiation.. 22
Example: Comparison of Sets.. 24

Direct access selectors .. 25
Functions returning several results .. 26

Traversing Ground Expressions... 26
Quicksort... 27

Iteration .. 28
Search and backtracking ..29

The Queens Problem.. 29
The Sequence Problem.. 31

Example: a compiler for a small imperative language32
The Source Language.. 32
The Target Language... 34
The General Structure of the Compiler... 36
The Modules of the Compiler and their Interfaces.. 37
The Main Module.. 38
The Scanner... 39
The Parser.. 41
The Code Generator... 45
The Dictionary Module.. 48

Syntax and Semantics of Refal Plus ...50
Syntax Notation ... 50
Natural Semantics Specifications ..51
Lexical Structure of Programs ... 52

Comments... 53
Identifiers.. 53
Tokens.. 53
Normalization of the Token Stream.. 56

Objects and Values ... 57
Static and Dynamic Symbols ... 57
Ground Expressions ... 58
Symbolic Names ..58

Refal Plus Reference Manual

i

Expression Names.. 58
Function Names.. 59
Reference Names... 59
Module Names.. 59

Named Ground Expressions .. 59
Variable Values and Environments ... 60
Result Expressions ... 61
Patterns .. 63
Hard Expressions ..65
Paths ...65

Conditions... 67
Bindings.. 67
Searches... 68
Matches.. 69
Rests... 70
Sources... 74

Sentences .. 76
Pattern Alternatives .. 76
Function Definitions ..76
Declarations ...77

Constant Declarations... 77
Object Declarations... 78
Function Declarations... 78

Context Dependent Restrictions ..79
Elimination of Redundant Constructs.. 79
Restrictions Imposed by Function Declarations.. 80
Restrictions on the Use of References to Functions... 83
Restrictions on the Use of Variables... 83
Restrictions on the Use of Cuts.. 84

Trace Directives ...85
Modules ..86
Program Execution ... 86

Refal Plus Library Functions ...88
Access: Direct Access to Ground Expressions ... 88
Apply: Application of Functions Passed as Arguments89
Arithm: Arithmetic Operations on Integers ...89
Bit: Bitwise Operations ...90
Box: Box Operations ...92
Class: Predicates for Determining Classes of Symbols92
Compare: Comparison Operations ..92
Convert: Data Convertions ...94
Dos: Calls to the Operating System .. 95
StdIO: Standard Input/Output ...96
String: String Operations ..97
Table: Table Operations ... 99
Vector: Vector Operations ..100

Bibliography ..102

Refal Plus Reference Manual

ii

Refal Plus Reference Manual

3

Programming in Refal Plus
This chapter gives a step-by-step tutorial introduction to the language Refal Plus and
provides a diverse group of program examples demonstrating some of the ways in which
Refal Plus can be used to solve problems.

Your First Refal Plus Program
To maintain the historically established tradition, we begin by considering a simple
program in Refal Plus.

This program consists of three directives:

$use StdIO; // Import i/o functions from the module StdIO
$func Main = e; // Declare the format of the main function:

// empty as input, anything as output.
Main // Define the main function

= <PrintLn "Hello!">; // Print a line

The first directive

$use StdIO;

states that the program is going to use library input/output functions, which are to be
imported from the module StdIO. The second directive declares the format of the
function Main: what is what it can accept as input, and what it will produce as output. The
third directive is the definition of the function Main, and, by convention, the execution of a
Refal Plus program always begins by evaluating the call to the function Main.

The argument of the function Main must be empty. In the above program, the function
Main calls the library function PrintLn with the argument "Hello!", thereby causing
the character string

Hello!

followed by the character "new line", to be sent to the standard output device. Then the
execution of the program terminates.

Data Structures
Data processed by Refal Plus Programs can be tree-like structures or directed graphs.

Objects vs. Values

All data in Refal Plus are represented by ground expressions and objects.

In the broad sense, object is usually understood to mean an entity that exists in time and
may vary, but, nevertheless, does not lose its identity.

A good example of objects is a human, who gets born, grows up, develops, and dies, but,
nevertheless, remains, in a sense, the same person.

Another classic example is due to Heraclitus (the prime of whose creative forces falls
approximately on the years 504-501 BC). Heraclitus taught that one cannot enter twice
the same river, since, "even if you enter the same river, the water running against you is
always new". Thus, the river may also serve as a good example of objects.

In the broad sense, value is usually understood to mean an entity that is unable to vary,

Refal Plus Reference Manual

4

does not develop, and, in a sense, exists out of time.

It is unknown whether values exist in real life, but they are the favorite subject of
mathematicians. For example, the number 25 is a typical value of that kind.

A value may, certainly, be regarded as a special, degenerate, case of object (i.e. as a
rigid object unable to develop). Nevertheless, the term "object" will be usually applied
only to "proper" objects, which are not values.

Since objects may vary, they are more difficult to deal with than values are. Thus objects
are often provided with names. The basic property of names is that a name is
unambiguously associated with an object (i.e. a name unambiguously identifies the
object). In contrast to objects, their names are typical values, there being no changes in
the names in spite of there being changes in the objects. For example, the state of the
River Thames is continuously changing, but, nevertheless, it has no effect on the word
"Thames". One more example is given by the particulars of a person: the family name,
the first name, the date and place of birth, etc.

Within the scope of Refal Plus, the terms "object" and "value" have a more narrow sense.

A Refal Plus value is a ground expression.

A Refal Plus object is a "container", in which there can be kept ground expressions and
other information.

Refal Plus objects may be created at compile time as well as at run time. Each object is
created simultaneously with a reference symbol, which is said to reference to, and to be
the name of, the object. The basic property of the name of an object is that it must be
different from all other reference symbols existing at the moment the object is being
created. Owing to this property, each reference symbol corresponds to a unique object,
and equal reference symbols correspond to one and the same object.

The interrelation between the name of an object, the object, and the object's contents can
be represented by the following picture:

R --> [...]

Ground Expressions

All values processed by Refal Plus programs are so-called ground expressions.

Here are three examples of ground expressions:

"John" "Smith" 33 "years"
("Dave" 17) ("Mary" 24) ("Elizabeth" 6)
("my" "house") "has" ("large" ("light" "windows"))

The salient feature of the above examples is the use of parentheses. If we modify the
expressions by rearranging the parentheses, the structure of the expressions will be
modified, changing the implied meaning of the expressions.

In addition to parentheses, the above expressions contain symbols. Here are a few
examples of symbols:

"John" "johN" "bye-bye" 1988 -99999999999999

In general, ground expressions consist of symbols and parentheses. A ground

Refal Plus Reference Manual

5

expression is a sequence of zero or more ground terms. A ground term is either a symbol
or a ground expression enclosed in parentheses (and). Thus, a ground expression is a
sequence of symbols and parentheses, in which the parentheses are "properly paired".

When in computer memory, ground expressions are usually stored as tree-structured
objects. Nevertheless, in order to be input or output (printed, written to a file, read from a
file, etc.), a ground expressions has to be represented as a linear sequence of
characters.

Refal Plus implementations enable the ground expressions to be input or output, with all
necessary conversions performed automatically.

A ground expression represented by a character stream is a sequence of tokens, each
token representing either a parenthesis or a symbol. Tokens may be separated by
spaces, which are ignored unless they are essential to separate two consecutive tokens.
(New line characters are considered to be equivalent to spaces.)

The following symbols can appear in source Refal Plus programs as constants: character
symbols, word symbols, and numeric symbols.

A character symbol corresponds to a printable character. A sequence of several
character symbols is written as a single string consisting of the corresponding characters
and enclosed in acute accents.

A word symbol corresponds to a character string and is written as the corresponding
string enclosed in double quotes.

If a word symbol begins with either a capital letter, or an underscore _, and contains only
letters, digits, and underscores _, the double quotes enclosing the symbol may be
omitted.

Here are examples of words:

"John"
"A-Word"
"a-very-very-long-Word"
X_25m3s__
"equal?"
_x

A numeric symbol corresponds to a signed integer, and is written as a non-empty
sequence of decimal digits, which may be preceded by one of the characters Add or Sub.
For example:

237
-999
+13

Numeric symbols may be arbitrary large.

Representing Tree Structures

Ground expressions are especially convenient for representing symbolic (i.e. not purely
numeric) data, organized in a “linear” or “tree” fashion.

For example, suppose we want to deal with algebraic formulae represented by ground
expressions. In this case, we have to devise a way of representing constants, variables,
and formulae formed by applying a binary operator to two smaller formulae. We may
choose, for example, the following representation.

Refal Plus Reference Manual

6

Let [p] denote the ground expression that represents the formula p . Then, numbers may
be represented by the corresponding numeric symbols, variables by the corresponding
word symbols, and formulae formed by applying binary operators according to the
following rules:

[p+q] = ("plus" [p] [q])

[p-q] = ("minus" [p] [q])

[p*q] = ("mult" [p] [q])

[p/q] = ("div" [p] [q])

[pq] = ("power" [p] [q])

Thus the formula

(X+Y2)-512

is to be represented by the ground expression

("plus" ("minus" X ("power" Y 2)) 512)

The next example is the problem of representing chess positions by ground expressions.

First of all we have to denote the name and color of each piece. For example, ("white"
"King"), ("black" "Pawn"). Then we have to specify the square occupied by each
piece. For example, ("e" 2), ("h" 7). Now a position may be represented as a
sequence of ground terms, each term specifying the name, color, and square of a piece.
For example

(("white" "King") ("g" 5))
(("black" "King") ("a" 7))
(("white" "Pawn") ("c" 6))
(("white" "Knight") ("g" 1))
(("black" "Knight") ("a" 8))

Types of Objects

Refal Plus programs deal with objects of several types: function objects, box objects,
table objects, channel objects, vector objects and string objects.

•
Function objects contain compiled function definitions, and are created at compile
time.

All other objects may be created statically (i.e. at compile time) as well as
dynamically (i.e. at run time).

•
Box objects store ground expressions, each box containing one ground expression

•
Table objects store unordered sets of ordered pairs, each pair consisting of two
ground expressions. The first component of a pair is said to be a key, whereas the
second component is said to be the value associated with the key. All keys
appearing in a table must be different from each other. Thus, each key in a table
unambiguously corresponds to its value. Thus, a key uniquely determines its value.

•
Channel objects are used for input/output operations.

Refal Plus Reference Manual

7

•
Vector objects store finite sequences of ground expressions.

•
String objects store finite character sequences.

Garbage Collection

The memory used by objects and ground expressions that cannot be accessed any more
is considered as garbage, and is reclaimed automatically.

The point is that, at run time, Refal Plus programs can create objects, but there is no
explicit way in which they can be destroyed. Thus, the computer memory may well be
filled with new and new objects, although many of them may not be needed any more.
Theoretically, this is no problem, but, in practice, Refal programs are to be run by real
computers with limited memory capacity. For that reason, all Refal Plus implementations
include a garbage collector.

Garbage collection is automatically started each time the free memory is exhausted, in
order to find and destroy all objects that, being inaccessible via the references contained
in variable values, are thus unable to influence the program's behavior.

The following figure on page 8 schematically shows the variable values as well as
several objects along with their contents. The stars denote the parts of expressions that
are not reference symbols. To facilitate the discussion, all objects are labeled with
numbers. The corresponding numbers denote reference symbols appearing in the ground
expressions.

Figure1. Objects and references.

VARIABLE VALUES:
[* * 1 * * * * * * 2 * * * * *]

1:[* * * 4]
2:[4 * * 5]
3:[* * 5]
4:[* * *]
5:[* 6 * 3]
6:[* * 4 *]
7:[3 * 8]
8:[* 7]

It can be easily seen that reference 1 appearing in the variable values enables the
access to object 1 and, indirectly (via object 1), to object 4, whereas reference 2 enables
the access to object 2 and, indirectly (via object 2), to objects 4, 5, 6, 3. Thus, there is no
way of getting information from objects 7 and 8. Therefore, if the garbage collection
started at this moment, objects 7 and 8 would be destroyed. Now, if reference 1 were
removed from the variable values, object 1 would become inaccessible. But, if reference
1 were retained, and reference 2 removed, then all the objects would become
inaccessible, except objects 1 and 4.

Evaluation and Analysis of Ground Expressions
The main kind of data dealt with by Refal Plus programs are ground expressions.

Variables

Refal Plus variables can take as values ground expressions.

Each variable in Refal Plus begins with a variable type designator. The type designator
specifies the set of values the variable can be bound to, and must be one of the four

Refal Plus Reference Manual

8

letters: s, t, v, or e. The variables are, accordingly, distinguished into four classes:
s-variables, t-variables, v-variables, and e-variables.

A variable's value should be consistent with the type of the variable: an s-variable's value
must be a symbol, a t-variable's value must be a ground term, a v-variable's value must
be a non-empty ground expression, and, finally, an e-variable's value may be any ground
expression,

In the following, the term "ve-variable" will be understood to mean "a variable that is
either a v-variable or an e-variable".

Result Expressions

Refal Plus result expressions are, in a sense, an analog to the well-known arithmetic
expressions. They may contain constants, variables and function calls, and are used for
producing new ground expressions from constants and variable values.

For example, the arithmetic expression X*Y+3 corresponds to the Refal Plus result
expression

<Add <Mult sX sY> 3>

Each pair of angular brackets designates a function call of the form <Fname Re>, where
Fname is the name of the function to be called, and Re is the argument to be passed to
the function. Thus, the arguments of function calls are always enclosed in angular
"functional" brackets, which eliminates the necessity to use parentheses for indicating the
order in which the subexpressions are to be evaluated. For example, the expression
X*(A+B) rewritten in Refal becomes

<Mult sX <Add sA sB>>

whereas the expression X*A+B is written in Refal as

<Add <Mult sX sA> sB>

Result expressions, similarly to arithmetic expressions in other languages, are used for
producing new values from other ones. Thus, a result expression is evaluated by
replacing all its variables with their values and evaluating all function calls. If there are
nested function calls, the inner calls are evaluated before the surrounding ones.

It is obvious that, for a result expression to be evaluated, it is necessary to know the
values of the variables appearing in the expression. The information about the variable
values will be referred to as an environment. The notation

{V1 = Ge1, ..., Vn = Gen}

will be used for denoting the environment in which the variables V1, ..., Vn have the
respective values Ge1, ..., Gen .

As can be seen from the above, the representation of arithmetic expressions by result
expressions is rather clumsy. Nevertheless, it does have certain advantages.

The point is that the choice of one or another notation is determined by the nature of the
objects to be dealt with, as well as by the set of operations to be applied to the objects.

It is reasonable to choose the notation in such a way that the most frequently used
operations be denoted as concisely as possible. But the most succinct notation is,

Refal Plus Reference Manual

9

certainly, no notation at all, i.e. an empty place!

As far as arithmetic expressions are concerned, we have two basic operations: addition
and multiplication. One of the operations may be denoted by empty place, and the
common practice is to omit the operator of multiplication.

On the other hand, the principal data dealt with by Refal Plus are ground expressions,
rather than numbers. Since the basic operations on ground expression are the
concatenation of two expressions and the enclosing of an expression in parentheses, it is
for these operations that the syntax of Refal Plus provides a very concise notation.

Namely, if Re' and Re'' are result expressions, so is the construct

Re' Re"

which means that Re' and Re'' are to be evaluated and the values returned are to be
concatenated to produce the result of the whole expression. Thus, if the evaluation of
Re' and Re'' results in returning ground expressions Ge' and Ge'' respectively, the
ground expression Ge' Ge'' is returned as the result of evaluating Re' Re".

If Re is a result expression, so is the construct

(Re)

which means that Re is to be evaluated and the value returned is to be enclosed in
parentheses to produce the result of the whole expression. Thus, if the evaluation of Re
results in returning a ground expression Ge, the ground expression (Ge) is returned
as the result of evaluating (Re) .

For example, the result of evaluating the result expression

sX '+' sY (eZ)

in the environment {sX = 25, sY = 36, eZ = A (B C) D} is the ground
expression

25 '+' 36 (A (B C) D)

Patterns

Patterns provide the principal way of analyzing ground expressions.

Patterns may contain symbols, parentheses, and variables. For example:

A B C
tX (eY B)

A pattern may be regarded as representing the set of all ground expressions that can be
produced from the pattern by replacing the pattern's variables by some values consistent
with the types of the variables. For example, the pattern A eX represents the set of
ground expressions beginning with the symbol A, and the pattern sX sY the set of
ground expressions consisting of exactly two symbols.

If there are several occurrences of the same variable in a pattern, all the occurrences
must be bound to the same value. For example, the pattern tX tX represents the set of
ground expressions consisting of two equal terms.

Let Ge be a ground expression, and P a pattern. Then Ge can be matched against P to

Refal Plus Reference Manual

10

determine whether Ge has the structure specified by P. If so, the matching of Ge against
P is said to succeed, otherwise to fail.

If the matching of Ge against P succeeds, the variables appearing in P are bound to the
corresponding components of Ge. Thus, the result of matching Ge against P is an
environment Env. For example, the result of matching the ground expression AAA BBB
CCC against the pattern eX sY is the environment {eX = AAA BBB, sY = CCC}.

Now let us try to match the ground expression A B C against the pattern e1 sX e2. It
can be easily seen that the matching can succeed in three different ways, resulting in
three different environments:

{e1 = , sX = A, e2 = B C}
{e1 = A, sX = B, e2 = C}
{e1 = A B, sX = C, e2 = }

What is to be considered the result of matching in such situations? Refal Plus solves the
problem in the following way. All variants of matching are considered to be acceptable,
but some of variants "take precedence" over others.

More specifically, let Env1 and Env2 be different variants of matching Ge against P.
Consider all variables appearing in P. Since Env1 and Env2 are different, P must
contain some variables whose values in Env1 and Env2 are different. Let V be the
left-most of such variables, and compare the length of the values assigned to V by Env1
and Env2 . If the value assigned by Env1 is shorter than the value assigned by Env2 ,
then Env1 is assumed to "precede" Env2 (i.e. to take precedence over Env2),
otherwise Env2 is assumed to "precede" Env1 .

For example, matching the ground expression (A1 A2 A3) (B1 B2) against the
pattern e1 (eX sA eY) e2 results in the following set of environments

{e1 = , eX = , sA = A1, eY = A2 A3, e2 = (B1 B2)}
{e1 = , eX = A1, sA = A2, eY = A3, e2 = (B1 B2)}
{e1 = , eX = A1 A2, sA = A3, eY = , e2 = (B1 B2)}
{e1 = (A1 A2 A3), eX = , sA = B1, eY = B2, e2 = }
{e1 = (A1 A2 A3), eX = B1, sA = B2, eY = , e2 = }

where the variants of matching are listed in accordance with their precedence, i.e. the
first variant comes first, etc.

If the variants of matching are ordered as described above, the matching is said to be
done from left to right. Refal Plus, however, enables the matching to be also done from
right to left, which means that, instead of comparing the values of the leftmost variable,
we have to compare the values of the right-most variable. The direction of matching can
be changed by prefixing the key word $r to the pattern. For example, if the ground
expression (A1 A2 A3) (B1 B2) is matched against the pattern $r e1 (eX sA eY)
e2, the set of variants of matching will be ordered as follows:

{e1 = (A1 A2 A3), eX = B1, sA = B2, eY = , e2 = }
{e1 = (A1 A2 A3), eX = , sA = B1, eY = B2, e2 = }
{e1 = , eX = A1 A2, sA = A3, eY = , e2 = (B1 B2)}
{e1 = , eX = A1, sA = A2, eY = A3, e2 = (B1 B2)}
{e1 = , eX = , sA = A1, eY = A2 A3, e2 = (B1 B2)}

Functions Defined in the Program
A Refal Plus program is essentially a set of mutually recursive function definitions.

Formats of Functions

Refal Plus Reference Manual

11

From the purely formal point of view, all Refal Plus functions are assumed to take a
single argument and to return a single result. In many cases, however, the structure of a
function's argument and result is known in advance. For example, the function Add is
known to accept a ground expression consisting of two symbols and to return a ground
expression consisting of a single symbol.

The restrictions imposed on the argument and result of a function are specified by the
declaration of the function. For example, the declaration of the function Add has the form:

$func Add sX sY = sZ;

In general, the declaration of a function Fname has the form

$func Fname Fin = Fout;

where Fin is the input format of the function, and Fout is its output format. The formats
of functions may contain symbols, parentheses, and variables. The variable indices in
formats are insignificant, serve as comments, and may be omitted.

All input and output formats must be "hard", which means that any subexpression of a
format may contain no more that one ve-variable at the top level of parentheses. For
example, the format (e)(e) is hard, whereas the format e A e is not hard, containing
as it does two e-variables at the same level of parentheses.

All inputs to, and results of, a function must have the structure specified by the function's
declaration. The function's declaration must precede all references to the function made
in the result expressions appearing in the program. If the function is defined in the
program, its declaration must explicitly appear in the program prior to the definition.
Otherwise, if the function is defined in other module, its declaration must be imported into
the program by a directive $use.

When the program is being compiled, the compiler verifies that the argument expressions
in the calls to the function are consistent with the input format of the function. For
example, consider the result expression

<Add 2 <Add sX sY>>

The inner call is obviously correct. But, to check the outer call, we have to make use of
the information about the structure of the results returned by the function Add. Thus, on
replacing <Add sX sY> with the output format of the function Add we get <Add 2 s> .
Now we see that the argument of the outer call conforms to the input format of the
function Add. On the other hand, the result expression

<Add 2 <Add sX sY> 3>

is regarded as illegal, because the argument of the outer call consists of three symbols,
despite the input format of the function Add requiring the argument to consist of two
symbols.

Thus, specifying the input and output formats enables many errors to be found at compile
time, rather than at run time.

From the purely formal point of view, all Refal Plus functions are assumed to take a
single argument and to return a single result. In many cases, however, the structure of a
function's argument and result is known in advance. For example, the function Add is
known to accept a ground expression consisting of two symbols and to return a ground

Refal Plus Reference Manual

12

expression consisting of a single symbol.

The restrictions imposed on the argument and result of a function are specified by the
declaration of the function. For example, the declaration of the function Add has the form:

$func Add sX sY = sZ;

In general, the declaration of a function Fname has the form

$func Fname Fin = Fout;

where Fin is the input format of the function, and Fout is its output format. The formats
of functions may contain symbols, parentheses, and variables. The variable indices in
formats are insignificant, serve as comments, and may be omitted.

All input and output formats must be "hard", which means that any subexpression of a
format may contain no more that one ve-variable at the top level of parentheses. For
example, the format (e)(e) is hard, whereas the format e A e is not hard, containing
as it does two e-variables at the same level of parentheses.

All inputs to, and results of, a function must have the structure specified by the function's
declaration. The function's declaration must precede all references to the function made
in the result expressions appearing in the program. If the function is defined in the
program, its declaration must explicitly appear in the program prior to the definition.
Otherwise, if the function is defined in other module, its declaration must be imported into
the program by a directive $use.

When the program is being compiled, the compiler verifies that the argument expressions
in the calls to the function are consistent with the input format of the function. For
example, consider the result expression

<Add 2 <Add sX sY>>

The inner call is obviously correct. But, to check the outer call, we have to make use of
the information about the structure of the results returned by the function Add. Thus, on
replacing <Add sX sY> with the output format of the function Add we get <Add 2 s> .
Now we see that the argument of the outer call conforms to the input format of the
function Add. On the other hand, the result expression

<Add 2 <Add sX sY> 3>

is regarded as illegal, because the argument of the outer call consists of three symbols,
despite the input format of the function Add requiring the argument to consist of two
symbols.

Thus, specifying the input and output formats enables many errors to be found at compile
time, rather than at run time.

Function Definitions
A Refal program consists of function definitions, each definition having either of the two
forms:

Fname \{ Snt1; Snt2; ... Sntn; };
Fname { Snt1; Snt2; ... Sntn; };

Refal Plus Reference Manual

13

where Fname is the name of the function being defined, and Snt1, Snt2, ..., Sntn
are sentences. (Being, at present, of no importance, the subtle difference between \{
and { will be explained later.)

Each sentence Sntj is of the form Pj Rj , with Pj being the input pattern of the
sentence, and Rj the rest of the sentence. A function definition specifies the way in
which the calls to the function are to be evaluated. Suppose a call

<Fname Re>

to the function Fname is to be evaluated. Then the result expression Re is evaluated. If a
ground expression Ge is returned, an attempt is made to match Ge against the input
patterns P1, P2, ..., Pn , in order to find the first pattern Pj such that matching Ge
against P succeeds. Let Env be the "first" variant of matching Ge against P. Then the rest
Rj is evaluated in the environment Env. If a ground expression Ge' is returned, this
expression is taken to be the result of evaluating the function call.

For the time being, for the sake of simplicity, each rest Rj will be assumed to be of the
form

= Rej

where Rej is a result expression. A rest of the form = Re is a special case of right hand
side. Evaluating a right hand side = Rej amounts to evaluating the result expression
Rej . If the evaluation of Rej results in returning a ground expression Ge, then Ge is
taken to be the result of the whole right hand side.

For example, let us consider a function SumSq computing the sum of the squares of two
numbers. Here is the definition of this function written in traditional notation

SumSq(X,Y) = X*X + Y*Y

which may be rewritten in Refal in the following way:

$func SumSq sX sY = sZ;

SumSq
{
sX sY = <Add <Mult sX sX> <Mult sY sY>>;
};

It should be noted that the declaration of a function must precede the function's definition
as well as the calls to the function, since the information provided by the declaration is
necessary for compiling the function's definition as well as the calls to the function.

If the function declaration has the form

$func Fname Fin = Fout;

the compiler verifies that the input patterns P1, P2, ..., Pn are "instances" of the
input format Fin, whereas all the rests R1, R2, ..., Rn are certain to return ground
expressions satisfying the output format Fout.

One-Sentence Function Definitions
If a function definition contains a single sentence Snt, i.e. has the form

Fname \{ Snt; };

Refal Plus Reference Manual

14

it can be abbreviated to

Fname Snt;

For example, the above definition of the function SumSq can be rewritten as

SumSq sX sY = <Add <Mult sX sX> <Mult sY sY>>;

Local Variables
Consider a function SqSub1 that decreases the argument by one and squares the
number obtained:

SqSub1(X) = (X-1)*(X-1)

This function can be defined in Refal in the following way:

$func SqSub1 sX = sZ;

SqSub1 sX = <Mult <Sub sX 1> <Sub sX 1>>;

An obvious deficiency of this definition is that it involves duplicate calculations: the
expression <Sub sX 1> is to be evaluated twice. But this can be avoided by introducing
an auxiliary function Sq:

$func SqSub1 sX = sZ;
$func Sq sY = sZ;

SqSub1 sX = <Sq <Sub sX 1>>;
Sq sY = <Mult sY sY>;

The function Sq serves the only purpose: it waits for the argument to be decremented by
one, catches the result obtained, and continues the computation. It is obvious that
superfluous auxiliary functions can make the program obscure and difficult to understand,
for which reason Refal Plus enables us to introduce local variables for denoting
intermediate values.

Namely, the definition of the function SqSub1 can be written in the following way:

$func SqSub1 sX = sZ;

SqSub1 sX =
<Sub sX 1> :: sY,

<Mult sY sY>;

where <Sub sX 1> :: sY means that the variable sY is to be bound to the result of
evaluating <Sub sX 1>. Then <Mult sY sY> is evaluated, and the result obtained is
considered to be the result of evaluating the whole right hand side of the sentence. It
should be noted that the value of sY is used while evaluating <Mult sY sY>.

A Syntax-Related Subtlety: Paths, Rests, and Sources

Now we have to put aside the topic of "local variables" and consider some subtle points
concerning the syntax of Refal Plus. These points are not related to the essence of Refal
Plus, but rather are due to the fact that the authors of Refal Plus tried to make the syntas
of Refal Plus as terse as possible. Unfortunately, this resulted in certain complications in
the syntax of Refal Plus.

Basically, all Refal Plus constructs appearing in function definitions are meant either for

Refal Plus Reference Manual

15

analyzing the structure of ground expressions or for computing some results. While the
analysis of data is performed by means of patterns, the constructs that are used for
producing results are paths.

The term path was chosen in order to emphasize that producing a result is a
sophisticated process, which can involve a sequence of steps. In a sense, the evaluation
moves forward step-by-step "along a path".

A result expression is a "degenerate" kind of path, whose evaluation can be done in a
single step.

The construct

= <Sub sX 1> :: sY,
<Mult sY sY>;

is a more sophisticated example of a path. In this case the evaluation takes 2 steps. The
first step produces an intermediate result, which is used at the second step, in the
evaluation of the result expression <Mult sY sY>.

It should be noted that the comma , is a purely sintactic device, denoting as it does no
real action. However, should we try to remove it

= <Sub sX 1> :: sY
<Mult sY sY>;

an ambiguity would arise: it would be unclear, how to divide the path into the binding and
the result expression?

For the purpose of avoiding ambiguity, the description of Refal Plus distinguishes two
special classes of paths: rests and sources. Rests and sources are "well-behaved" paths
that possess some useful sintactic properties.

A rest is a path that starts with a keyword, which enables it to be unambiguously
separated from the preceeding construct. It should be noted that Refal Plus "keywords"
are not necessary "words" consisting of letters, but may also be combinations of other
characters. For example

= A B C
, A B C

are sampes of rests. (There is a subtle difference between = and , , but it shows up only
when the evaluation produces a "failure". So, at the moment, this difference is not
essential.)

A source is a path that contain no commas at the top level of curly braces. For example

A B C
\{ <Sub sX 1> :: sY, <Mult sY sY>; }

are samples of sources. The term source is used because, when used in bindings,
sources produce values for varibles.

In the following, in the description of Refal Plus, paths will be denoted by Q, rests by R,
and sources by S.

If a path Q is not a rest, it can always be turned into a rest, without changing its meaning,
by prefixing it with a comma: , Q .

If a path Q is not a source, it can always be turned into a source, without changing its
meaning, by enclosing it in curly braces \{ Q; } .

Refal Plus Reference Manual

16

Local Variables (Continuation)

Now we can return to the topic of local variables.

Namely, local variables can be bound to values by means of a path of the form

S :: He R

where S is a source, R is a rest, and He is a so called "hard expression". The hard
expression He, which consists of symbols, brackets, and variables, must satisfy the
following restrictions:

•
First, He must not contain two occurrences of the same variable.

•
Second, each subexpression of He can contain no more than one ve-variable at the
top level.

It can be easily seen that, being a hard expression, He can be regarded as a format
expression, and the Refal Plus compiler verifies that S is certain to return ground
expressions satisfying the format He.

The path S :: He R is evaluated as follows. First, the source S is evaluated. If the
result returned is a ground expression Ge, the variables in He are bound to the
corresponding subexpressions of Ge. Then the rest R is evaluated, and the result
returned is taken to be the result of the whole construct.

It should be noted that the evaluation of the path S :: He R begins by evaluating the
source S in the environment in which the whole construct is evaluated. Then the variables
in He are bound, and the environment is extended with the new bindings, so that the rest
R is evaluated in the extended environment. Thus the evaluation of the path

100 :: sX, <Add sX 1> :: sX = sX

returns 101.

The hard expression He in a path S :: He R may be empty, in which case the path
takes the form S :: R and can be abbreviated to S R.

This construct (called condition) is usually used in cases where we are interested in the
side effects produced by evaluating S, rather than in the result returned by S.

For example, evaluating the path

<PrintLn "A">, <PrintLn "B">, <PrintLn "C"> =

causes three lines to be printed, the first line consisting of the character A, the second of
the character B, and the third of the character C.

The rest R in a path S :: He R may consist of a single comma, in which case the path
takes the form S :: He , and can be abbreviated to S :: He .

Recursion

A function definition may contain calls to library functions as well as calls to functions
defined in the program. In particular, a function may call itself (either directly or through
other functions), in which case the function definition is said to be recursive.

A function may have to be defined recursively if the set of arguments for which the
function is defined is infinite, and there is no limitation on the size of the arguments.

Refal Plus Reference Manual

17

Let us consider, for example, the following problem. Suppose we have to define a
function Reverse that "reverses" a ground expression by rearranging its top-level terms
in reverse order. Thus, if the argument has the form

Gt1 Gt2 ... Gtn

where Gt1, Gt2, ..., Gtn are ground terms, then the function is to return the ground
expression

Gtn ... Gt2 Gt1

If the length of the argument expression were limited, for example, if we knew that n<=3 ,
we could consider four separate cases to produce the following function definition

$func Reverse e.Exp = e.Exp;

Reverse
{
= ;
t1 = t1;
t1 t2 = t2 t1;
t1 t2 t3 = t3 t2 t1;
};

There is no limit on the length of the input expressions, however. Thus, the function
definition has to consider an infinite number of cases, which seems to imply that the
program has to be infinite in size.

This difficulty, however, can be circumvented by means of recursion. We can reason in
the following way. Let us consider an argument expression

Gt1 Gt2 ... Gtn

If n=0 , then the result to be returned is the empty expression. Otherwise, if n>=1 , the
problem can be reduced to a less difficult one. Namely, by discarding the first term in the
argument expression we get the expression

Gt2 ... Gtn

which is n-1 terms in length. By reversing this expression we get

Gtn ... Gt2

Now, by adding Gt1 to the end of the expression, we get the desired result

Gtn ... Gt2 Gt1

Reasoning in this way, we come to the following recursive definition of the function
Reverse:

Reverse
{
= ;
t.X e.Rest = <Reverse e.Rest> t.X;
};

It is interesting that there exists another solution to the problem of the expression
reversion, which is in no way worse than the above. Namely, the problem can be reduced
to a less difficult one by discarding the last term, rather than the first one, in which case
we get the following solution:

Refal Plus Reference Manual

18

Reverse
{
= ;
e.Rest t.X = t.X <Reverse e.Rest>;
};

It can be easily seen that the essence of the solution consists in dividing the original
expression Ge into two smaller non-empty expressions Ge1 and Ge2 such that

Ge = Ge1 Ge2

Now, each of the expressions Ge1 and Ge2 can be reversed separately. Let the
corresponding expressions obtained be Ge'1 and Ge'2 . Then the expression

Ge'2 Ge'1

is obviously the result of reversing the original expression Ge.

If Refal Plus is implemented for a multi-processor computer in such a way that the
reversion of Ge1 and Ge2 can be performed simultaneously, it is advantageous to make
Ge1 and Ge2 approximately equal in length. In this way we get the following modification
of the above function definition, in which there are calls to library functions from the
modules Access and Arithm:

$func Reverse e.Exp = e.Exp;

Reverse
{
= ;
t1 = t1;
eX,

<Length e.X> :: sLen,
<Div sLen 2> :: sDiv,
= <Reverse <Middle sDiv 0 eX>>
<Reverse <Left 0 sDiv eX>>;

};

Logical conditions
In Refal Plus, the truth values "true" and "false" are represented by empty expressions
and failures, respectively, while the logical connectives "and", "or" and "not" can be
mimicked by constructs dealing with failures.

Conditions and Predicates

In some cases, the program has to test some conditions in order to select one of the
alternative courses of action.

The exact way in which conditions can be written and tested depends on the
programming language. As far as Refal Plus is concerned, we use the following
terminology.

A path Q is said to be a condition, if the value returned by the path is always either an
empty ground expression or a failure. If the result is an empty expression, the condition is
considered to be satisfied, otherwise, if the result is a failure, the condition is considered
not to be satisfied.

Thus empty expressions and failures may be considered as corresponding to the
well-known truth values "true" and "false", respectively.

Refal Plus Reference Manual

19

It should be kept in mind, however, that the evaluation of a condition Q may
non-terminate or produce an error, in which case we consider either the program or the
input data to be incorrect.

Some of the library functions are specifically designed for testing conditions. Such
functions are referred to as predicates. In Refal Plus a predicate returns either an empty
expression (if its arguments satisfy the condition) or a failure (if the condition is not
satisfied). For example, the function Lt tests whether the first argument is less than the
second one. In other words, let Ge1 and Ge2 be ground expressions. Then if Ge1 is
"less" than Ge2 , the result of evaluating <Lt (Ge1)(Ge2)> is an empty expressions,
otherwise the result is a failure.

If a program defines a predicate function, the declaration of the function must have the
form

$func? Fname Fin = ;

Now we consider several ways of using and combining conditions.

Conditionals
Suppose we have a condition represented by a source S and two paths Q' and Q''.
Consider the path

\? {S \! Q'; \! Q";}

If the result of evaluating S is an empty expression, the path Q' is evaluated and the
value returned is taken to be the result of the whole construct. Otherwise, if the result of
evaluating S is a failure, the path Q'' is evaluated and the value returned is taken to be
the result of the whole construct.

Notice should be taken of the use of cuts \! . They prove to be essential in cases where
the evaluation of Q' or Q'' fails. Let us try removing the cuts, and consider the path thus
obtained:

{ S, Q'; Q";}

Now, if the condition S is satisfied, the path Q' is evaluated. Suppose the evaluation of
Q' fails. Then, instead of being returned as the result of the whole construct, the failure is
caught, which causes the evaluation of the path Q''. But this, certainly, was not our
intention! Thus the first cut is necessary to prevent the control from "jumping" to the next
path in the alternative.

Now, let us consider the case where the condition is not satisfied, i.e. the evaluation of S
fails. Then the failure is caught, which causes the evaluation of the path Q''. Suppose
that the evaluation of Q'' fails. Then the failure is caught and an attempt is made to
evaluate the next path in the alternative. But there is no such path! Hence, an error is
generated, which, again, was not our intention!

Nevertheless, in some cases, the cuts can be omitted. Thus an alternative of the form

\? {S \! = Q'; \! = Q";}

can always be, and usually is, rewritten as

{ S = Q'; = Q";}

Refal Plus Reference Manual

20

As an example let us consider the function MinE, which takes two ground expressions
Ge1 and Ge2 as arguments, and returns either Ge1 or Ge2 . Namely, if Ge1 precedes
Ge2 , the result is Ge1 , otherwise the result is Ge2 .

$func MinE (eX)(eY) = e.MinXY;

MinE (eX)(eY) =
{
<Lt (eX)(eY)>

= eX;
= eY;

};

Now consider the case where a condition is represented by a path Q, and a path Q' must
be evaluated if the condition is not satisfied, whereas a path Q'' must be evaluated if the
condition is not satisfied. This case can be reduced to the above by enclosing the
condition Q in curly braces thereby making the path Q into the source \{ Q; } . Now the
conditional can be written as follows:

\? { \{Q;} \! Q'; \! Q";}

Logical Connectives

Sometimes we have to test complicated logical conditions. Complex conditions can often
be expressed in terms of more elementary conditions by means of the logical connectives
"AND", "OR", and "NOT". Although Refal Plus does not provide logical connectives
explicitly, they can be easily represented by other constructs.

Logical "AND"

Suppose we have two conditions and must determine whether both of them are satisfied.

If both conditions are represented by paths Q' and Q'', the compound condition can be
tested by evaluating the path

\{ Q';}, Q''

If the first condition is represented by a source S, and the second by a path Q, the
compound condition can be tested by evaluating the path S, Q.

And, finally, if both conditions are represented by result expressions Re' and Re'', the
compound condition can be tested by evaluating the result expression Re' Re".

Logical "OR"

Suppose we have two conditions and must determine whether one (or both) of them are
satisfied.

If both conditions are represented by paths Q' and Q'', the compound condition can be
tested by evaluating the path

\{ Q'; Q''; }

Logical "NOT"
Suppose we have a condition represented by a path Q, and must determine whether the
condition is not satisfied. This can be done by evaluating the path

\{Q;}

Refal Plus Reference Manual

21

which is an abbreviation to the path # \{Q;}, .

In cases where the condition is represented by a source S, the negated condition can be
tested by evaluating the path

S

which is an abbreviation to the path # S , .

In both cases we take the opportunity of omitting the rests consisting of a single comma.

Example: Formal Differentiation

Suppose we want to define a function that, given an algebraic expression and a variable,
will produce the derivative of the expression with respect to the variable [Hen1980] on
page 24 . To keep the presentation concise, we deal only with simple formulae consisting
of integers, variables, and binary operators + and *. The generalization to more
complicated formulae is straightforward, and is left for the reader as an exercise.

Let x and y stand for arbitrary variables, i for an integer, and e for a formula. Let Dx(e)
denote the result of differentiating e with respect to x. Then the rules of differentiation can
be written as follows:

Dx(x) = 1

Dx(y) = 0 (where y is different from x)

Dx(i) = 0

Dx(e1 + e2) = Dx(e1) + Dx(e2)

Dx(e1 * e2) = e1 * Dx(e2) + e2 * Dx(e1)

Before writing the program of differentiating, we have to represent formulae by ground
expressions. Let [e] stand for the formula e represented by a ground expression. Then
we may choose the representation defined by the following rules:

[x] = x

[i] = i

[e1 + e2] = (Sum [e1] [e2])

[e1 * e2] = (Prod [e1] [e2])

Now a function Diff can be easily defined whose first argument is a variable, and the
second argument a formula. The function returns the result of differentiating the formula
with respect to the variable.

$func Diff sX tE = tE;

Diff sX tE =
tE :
{
sX = 1;
sY = 0;
(s.Oper t.E1 t.E2) =

<Diff sX tE1> :: t.DxE1,
<Diff sX tE2> :: t.DxE2,

Refal Plus Reference Manual

22

s.Oper :
{
Sum = (Sum t.DxE1 t.DxE2);
Prod = (Sum (Prod t.E1 t.DxE2) (Prod t.E2 t.DxE1));
};

};

An obvious deficiency of the above definition of the function Diff is that the formulae
produced by the function contain a lot of unnecessary parts. For example, according to
the above rules of differentiation we have

DX(3*(X*X)+5) = (3*((X*1)+(X*))+(X*X)*0)+0

which could have been reduced to

by means of evident simplifications. Thus we can enhance the definition of the function
Diff by making the function perform the following reductions:

0 + e2 ==> e2

e1+ 0 ==> e1

0 * e2 ==> 0

e1* 0 ==> 0

1 * e2 ==> e2

e1* 1 ==> e1

(We won't consider more complicated reductions, to keep the presentation concise.)

There are two ways of implementing the above simplifications. The first way is to perform
the simplifications only after the result of the differentiation has been completely built. The
second way is to try the simplifications "on the fly", during the differentiation. And it is the
second way that we are going to implement.

As the first step, we define two functions Sum and Prod, each function taking two
formulae and returning respectively the sum and the product of the formulae. It is in these
functions that the simplifications are performed.

$func Sum t1 t2 = t;
$func Prod t1 t2 = t;

Sum
{
0 t2 = t2;
t1 0 = t1;
t1 t2 = (Sum t1 t2);
};

Prod
{
0 t2 = 0;
1 t2 = t2;
t1 0 = 0;
t1 1 = t1;
t1 t2 = (Prod t1 t2);
};

Now we can rewrite the above definition of the function Diff, inserting at appropriate
places the calls to the functions Sum and Prod:

Diff sX tE =
tE :
{

Refal Plus Reference Manual

23

sX = 1;
sY = 0;
(s.Oper t.E1 t.E2) =

<Diff sX tE1> :: t.DxE1,
<Diff sX tE2> :: t.DxE2,
s.Oper :
{
Sum = <Sum t.DxE1 t.DxE2>;
Prod = <Sum <Prod t.E1 t.DxE2> <Prod t.E2 t.DxE1>>;
};

};

Bibliography

[Hen1980] P.Henderson. Functional Programming: Application and Implementation.
Prentice-Hall. 1980.

Example: Comparison of Sets

The following example illustrates the use of recursion along with logical connectives.

According to the set theory, two sets are considered to be equal, if they contain the same
elements. Suppose we want to define a Refal Plus function testing two sets for equality.
The first thing we have to invent is the representation of sets by ground expressions.
First, let us consider the sets whose elements may be Refal symbols only. A set of
symbols {Gs1, Gs2, ..., Gsn} can, obviously, be represented by the ground
expression

Gs1 Gs2 ... Gsn

A feature of this representation is that any non-empty set of symbols has lots of different
representations. For example, the set {John, Mary} may be represented as John
Mary or Mary John , or even Mary John John Mary . Thus, different representations
may correspond to equal sets.

It is well known that an element of a set can be a set itself. So, we must be able to
represent sets containing symbols as well as sets, which may contain sets, etc. How shell
we represent set elements that are sets?

A simple solution is the following. If an element of a set is a symbol Gs, the element is
represented by the symbol Gs. Otherwise, if an element of a set is a set X, the element is
represented by the ground term (X'), where X' is a representation of X. For example,
the set {A, {A,B}, {A}} may be represented by the ground expression A (A B)
(A) .

Now we define the predicate function IsEqSet determining whether its two arguments
represent the same set. This function performs the test for equality by reducing it to
several simpler tests.

Namely, two sets A and B are equal iff:
•

A is a subset of B and B is a subset of A.

where
•

A set A is a subset of a set B iff each element X of A belongs to B.

Thus, instead of defining a single function, we have to define four mutually recursive
predicate functions. IsEqSet determines whether its two arguments are representations
of the same set. IsSubset determines whether the set represented by the first argument
is a subset of the set represented by the second argument. IsEl determines whether the
first argument represents a set belonging to the set represented by the second argument.

Refal Plus Reference Manual

24

And, finally, IsEqEl determines whether its two arguments represent the same element
of a set.

Note that, to test for equality two set elements that are sets themselves, we have to test
for equality the corresponding sets, for which reason the function IsEqEl has to call the
function IsEqSet. Thus, finally, IsEqSet turns out to be defined in terms of itself.

$func? IsEqSet (eA)(eB) = ;
$func? IsSubset (eA)(eB) = ;
$func? IsEl tX (eA) = ;
$func? IsEqEl tX tY =;

IsEqSet (eA)(eB) =
<IsSubset (eA)(eB)><IsSubset (eB)(eA)>;

IsSubset (eA)(eB) =
eA :
{
= ;
tX eR = <IsEl tX (eB)><IsSubset (eR)(eB)>;
};

IsEl tX (eA) =
eA : tY eR,
\{ <IsEqEl tX tY>; <IsEl tX (eR)>; };

IsEqEl tX tY =
\{
tX tY : s s

= tX : tY;
tX tY : (eA)(eB)

= <IsEqSet (eA)(eB)>;
};

Direct access selectors
All implementations of Refal Plus enable quick and "cheap" direct access to the top-level
terms of a ground expression, which turns out to be useful for solving problem by means
of the technique known as "divide and conquer".

The general idea is to solve a problem by dividing it into subproblems - each an instance
of the original problem but on inputs of smaller size - in such a way that the solution of
the original problem can be assembled from the solutions to the subproblems. The
principle “divide and conquer” is usually applied together with the principle of "balancing"
requiring that the original problem should be divided into subproblems of roughly equal
size [AHU1974] on page 26 .

A classic application of the principle “divide and conquer” is the problem of sorting (i.e.
arranging in ascending order).

One of the sorting methods is the merge sort [AHU1974] on page 26 . The idea is to
divide the original set S into two disjoint sets S1 and S2 of roughly equal size, sort S1 and
S2 to produce two ordered sequences Q1 and Q2, and then merge Q1 and Q2 into one
ordered sequence Q, thereby obtaining the solution to the original problem.

Now let us define the function MSort, which takes an integer sequence as argument,
divides it into two parts of approximately equal size, and calls itself recursively in order to
sort both parts. Then the sequences thus obtained are merged by the function Merge to
produce the final result.

$func MSort eS = eS;
$func Merge (eX)(eY) = eZ;

MSort eS =
<Length eS> :: sLen,
{

Refal Plus Reference Manual

25

<Le (sLen) (1)>
= eS;
= <Div sLen 2> :: sK,
<Left 0 sK eS> :: eS1,
<Middle sK 0 eS> :: eS2,

<Merge (<MSort eS1>)(<MSort eS2>)>;
};

Now we have to define the function Merge, which takes two ordered integer sequences
as arguments and merges them into one ordered sequence.

Merge (eX)(eY) =
{
eX :

= eY;
eY :

= eX;
(eX)(eY) : (sA eXRest)(sB eYRest)

= {
<Le (sA)(sB)>

= sA <Merge (eXRest)(eY)>;
= sB <Merge (eX)(eYRest)>;

};
};

Bibliography

[AHU1974] A.V.Aho, J.E.Hopcroft, and J.D.Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley. Reading, Mass.. 1974.

Functions returning several results
If the output format of a function contains several variables, the function is said to return
“several results” .

The following examples illustrate the usefulness of functions of that kind.

Traversing Ground Expressions
Suppose we want to define a function NMB replacing all symbols appearing in a ground
expression with their ordinal numbers. For example:

<NMB A (B A) C A> => 1 (2 3) 4 5

The main difficulty is that, having encountered a pair of parentheses, the function cannot
know in advance the number of symbols enclosed in the parentheses. But this
information will be necessary for the function to resume the processing of the top level of
the expression after the contents of the parentheses will be done away with. Therefore,
the symbol numbering function must have two arguments: the expression to be
processed and the number to be assigned to the first symbol in the expression (if any).
This function must return two results: the expression processed and the first "unused"
number. Thus we come to the following definition of the function NMB (making use of two
auxiliary functions NMBExp and NMBTerm).

$func NMB e.Exp = e.Exp;
$func NMBExp e.Exp sN = e.Exp sN;
$func NMBTerm t.Exp sN = t.Exp sN;

NMB e.Exp =
<NMBExp e.Exp 1> :: e.Exp s,

e.Exp;

NMBExp e.Exp sN =
e.Exp :

Refal Plus Reference Manual

26

{
= sN;
tX e.Rest =

<NMBTerm tX sN> :: tX sN,
<NMBExp e.Rest sN> :: e.Rest sN,

tX e.Rest sN;
};

NMBTerm tX sN =
tX :
{
s =

sN <Add sN 1>;
(eE) =

<NMBExp eE sN> :: eE sN,
(eE) sN;

};

Quicksort

There is a second way we can apply the idea of divide and conquer to the problem of
sorting, the so-called quicksort algorithm [AHU1974] on page 27 .

Suppose we have to sort a set of integers S. The idea is to choose X, an arbitrary
element of S, and to divide S into three disjoint sets S1 , S2 , and S3 , such that S1
contains integers that are less than X, S2 contains integers equal to X, and S3 contains
integers that are greater that X. Then, by sorting S1 , S2 , and S3 , we get three ordered
sequences Q1 , Q2 , and Q3 (the sorting of Q2 is trivial, because all elements of Q2 are
equal to X). Then we can concatenate Q1 , Q2 , and Q3 into the new sequence Q1 Q2
Q3 , which gives us the solution to the original problem.

Now we can define the function QSort, which sorts an integer sequence according to the
above method. The auxiliary function Split is used for partitioning the input sequence
into three subsequences.

$func QSort eS = eQ;
$func Split sX eS = (eS1)(eS2)(eS3);
$func SplitAux sX (eS1)(eS2)(eS3) eS = (eS1)(eS2)(eS3);

QSort eS =
{
eS :

= ;
eS : t

= eS;
eS : sX e

= <Split sX eS> :: (eS1)(eS2)(eS3),
<QSort eS1> eS2 <QSort eS3>;

};

Split sX eS =
<SplitAux sX ()()() eS>;

SplitAux sX (eS1)(eS2)(eS3) eS =
eS :
{
=

(eS1)(eS2)(eS3);
sY eRest =

{
<Lt (sY)(sX)>
= <SplitAux sX (eS1 sY)(eS2)(eS3) eRest>;

<Gt (sY)(sX)>
= <SplitAux sX (eS1)(eS2)(eS3 sY) eRest>;
= <SplitAux sX (eS1)(eS2 sY)(eS3) eRest>;

};
};

Bibliography

[AHU1974] A.V.Aho, J.E.Hopcroft, and J.D.Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley. Reading, Mass.. 1974.

Refal Plus Reference Manual

27

Iteration
In Refal Plus, recursion is the principal means of representing loops. In many cases,
however, this means is too universal, for which reason Refal Plus provides a special
search construct $iter.

Syntactically, a search construct is a path of the form

S'' $iter S' :: He R

where the sources S'' and S' are assistants, and the rest R a provider (which is
essential in cases where S'', S', or R contain right hand sides of the form = Q).

If the hard expression He is empty, it may be omitted along with the keyword ::. If the
rest R consists of a single comma, it may also be omitted.

A search construct introduces new local variables (in the same way as a binding S ::
He R does). The initial values of these variables are obtained by evaluating the source
S''. Then an attempt is made to evaluate the rest R. If the evaluation of R succeeds, the
value returned is taken to be the result of the whole construct. Otherwise, if the
evaluation of R fails, the local variables are bound to new values (obtained by evaluating
the source S' in the old environment associating the local variables with their old values).
Then, again, an attempt is made to evaluate the rest R, etc.

Thus, in a sense, the search construct tries to find for the variables in He such values that
the evaluation of the rest R succeeds.

The easiest way to explain the exact meaning of the search construct consists in defining
it in terms of more elementary constructs, such as bindings and alternatives. Namely, a
search S'' $iter S' :: He R is equivalent to the path

S" :: He, \{ R; S' $iter S' :: He R; }

This path, again, contains a search construct, which, again, may be "unfolded". Thus we
get

S" :: He, \{ R;
S' :: He, \{ R;

S' $iter S' :: He R;
};}

By repeating the unfolding infinitely many times, we can transform the original construct
into the infinite path

S" :: He, \{ R;
S' :: He, \{ R;

S' :: He, \{ R;
...
... };};}

The following example illustrates the use of the search construct.

Let us consider the well-known factorial function, which is usually given the following
recursive definition:

$func Fact sN = sFact;

Fact
{

Refal Plus Reference Manual

28

0 = 1;
sN = <Mult sN <Fact <Sub sN 1>>>;
};

The drawback of the above definition is that the call to the function Mult cannot be
evaluated until the evaluation of the internal call to the function Fact has terminated.
Thus, the calls to Mult accumulate. However, the function Fact can be given a more
"iterative" definition (making use of the auxiliary function FactAux).

$func Fact sN = sFact;
$func FactAux sR sK = sFact;

Fact sN =
<FactAux 1 sN>;

FactAux sR sK =
{
sK : 0

= sR;
= <FactAux <Mult sR sK> <Sub sK 1>>;

};

The same can be expressed with the search construct in the following way:

$func Fact sN = sFact;

Fact sN =
1 sN

$iter <Mult sR sK> <Sub sK 1>
:: sR sK,

sK : 0,
= sR;

Search and backtracking
The constructs that Refal Plus provides for catching and handling failures can be used for
implementing algorithms dealing with search and backtracking.

The Queens Problem

Our next example is the classic Eight Queens Problem [Hen1980] on page 31 . Given a
chessboard and eight queens, one must place the queens on the board so that no two
queens hold each other in check; that is, no two queens may lie in the same row, column,
or diagonal.

We shall consider a slightly more general problem of placing n queens on the board of
the size n*n.

Let the rows and columns of the board be numbered from 1 to n. A chessboard square is
said to have the coordinates (i,j), or, in other words, to be the square (i,j), if it lies
in column i and row j.

Note that all squares lying in the same diagonal running upwards from left to right have
the same sum of the column and row numbers, whereas all squares lying in the same
diagonal running downwards from left to right have the same difference of the column
and row numbers.

Thus two squares (i,j) and (i',j') lie in the same diagonal, if either i+j = i'+j'
or i-j = i'-j'. This condition is easy to check. Namely, if the evaluation of the path

\{
<Add sI sJ> :: sN1, <Add sI1 sJ1> :: sN2, sN1 : sN2;

Refal Plus Reference Manual

29

<Sub sI sJ> :: sN1, <Sub sI1 sJ1> :: sN2, sN1 : sN2;
}

succeeds, the squares (i,j) and (i',j') lie in the same diagonal.

Now we need a way to represent a board containing queens in the first m columns.

It is obvious that we may confine our attention to the positions in which each column
contains no more than one queen, because two queens lying in the same column would
hold each other in check, thereby preventing the position from being a solution. On the
other hand, the number of the queens to be placed is equal to the number of columns,
implying that each column must contain exactly one queen. Hence, a position can be
represented by a sequence of integers

I1 J2 ... In

where the number Ik represents the queen lying in column k and row Ik .

The solution will be constructed incrementally, by filling the columns one by one. Each
time, a queen is placed in a column, it must be checked that no queen puts the new
queen in check. Suppose the board contains k queens lying in the columns 1, 2, ..., k.
This partially constructed position can be represented by the sequence of integers

I1 I2 ... Ik

where the number Im represents the queen lying in column m and row Im .

Now we can define the predicate UnderAttack, which returns an empty expression if
the square (i,j) is attacked by the queens placed on the board, or a failure, if the
square is not attacked.

$func? UnderAttack sI sJ ePos = ;

UnderAttack sI sJ ePos =
ePos : $r eRest e, eRest : e sJ1,
<Length eRest> :: sI1,
\{
sI1 : sI;
sJ1 : sJ;
<Add sI sJ> :: sN1, <Add sI1 sJ1> :: sN2, sN1 : sN2;
<Sub sI sJ> :: sN1, <Sub sI1 sJ1> :: sN2, sN1 : sN2;
};

It should be noted that the test i1=i could have been removed, since our program calls
the function UnderAttack in such a way that the parameter i is guaranteed to be
greater than the column numbers of the queens placed on the board.

Now we can define the function NextQueen making an attempt to add a new queen to a
partially constructed position. NextQueen tries to place the new queen in different rows.
If the queen can be placed, but this queen is not the last, an attempt is made to place the
next queen, etc. If the current queen cannot be placed, the program "backtracks": i.e.
tries to change the position of the previous queen.

$func? NextQueen sI sN ePos = ePos;

NextQueen sI sN ePos =
1 $iter \{ <Lt (sJ) (sN)> = <Add sJ 1>; }
:: sJ,
<UnderAttack sI sJ ePos>,
ePos sJ :: ePos,
\? {
sI : sN

\! ePos;
\! <NextQueen <Add sI 1> sN ePos>;

};

Refal Plus Reference Manual

30

There are some subtle points in the definition of the function NextQueen deserving
special attention.

First, the search construct tries to evaluate its rest, sequentially binding the variable j to
the values 1, 2, ..., n, and incrementing j by 1 after each failure to evaluate the rest of
the construct.

Second, the evaluation of the rest of the search construct may fail for two reasons: either
the square (i,j) is attacked by the queens already placed on the board, in which case
the evaluation of the call to the function UnderAttack succeeds, and, therefore, the
negation of this call fails, or, despite the fact that the current queen can be placed on the
square (i,j), the following queens cannot be placed on the board, and, therefore, the
recursive call to the function NextQueen fails.

Finally, we can define the function Solution, which takes the size of the board as
argument and returns either a solution to the problem, or, if there is no solution, a failure:

$func? Solution sN = ePos;

Solution sN =
<NextQueen 1 sN >;

Bibliography

[Hen1980] P.Henderson. Functional Programming: Application and Implementation.
Prentice-Hall. 1980.

The Sequence Problem
Now we consider the problem of finding a ground expression Ge having the following
property [Wir1973] on page 32 :

1.
Ge contains no parentheses, and any symbol appearing in Ge is either 1, 2, or 3.

2.
The length of Ge is equal to a given number Len.

3. There is no such ground expressions Gea , Geb , and Gec that Gec is non-empty,
and there holds

Ge = Gea Gec Gec Geb

i.e. Ge does not contain two adjacent non-empty equal subexpressions.

The desired expression can be found in the following way. We may start with an empty
expression, and then try to extend it, adding digits to it one by one. Upon adding a digit,
we have to check the expression thus obtained, to make sure that the expression does
not have the form Gea Gec Gec Geb , where Gec is non-empty. A moment's thought
reveals that, actually, it is sufficient to check that the expression obtained by adding a
digit does not have the form

Gea Gec Gec

Here is the definition of the predicate IsUnacceptable, which determines whether the
argument has the above form:

$func? IsUnacceptable e.String = ;

IsUnacceptable e.String =
<Div <Length e.String> 2> :: s.Max,

Refal Plus Reference Manual

31

{
s.Max : 0

= $fail;
= 1
$iter \{ <Lt (sK) (s.Max)> = <Add sK 1>; }
:: sK,
<Right 0 sK <Middle 0 sK e.String>> :: eU,
<Right 0 sK e.String> :: eV,
eU : eV;

};

Now we can define the function Extend trying to add a digit to the expression, until the
sequence has the desired length. If the expression cannot be extended, the function
"backtracks", and tries to change previous digits.

$func? Extend s.Len e.String = e.String;

Extend s.Len e.String =
{
<Length e.String> : s.Len

= e.String;
= 1 $iter \{ <Lt (s.Digit) (3)> = <Add s.Digit 1>; }

:: s.Digit,
e.String s.Digit :: e.String,
<IsUnacceptable e.String>,

<Extend s.Len e.String>;
};

And, finally, we define the function FindString, taking as argument the length of the
desired sequence, and returning either the desired sequence (if found), or a failure (if the
desired sequence does not exist).

$func? FindString s.Len = e.String;

FindString s.Len =
<Extend s.Len >;

Bibliography

[Wir1973] N.Wirth. Systematic Programming. An Introduction.. Prentice-Hall, Inc..
Englewood Cliffs, New Jersey. 1973.

Example: a compiler for a small imperative language
The primary objective of this section is to consider the traditional compiler writing
techniques in the framework of Refal Plus. These techniques are applied to a compiler for
a small imperative language.

The example language and the compiler are similar to those described in

[War1980] D.H.D. Warren. Logic Programming and Compiler Writing.
97--125. Software - Practice and Experience. 10. 1980.

Illustrative though this compiler may be, it exceeds in size all other example programs
dealt with in the book, and consists of several modules.

The Source Language
A source language program is a finite sequence of tokens. A token is represented by a
finite character sequence, whose syntax is described by the following grammar (see
Chapter II, section 1):

Refal Plus Reference Manual

32

Token =
KeyWord | Identifier | Numeral.

KeyWord =
";" | "(" | ")" | "+" | "-" | "*" | "-" |
":=" | "<=" | '<>' | "<" | ">=" | ">" | "=".
"DO" | "ELSE" | "IF" | "READ" | "THEN" |
"WHILE" | "WRITE".

Identifier = Letter { Letter | Digit }.
Numeral = Digit { Digit }.

The keywords are words reserved for special purposes and must not be used as normal
identifier names.

Keywords are case insensitive, i.e. the small and capital letters appearing in the
keywords are considered as completely equivalent.

Tokens may be separated by spaces, horizontal tabs, and newline characters, which
cannot occur within tokens and are ignored unless they are essential to separate two
consecutive tokens.

Some token sequences are not syntactically correct programs. Hence, the token
sequence produced by scanning the input character stream must be parsed to see
whether it has the following syntax:

Program = StatementSequence.
StatementSequence = Statement { ";" Statement }.
Statement =

"IF" Test "THEN" Statement "ELSE" Statement |
"WHILE" Test "DO" Statement |
"READ" VariableName |
"WRITE" Expression |
"(" StatementSequence ")".
VariableName ":=" Expression |
Empty.

Empty = .
Test = Expression CompOperator Expression.
CompOperator = "=" | "<=" | "<>" | "<" | ">=" | ">".
Expression = Term { AddOperator Term }.
Term = Factor { MultOperator Factor }.
Factor = VariableName | Value | "(" Expression ")".
AddOperator = "+" | "-".
MultOperator = "*" | "/".
VariableName = Identifier.
Value = Integer.

A program is a statement sequence. The statements are executed sequentially, from left
to right. Each statement may access, and change, the values of variables.

An if statement

IF Cond THEN St1 ELSE St2

tests the condition Cond. If the condition is satisfied, the statement St1 is executed,
otherwise, the statement St2 is executed.

A while statement

WHILE Cond DO St

tests the condition Cond. If the condition is satisfied, the statement St is executed, and
the execution of the whole construct is repeated. Otherwise, if the condition is not
satisfied, the execution of the construct terminates.

Refal Plus Reference Manual

33

A read statement

READ Var

reads an integer from the input device, and assigns the integer as value to the variable
Var.

A write statement

WRITE Expr

evaluates the arithmetic expression Expr to produce an integer, which is written to the
output device.

A compound statement

(St1; St2; ... StN)

specifies the sequential execution of the statements St1 , St2 , ..., StN .

An assignment statement

Var := Expr

evaluates the expression Expr to produce an integer, which is assigned as value to the
variable Var.

An empty statements specifies no action.

Conditions and arithmetic expressions have their conventional meaning. The
multiplication and division operators have precedence over the addition and subtraction
operators.

The variables appearing in the program don't have to be declared. The initial variable
values are undefined.

Here is an example program, which inputs an integer, and then computes and outputs
the factorial of the integer.

read value;
count:=1;
result:=1;
while count<value do
(
count:=count+1;
result:=result*count
);

write result

The Target Language
The target program produced by the compiler is written in "machine code", and has the
following syntax:

Program = { Directive }.
Directive =

Instruction | "BLOCK" "," Value ";".
Instruction =

InstructionCode "," Value ";" |
InstructionCode =

ADD | SUB | MUL | DIV | LOAD | STORE |
ADDC | SUBC | MULC | DIVC | LOADC |

Refal Plus Reference Manual

34

JUMPEQ | JUMPNE | JUMPLT | JUMPGT | JUMPLE | JUMPGE
JUMP | READ | WRITE | HALT.

Value = Integer.

A program is a directive sequence, each directive being either an "instruction", i.e.
machine command, or a memory allocation directive.

We assume the main store of the machine to consist of cells, each cell associated with its
address, a unique non-negative integer (thus, the cells are numbered from 1). A cell may
hold either an instruction or an integer.

The execution of the program always starts from the first sell.

In addition to the main store, the machine has an accumulator, which is capable of
containing an integer.

A directive

BLOCK,Int;

specifies that at this place in the program there must be allocated Int store cells
containing no instructions. This directive usually is put at the end of the program, and
used for allocating cells that are to hold the values of the program's variables.

A machine instruction has the form

Op,Value;

where Op is the instruction's name, and Value the instruction's operand. The meaning of
the operand Value depends on the instruction's name. Some instructions assume
Value to be the address of the cell. Others assume Value to be an integer. There are
instructions, however, which needn't any operand, in which cases Value must be equal
to zero.

An instruction LOAD,Addr; loads the contents of the cell having the address Addr into
the accumulator.

An instruction STORE,Addr; puts the contents of the accumulator into the cell having the
address Addr.

An instruction LOADC,Int; loads the integer Int into the accumulator.

Instructions ADD, SUB, MUL and DIV have the form Op,Addr; and compute respectively
the sum, difference, product, and the the truncated quotient of two integers. The first
integer is the one contained by the accumulator, and the second the one contained in the
cell having the address Addr. The result of the operation is put into the accumulator.

Instructions ADDC, SUBC, MULC, and DIVC have the form Op,Int; and compute
respectively the sum, difference, product, and the truncated quotient of two integers. The
first integer is the one contained in the accumulator, and the second integer is Int,
i.e.the one contained in the operand of the instruction. The result of the operation is put
into the accumulator.

An instruction READ,Addr; reads an integer from the input device and puts it into the
cell having the address Addr.

An instruction WRITE,0; writes the integer contained by the accumulator to the output
device.

Refal Plus Reference Manual

35

An instruction HALT,0; halts the execution of the program.

An instruction JUMP,Addr; causes the control to jump to the instruction contained in the
cell having the address Addr.

And, finally, the last group of instructions comprises the conditional jumps JUMPEQ,
JUMPNE, JUMPLT, JUMPGT, JUMPLE, and JUMPGE, all having the form Op,Addr;. They
are executed in the following way. First, the contents of the accumulator is compared with
zero. If the condition implied by the instruction's name is satisfied, the control jumps to
the instructions contained in the cell having the address Addr, otherwise, to the next
instruction.

Which condition is tested, is determined by the last two letters in the instruction's name.
EQ means testing the accumulator's contents for being equal to 0, NE for not being equal
to 0, LT for being less than 0, GT for being greater than 0, LE for being less than or equal
to 0, GE for being greater than or equal to 0.

The above program computing the factorial will be translated by the compiler into the
following target program in machine code.

001 READ,21; 008 JUMPGE,16; 015 JUMP,6;
002 LOADC,1; 009 LOAD,19; 016 LOAD,20;
003 STORE,19; 010 ADDC,1; 017 WRITE,0;
004 LOADC,1; 011 STORE,19; 018 HALT,0;
005 STORE,20; 012 LOAD,20; 019 BLOCK,3;
006 LOAD,19; 013 MUL,19;
007 SUB,21; 014 STORE,20;

The address of each directive is shown on the left of the directive.

The General Structure of the Compiler

Our compiler has the "classic" structure, and comprises the following parts.

The source character stream (which is often called the concrete program) is read and
broken up into tokens by the scanner.

Then the token sequence is analyzed by the parser to produce an abstract syntax tree
(which is often called the abstract program).

The abstract program is further translated by the code generator into a program in
assembly language. A program in assembly language is very close to the target program,
except that, instead of concrete cell addresses, it contains labels, each label representing
some (yet) unknown address.

The program in assembly language is then processed by the assembler, which replaces
all the label with concrete addresses, thereby producing the target machine code
program.

The information about the correspondence between the variable names and labels is
kept in the dictionary of variables. Thus the compiler contains a module dealing with the
dictionary, which is used by the code generator as well as by the assembler.

In comparison with the simplicity of the source language, the structure of our compiler
may well seem to be rather complicated. And, actually, the compiler could have been
simplified by merging many compiler's components together. For example, this could
have been done with the scanner, parser, and code generator.

Refal Plus Reference Manual

36

It should be kept in mind, however, that, should the source language be more
complicated, such "unionism" would make the compiler messy, unreliable and difficult to
understand. But, the purpose of our compiler is just to illustrate, in the framework of Refal
Plus, the traditional compiler writing techniques applicable to "real-size" compilers.

Taking our example compiler as the starting point, the reader may try to improve it in two
respects. First, the source language can be made more complex and more realistic.
Second, the compiler can be simplified at the expense of making it less "scientific" and
less general.

The Modules of the Compiler and their Interfaces
The compiler consists of the following modules:

Cmp - the main module
CmpScn - the scanner
CmpPrs - the parser
CmpGen - the code generator and assembler
CmpDic - the dictionary module

The main module does not have the interface part and contains the definition of the goal
function Main. All other modules consist of two parts: the interface and the
implementation.

The module CmpScn has the following interface:

//
// File CmpScn.rfi
//

$func InitScanner s.Channel = ;
$func ReadToken = s.TokenClass s.TokenInfo;
$func TermScanner = ;

The module exports three functions.

The function InitScanner initializes the scanner. The parameter s.Channel is a
reference to the channel that provides characters read by the scanner. This channel must
have been opened for reading before calling InitScanner.

The function TermScanner must be called after the reading of the source program has
been finished. This enables the scanner to terminate its activities and to get ready for
reading another source program.

The function ReadToken returns the source programs's current token represented by
two symbols: the first symbol indicates the class the token belongs to, while the second
symbol provides additional information about the token.

The module CmpPrs has the following interface:

//
// File: Cmp.rfi
//

$func Parse s.Channel = t.Program;

The interface exports the function Parse, which reads the source program from the
channel s.Channel (via the scanner) and produces the abstract program t.Program.
The channel s.Channel must have been opened for reading before calling Parse.

If the source program contains syntax errors, the function Parse returns $error(Ge),

Refal Plus Reference Manual

37

where Ge is an error message describing the first error encountered by Parse.

The module CmpGen has the following interface:

//
// File: CmpGen.rfi
//

$func GenCode t.Program = t.Code;
$func WriteCode t.Code = ;

The interface exports two functions.

The function GenCode takes as argument t.Program, an abstract program, and returns
t.Code, the result of compiling t.Program into the machine code. The program
t.Code is represented by an abstract syntax tree.

The function WriteCode takes as argument a machine code program represented by an
abstract syntax tree, and, upon converting it into the character stream representation,
writes it to the standard output device.

The module CmpDic has the following interface:

//
// File: CmpDic.rfi
//

$func MakeDic = s.Dic;
$func LookupDic s.Key s.Dic = s.Ref;
$func AllocateDic s.Dic s.StartAddr = s.FreeAddr;
$func WriteDic s = ;

The interface exports four functions.

The function MakeDic returns a reference to a new empty dictionary.

The function LookupDic returns the label associated with the key s.Key in the
dictionary referred to by s.Dic. If the key s.Key has not been registered in the
dictionary, a new unique label is created, associated with the key s.Key, and returned as
the function's result.

The function AllocateDic looks through the dictionary referred to by s.Dic and binds
all labels registered in the dictionary to different addresses. If the dictionary contains N
keys, the labels get bound to consecutive addresses starting with s.StartAddr. The
result returned by the function is the first free address.

The Main Module
The main module of the compiler links all parts of the compiler together. The name of the
source program's file is assumed to be passed to the compiler as the first argument in the
command line. Thus the compiler should be called by the command

Cmp FileName

where FileName is a file name. This name is accessed by the compiler by means of the
library function Arg.

//
// File Cmp.rf
//

$use Dos StdIO;
$use CmpPrs CmpGen;

Refal Plus Reference Manual

38

$func Main = e;
$func Compile e.FileName = ;

Main =
<Arg 1> :: e.FileName,
<Compile e.FileName>;

Compile e.FileName =
<Channel> :: s.Chl,
<OpenFile s.Chl e.FileName "r">,
<Parse s.Chl> :: t.AProgram,
<CloseChannel s.Chl>,
<GenCode t.AProgram> :: t.Code,
<WriteCode t.Code>;

The Scanner

The result produced by the scanner is a token sequence, each token being represented
by two symbols. The first of the symbols indicates the class of the token.

In the following we describe the syntax of ground expressions by means of an extended
Backus-Naur form (EBNF), with non-terminals written as Refal Plus variables. The
ground expressions denoted by the non-terminals are assumed to correspond to the
types of the non-terminals.

Thus the syntax of the token sequence produced by the scanner can be described as
follows:

e.Tokens = { e.Token }.
e.Token =

Key s.Key | Name s.Name | Value s.Value |
Char s.Char.

s.Key = s.Word.
s.Name = s.Word.
s.Value = s.Int.

A token of the form Key s.Key represents a keyword, s.Key being the word symbol
whose character representation corresponds to the key word. A token of the form Name
s.Name represents a variable name, s.Name being the word symbol whose character
representation corresponds to the variable name (which, syntactically, is an identifier). A
token of the form Value s.Value represents a numeric constant, s.Value being the
corresponding numeric symbol. A token of the form Char s.Char represents an
unidentified character s.Char.

When the reading of the source program has been finished, the scanner generates the
token Key Eof.

The module CmpScn has the following implementation:

//
// File: CmpScn.rf
//

$use StdIO Class Convert Box;

$func ScanToken
s.Chl e.Line = s.TokenKey s.TokenInfo (e.Line1);

$func ScanIdRest
(e.IdChars) e.Chars = s.TokenKey s.Word (e.Rest);

$func ScanIntRest
(e.IntChars) e.Chars = s.TokenKey s.Int (e.Rest);

$func? IsBlank s.Char = ;
$func? IsOneCharToken s.Char = ;
$func? CompoundToken s.Char e.Line = s.Word e.Rest;
$func? IsKeyWord s.Word = ;

// Boxes for storing the channel to be read,

Refal Plus Reference Manual

39

// and the rest of the current line.

$box ScanChl ScanLine;

InitScanner s.Chl = // Scanner initialization.
<Store &ScanChl s.Chl>, // The channel into box.
<Store &ScanLine >; // The current line is empty.

TermScanner = // Scanner termination.
<Store &ScanChl >, // Forgetting the channel
<Store &ScanLine >; // and the current line.

ReadToken = // A token is read.
<Get &ScanChl> : s.Chl,
<Get &ScanLine> :: e.Line,
<ScanToken s.Chl e.Line>

:: s.TokenKey s.TokenInfo (e.Line),
<Store &ScanLine e.Line>,

= s.TokenKey s.TokenInfo;

ScanToken s.Chl e.Line =
e.Line :
{
= // The line rest is

{ // empty. Reading the
<ReadLineCh s.Chl> :: e.Line // next line.
= <ScanToken s.Chl e.Line>;
= Key Eof (); // End of file.

};
s.Char e.Rest = // Examining the

{ // current character.
<IsBlank s.Char>
= <ScanToken s.Chl e.Rest>;

<IsLetter s.Char>
= <ScanIdRest (s.Char) e.Rest>;

<IsDigit s.Char>
= <ScanIntRest (s.Char) e.Rest>;

<IsOneCharToken s.Char>
= Key <ToWord s.Char> (e.Rest);

<CompoundToken s.Char e.Rest> :: s.Word e.Rest
= Key s.Word (e.Rest);
= Char s.Char (e.Rest); // Unidentified character.

};
};

// Getting the rest of an identifier.

ScanIdRest (e.IdChars) e.Rest =
{
e.Rest : s.Char e.Rest1,

\{<IsLetter s.Char>; <IsDigit s.Char>;}
= <ScanIdRest (e.IdChars s.Char) e.Rest1>;
= <ToWord <ToUpper e.IdChars>> : s.Word,
{<IsKeyWord s.Word> = Key; = Name;} :: s.TokenKey,
= s.TokenKey s.Word (e.Rest);

};

// Getting the rest of an integer.

ScanIntRest (e.IntChars) e.Rest =
{
e.Rest : s.Char e.Rest1, <IsDigit s.Char>

= <ScanIntRest (e.IntChars s.Char) e.Rest1>;
= Value <ToInt e.IntChars> (e.Rest);

};

IsBlank s.Char = // A whitespace character?
' \n\t' : e s.Char e;

IsOneCharToken s.Char = // A one-character token?
';()+-*/' : e s.Char e;

CompoundToken // Trying to get a multi-
\{ // character token.
':=' e.Rest = ":=" e.Rest;
'<=' e.Rest = "<=" e.Rest;
'<>' e.Rest = "<>" e.Rest;
'<' e.Rest = "<" e.Rest;
'>=' e.Rest = ">=" e.Rest;
'>' e.Rest = ">" e.Rest;
'=' e.Rest = "=" e.Rest;
};

IsKeyWord // Is the identifier a key word?
\{
DO ; ELSE ; IF ; READ ; THEN ; WHILE ; WRITE ;

Refal Plus Reference Manual

40

};

The Parser

The parser, residing in the module CmpPrs, transforms a token sequence into an
abstract program, i.e. a parse tree.

Our parser will use the technique referred to as a recursive-descent analysis.

Consider, for example, the following grammar:

Sentence = Subject Predicate.
Subject = "cats" | "dogs".
Predicate = "sleep" | "eat".

Suppose we are given the token sequence

"dogs" "eat"

and want to determine whether this sequence is a well-formed sentence. This amounts to
determining whether this sequence can be derived from the non-terminal Sentence. But,
the grammar specifies that the set of token sequences generated by the nonterminal
Sentence is equal to the set of sequences generated by the non-terminal sequence
Subject Predicate. Thus, the original problem can be reduced to determining
whether the input sequence can be divided into two subsequences such that the first one
can be derived from the non-terminal Subject, and the second one from the
non-terminal Predicate.

How can a sequence be divided into two parts, of which the first is generated by the
non-terminal Subject? It, can, obviously, be done by testing whether the sequence
begins with one of the tokens "cats" or "dogs".

Thus we come to the following method of analyzing token sequences.

Each non-terminal A appearing in the grammar is associated with a function A having the
following declaration:

$func? A e.Token = e.Rest;

This function A tests whether the input token sequence e.Token begins with a sequence
derivable from the non-terminal A, and, if so, deletes this beginning and returns the rest
of the input sequence thus obtained. Otherwise, if the input sequence does not begin with
a sequence derivable from the non-terminal A, the function A returns a failure.

It goes without saying that the above method is applicable only in cases where, for each
non-terminal A and each input sequence Z there exists no more than one way of dividing
Z into two subsequences, of which the first is derivable from A. In many cases, however,
the grammar can be rewritten in such a way that this restriction will be satisfied. An
interested reader may find further details in [Wir1976] on page 45 .

Proceeding from the above consideration, we can now define the function Sentence
either deleting from the input sequence the beginning derivable from the non-terminal
Sentence, or failing, if this is unfeasible.

$func? Sentence e.Token = e.Rest;

Refal Plus Reference Manual

41

$func? Subject e.Token = e.Rest;
$func? Predicate e.Token = e.Rest;
$func? Token s e.Token = e.Rest;

Sentence eZ =
<Subject eZ> :: eZ,
<Predicate eZ> :: eZ,

= eZ;

Subject eZ =
\{
<Token "dogs" eZ> :: eZ = eZ;
<Token "cats" eZ> :: eZ = eZ;
};

Predicate eZ =
\{
<Token "sleep" eZ> :: eZ = eZ;
<Token "eat" eZ> :: eZ = eZ;
};

Token s eZ =
eZ : s eZ0

= eZ0;

The function Token is used for deleting a terminal symbol, which is passed as the first
argument.

Now we can return to considering the module CmpPrs, in which we have to deal with two
additional problems.

First, instead of returning the input token sequence as a whole, the scanner produces
tokens one by one. Thus, each of the parsing functions, instead of taking as argument
the whole token sequence, takes as argument a single token, the one that has been read
last. This token is the one to be analyzed next. Similarly, each of the parsing functions,
instead of returning the whole rest of the token sequence, returns only the first unparsed
token. (It should be kept in mind, however, that each token is represented by two Refal
Plus symbols.)

Second, in addition to checking the syntax correctness of the source program, the parser
has to transform the token sequence into the corresponding abstract program, i.e. into an
abstract syntax tree. Thus, the parsing function associated with a non-terminal A is
usually declared as follows:

$func A sC sI = sC sI tX;

where sC sI represent the current token, and tX is the result of translating the token
sequence consumed by the function into an abstract syntax tree.

Third, if a syntax error is detected, the parser, instead of returning a failure, must produce
an error $error(Ge), where Ge is an error message describing the error. For this
reason, the parsing functions are declared as unfailing ones.

Here is the syntax of the abstract programs produced by the parser:

t.Program = (Program t.Statement).
t.Statement =

(Assign s.Name t.Expr) |
(If t.Test t.Statement t.Statement) |
(While t.Test t.Statement) |
(Read s.Name) |
(Write t.Expr) |
(Seq t.Statement t.Statement)
(Skip).

t.Test = (Test s.CompOper t.Expr t.Expr).
t.Expr =

(Const s.Value) |
(Name s.Name) |
(Op t.Oper t.Expr t.Expr).

s.CompOper = Eq | Ne | Gt | Ge | Lt | Le.

Refal Plus Reference Manual

42

s.Oper = Add | Sub | Div | Mul.
s.Name = s.Word.
s.Value = s.Int.

Thus, a construction written in abstract syntax usually has the form

(KeyWord Gt1 Gt2 ... GtN)

where the key word KeyWord is a word symbol representing the construct's name, and the
ground terms Gt1 , Gt2 , ..., GtN represent the component constructs also written in
abstract syntax. Since the correspondence between the constructs written in concrete
and abstract syntax is evident, we won't dwell on this point.

Here is the implementation of the module CmpPrs:

//
// File: CmpPrs.rf
//

$use CmpScn;

$func Program sC sI = sC sI tX;
$func StatementSeq sC sI = sC sI tX;
$func RestStSeq sC sI tX0 = sC sI tX;
$func Statement sC sI = sC sI tX;
$func Test sC sI = sC sI tX;
$func Expr sC sI = sC sI tX;
$func RestExpr sC sI tX1 = sC sI tX;
$func Term sC sI = sC sI tX;
$func RestTerm sC sI tX1 = sC sI tX;
$func Factor sC sI = sC sI tX;
$func CompOp sC sI = sC sI s.CompOper;
$func? AddOp sC sI = sC sI s.Oper;
$func? MultOp sC sI = sC sI s.Oper;
$func? Token sX sC sI = sC sI ;
$func Accept sX sC sI = sC sI ;
$func? Name sC sI = sC sI s.Name;
$func? Value sC sI = sC sI s.Value;

Parse s.Chl =
<InitScanner s.Chl>,
<Program <ReadToken>> :: sC sI t.Program,
<TermScanner>,
{ // Is the rest of the program
sC sI : Key Eof // empty?

= t.Program;
= $error sC sI " instead of Eof after the program";

};

Program sC sI = // Program.
<StatementSeq sC sI> :: sC sI tX,

= sC sI (Program tX);

StatementSeq sC sI = // Statement
<Statement sC sI> :: sC sI tX0, // sequence.

= <RestStSeq sC sI tX0>;

RestStSeq sC sI tX0 =
\? {
<Token ";" sC sI> :: sC sI \!

<StatementSeq sC sI> :: sC sI tX,
= sC sI (Seq tX0 tX);

\!
= sC sI tX0;

};

Statement sC sI = // Statement.
\? {
<Name sC sI> :: sC sI s.Name \!

<Accept ":=" sC sI> :: sC sI,
<Expr sC sI> :: sC sI t.Expr,
= sC sI (Assign s.Name t.Expr);

<Token "IF" sC sI> :: sC sI \!
<Test sC sI> :: sC sI t.Test,
<Accept "THEN" sC sI> :: sC sI,
<Statement sC sI> :: sC sI t.Then,
<Accept "ELSE" sC sI> :: sC sI,

Refal Plus Reference Manual

43

<Statement sC sI> :: sC sI t.Else,
= sC sI (If t.Test t.Then t.Else);

<Token "WHILE" sC sI> :: sC sI \!
<Test sC sI> :: sC sI t.Test,
<Accept "DO" sC sI> :: sC sI,
<Statement sC sI> :: sC sI t.Do,
= sC sI (While t.Test t.Do);

<Token "READ" sC sI> :: sC sI \!
<Name sC sI> :: sC sI s.Name,
= sC sI (Read s.Name);

<Token "WRITE" sC sI> :: sC sI \!
<Expr sC sI> :: sC sI t.Expr,
= sC sI (Write t.Expr);

<Token "(" sC sI> :: sC sI \!
<StatementSeq sC sI> :: sC sI t.Stmt,
<Accept ")" sC sI> :: sC sI,
= sC sI t.Stmt;

\!
= sC sI (Skip);

};

Test sC sI = // Test.
<Expr sC sI> :: sC sI t.Expr1,
<CompOp sC sI> :: sC sI t.Op,
<Expr sC sI> :: sC sI t.Expr2,

= sC sI (Test t.Op t.Expr1 t.Expr2);

Expr sC sI = // Expression.
<Term sC sI> :: sC sI t.X0,

= <RestExpr sC sI t.X0>;

RestExpr sC sI t.X1 =
\? {
<AddOp sC sI> :: sC sI s.Op \!

<Term sC sI> :: sC sI t.X2,
= <RestExpr sC sI (Op s.Op t.X1 t.X2)>;

\!
= sC sI t.X1;

};

Term sC sI = // Term.
<Factor sC sI> :: sC sI t.X0,

= <RestTerm sC sI t.X0>;

RestTerm sC sI t.X1 =
\? {
<MultOp sC sI> :: sC sI s.Op \!

<Factor sC sI> :: sC sI t.X2,
= <RestTerm sC sI (Op s.Op t.X1 t.X2)>;

\!
= sC sI t.X1;

};

Factor sC sI = // Factor.
\? {
<Name sC sI> :: sC sI s.Name \!

= sC sI (Name s.Name);
<Value sC sI> :: sC sI s.Value \!

= sC sI (Const s.Value);
<Token "(" sC sI> :: sC sI \!

<Expr sC sI> :: sC sI t.Expr,
<Accept ")" sC sI> :: sC sI,
= sC sI t.Expr;

\!
$error "Invalid factor start: " sC sI;

};

CompOp sC sI = // Comparison operator.
{
sC : Key,
("=" Eq) ("<>" Ne) ("<=" Le) ("<" Lt) (">=" Ge) (">" Gt)
: e (sI s.Op) e

= <ReadToken> s.Op;
= $error "Invalid comparison operation: " sC sI;

};

AddOp Key sI = // Additive operator.
("+" Add) ("-" Sub) : e (sI s.Op) e

= <ReadToken> s.Op;

MultOp Key sI = // Multiplicative operator.
("*" Mult) ("/" Div) : e (sI s.Op) e

= <ReadToken> s.Op;

// Tries to consume a key word sI?, and
// returns a failure, if this is impossible.

Refal Plus Reference Manual

44

Token sI Key sI = <ReadToken>;

// Tries to consume a key word sI?, and
// generates an error, if this is impossible.

Accept
{
sI Key sI = <ReadToken>;
sX sC sI = $error sC sI " instead of " Key sX;
};

// Variable name.

Name Name sI = <ReadToken> sI;

// Value.

Value Value sI = <ReadToken> sI;

Bibliography

[Wir1976] N.Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, Inc..
Englewood Cliffs, New Jersey. 1976.

The Code Generator
Assembler language programs produced by the code generator are represented by
ground terms having the following syntax:

t.Code =
(Seq { t.Code }) |
(Instr s.Instr s.Operand) |
(Label s.Label) |
(Block s.Value).

s.Operand = s.Label | s.Value.
s.Label = s.Box.
s.Value = s.Int.
$
s.Instr =

ADD | SUB | DIV | MUL | LOAD | STORE |
ADDC | SUBC | DIVC | MULC | LOADC |
JUMPEQ | JUMPNE | JUMPLT | JUMPGT | JUMPLE | JUMPGE
JUMP | READ | WRITE | HALT |

Assembler language programs may contain labels to be replaced with absolute
addresses by the assembler. Assembling a program proceeds in two steps. First, the
assembler determines the addresses associated with instructions and variables, and puts
each address associated with a label into the box referred to by the label. Second, all
labels are replaced with the addresses associated with them, i.e. each reference to a box
is replaced with the contents of the box.

The module CmpGen has the following implementation:

//
// File: CmpGen.rf
//

$use StdIO Class Arithm Box;
$use CmpDic;

$func EncProgram t.Program s.Dic = t.Code;
$func EncSt t.St s.Dic = t.Code;
$func EncTest t.Test s.Label s.Dic = t.TestC;
$func UnlessOp s.Op = s.JumpIf;
$func EncExpr t.Expr s.Dic = t.ExprC;
$func EncSubExpr t.Expr sN s.Dic = t.ExprC;
$func LiteralOp s.Op = s.OpCode;
$func MemoryOp s.Op = s.OpCode;
$func Assemble t.Code s.StartAddr = s.FreeAddr;
$func AssembleSeq e.CodeSeq s.Addr = s.FreeAddr;

Refal Plus Reference Manual

45

$func Dereference t.Code = t.Target;
$func DereferenceSeq e.CodeSeq = e.CodeSeqD;
$func WriteCodeSeq e.CodeSeq = ;

// Generates an assembler language program
// from an abstract program.

GenCode t.Program =
// Creating an empty dictionary.

<MakeDic> :: s.Dic,
// Generating the abstract program.

<EncProgram t.Program s.Dic> :: t.Code,
// Allocating memory for the program's instructions.

<Assemble t.Code 1> :: s.FreeAddr,
// Allocating memory for the program's variables.

<AllocateDic s.Dic s.FreeAddr> :: s.EndAddr,
// Replacing the labels with their addresses.

<Dereference t.Code> :: t.CodeD,
// Generating the directive BLOCK.

<Sub s.EndAddr s.FreeAddr> :: s.BlockLength,
(Seq t.CodeD (Block s.BlockLength)) :: t.Target,

= t.Target;

// Encodes a program.

EncProgram (Program t.St) s.Dic =
<EncSt t.St s.Dic> :: t.StC,
<Box> :: s.L,

= (Seq t.StC (Instr HALT 0) (Label s.L));

// Encodes a statement.

EncSt (s.KeyWord e.Info) s.Dic =
(s.KeyWord e.Info) :
{
(Assign sX t.Expr) =

<LookupDic sX s.Dic> :: s.Addr,
<EncExpr t.Expr s.Dic> :: t.ExprC,
= (Seq t.ExprC (Instr STORE s.Addr));

(If t.Test t.Then t.Else) =
<Box> :: s.L1, <Box> :: s.L2,
<EncTest t.Test s.L1 s.Dic> :: t.TestC,
<EncSt t.Then s.Dic> :: t.ThenC,
<EncSt t.Else s.Dic> :: t.ElseC,
= (Seq

t.TestC
t.ThenC
(Instr JUMP s.L2)

(Label s.L1)
t.ElseC

(Label s.L2)
);

(While t.Test t.Do) =
<Box> :: s.L1, <Box> :: s.L2,
<EncTest t.Test s.L2 s.Dic> :: t.TestC,
<EncSt t.Do s.Dic> :: t.DoC,
= (Seq

(Label s.L1)
t.TestC
t.DoC
(Instr JUMP s.L1)

(Label s.L2)
);

(Read s.X) =
<LookupDic s.X s.Dic> :: s.Addr,
= (Instr READ s.Addr);

(Write t.Expr) =
<EncExpr t.Expr s.Dic> :: t.ExprC,
= (Seq t.ExprC (Instr WRITE 0));

(Seq t.St1 t.St2) =
<EncSt t.St1 s.Dic> :: t.StC1,
<EncSt t.St2 s.Dic> :: t.StC2,
= (Seq t.StC1 t.StC2);

(Skip) =
= (Seq);

};

// Encodes a test.

EncTest (Test s.Op t.Arg1 t.Arg2) s.Label s.Dic =
<EncExpr (Op Sub t.Arg1 t.Arg2) s.Dic> :: t.ExprC,
<UnlessOp s.Op> :: s.JumpIf,

= (Seq t.ExprC (Instr s.JumpIf s.Label));

UnlessOp // Generates a jump.
{

Refal Plus Reference Manual

46

Eq = JUMPNE; Ne = JUMPEQ;
Lt = JUMPGE; Gt = JUMPLE;
Le = JUMPGT; Ge = JUMPLT;
};

// This function compiles an arithmetic expression.
// Auxiliary variables are created to keep
// the values obtained by evaluating subexpressions.
// The evaluation order of the subexpressions is chosen in
// such a way as to reduce the number of auxiliary variables.

EncExpr t.Expr s.Dic
= <EncSubExpr t.Expr 0 s.Dic>;

EncSubExpr (s.KeyWord e.Info) sN s.Dic =
(s.KeyWord e.Info) :
{
(Const sC) =

= (Instr LOADC sC);
(Name sX) =

<LookupDic sX s.Dic> :: s.Addr,
= (Instr LOAD s.Addr);

(Op s.Op t.Expr1 t.Expr2) =
t.Expr2 :
{
(Const sC2) =
<EncSubExpr t.Expr1 sN s.Dic> :: t.Expr1C,
<LiteralOp s.Op> :: s.OpCode,

= (Seq t.Expr1C (Instr s.OpCode sC2));
(Name sX2) =
<EncSubExpr t.Expr1 sN s.Dic> :: t.Expr1C,
<MemoryOp s.Op> :: s.OpCode,
<LookupDic sX2 s.Dic> :: s.Addr,

= (Seq t.Expr1C (Instr s.OpCode s.Addr));
(Op e) =
<LookupDic sN s.Dic> :: s.Addr,
<EncSubExpr t.Expr2 sN s.Dic> :: t.Expr2C,
<Add sN 1> :: sN1,
<EncSubExpr t.Expr1 sN1 s.Dic> :: t.Expr1C,
<MemoryOp s.Op> :: s.OpCode,

= (Seq
t.Expr2C
(Instr STORE s.Addr)
t.Expr1C
(Instr s.OpCode s.Addr)

);
};

};

LiteralOp // Generates the names of
{ // the instructions with
Add = ADDC; Sub = SUBC; // literal operands.
Mult = MULTC; Div = DIVC;
};

MemoryOp // Generates the names of
{ // the instructions with
Add = ADD; Sub = SUB; // address operands.
Mult = MULT; Div = DIV;
};

// Allocates memory for the instructions.

Assemble t.Code s.A0 =
t.Code :
{
(Seq e.CodeSeq) =

= <AssembleSeq e.CodeSeq s.A0>;
(Instr s s) =

= <Add s.A0 1>;
(Label s.Label) =

<Store s.Label s.A0>
= s.A0;

};

AssembleSeq e.CodeSeq s.A0 =
e.CodeSeq :
{
t.Code e.Rest =

<Assemble t.Code s.A0> :: s.A1,
= <AssembleSeq e.Rest s.A1>;

=
= s.A0;

};

// Replaces the labels with their addresses.

Refal Plus Reference Manual

47

Dereference t.Code =
t.Code :
{
(Seq e.CodeSeq) =

(Seq <DereferenceSeq e.CodeSeq>);
(Instr s.Instr s.Value) =

{
<IsInt s.Value>
= t.Code;

//<IsBox s.Value>
= (Instr s.Instr <Get s.Value>);

};
(Label s.Label) =

(Label <Get s.Label>);
};

DereferenceSeq
{
t.Code e.CodeSeq =

<Dereference t.Code><DereferenceSeq e.CodeSeq>;
= ;
};

// Converts the assembler language program to
// the character sequence, and outputs it to
// the standard output device.

WriteCode
{
(Seq e.CodeSeq) =

<WriteCodeSeq e.CodeSeq>;
(Instr s.Instr s.Value) =

<Print " "><Print s.Instr><Print ",">
<Print s.Value><Print ";\n">;

(Label s.Label) =
<Print s.Label><Print ":\n">;

(Block s.Value) =
<Print " BLOCK,"><Print s.Value><Print ";\n">;

};

WriteCodeSeq
{
t.Code e.CodeSeq =

<WriteCode t.Code><WriteCodeSeq e.CodeSeq>;
= ;
};

The Dictionary Module

Dictionaries are represented by binary trees [AHU1974] on page 49 . Each tree node is
represented by a box containing three symbols: a key, a value associated with the key, a
reference to the left subtree, and a reference to the right subtree. An empty tree is
represented by a reference to an empty box.

The module CmpDic has the following implementation:

//
// File: CmpDic.rf
//

$use Box Compare Arithm StdIO;

// Creates an empty dictionary.

MakeDic = <Box>;

// Looks up the dictionary s.Dic for the label associated
// with the key s.Key. If the key s.Key is not registered
// in the dictionary, the dictionary is updated:
// the key s.Key is associated with a new unique label.

LookupDic s.Key s.Dic =
<Get s.Dic> :
{
=

<Box> :: s.Ref,
<Store s.Dic s.Key s.Ref <Box> <Box>>,
= s.Ref;

s.Key1 s.Ref1 s.DicL s.DicR =

Refal Plus Reference Manual

48

<Compare (s.Key)(s.Key1)> :
{
'<' = <LookupDic s.Key s.DicL>;
'>' = <LookupDic s.Key s.DicR>;
'=' = s.Ref1;
};

};

// Allocates memory for the labels registered in
// the dictionary. s.A is the start address.
// The address corresponding to a label is put
// into the box referred to by the label.

AllocateDic s.Dic s.A =
<Get s.Dic> :
{
= s.A;
s.Key s.Ref s.DicL s.DicR =

<AllocateDic s.DicL s.A> :: s.A1,
<Store s.Ref s.A1>,
<Add s.A1 1> :: s.A2,
= <AllocateDic s.DicR s.A2>;

};

WriteDic s.Dic =
<Get s.Dic> :
{
= <Print "_">;
s.Key s.Ref s.DicL s.DicR =

<Print "(">, <WriteDic s.DicL>, <Print " ">,
<Write s.Key>,
<Get s.Ref> :
{
= ;
e.Value = <Print "->"> <Write e.Value>;
},

<Print " ">,
<WriteDic s.DicR>, <Print ")">;

};

Bibliography

[AHU1974] A.V.Aho, J.E.Hopcroft, and J.D.Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley. Reading, Mass.. 1974.

Refal Plus Reference Manual

49

Syntax and Semantics of Refal Plus
This chapter gives a complete description of Refal Plus. Here you can find information
about certain subtle points and technical details.

Syntax Notation
The syntax is described by means of an extended Backus-Naur form (EBNF).

Syntactic entities (non-terminals) are denoted by English words expressing their intuitive
meaning. Terminal symbols of the language are written between acute accents ' or
double quotes " in order to be distinguished from non-terminals.

A syntax definition is a collection of productions. Each production has the form

S = E.

where S is a non-terminal and E a syntax expression denoting the set of constructs for
which S stands. An expression E has the form

T1 | T2 | ... | Tn
(n>0)

where the Ti 's are the terms of E. Each Ti stands for a set of constructs, and E
denotes their union. Each term T has the form

F1 F2 ... Fn
(n>0)

where the Fi 's are the factors of T. Each Fi stands for a set of constructs, and T
denotes their product, i.e. the set of constructs of the form X1 X2 ... Xn , where each
Xi belongs to the set denoted by Fi .

Each factor F has either the form

"x"

(x is a terminal symbol, and "x" denotes the singleton set consisting of this single
symbol), or

(E)

(denoting the expression E), or

[E]

(denoting the union of the set denoted by E and the empty construct), or

{ E }

(denoting the set consisting of the union of the empty construct and the sets E, E E, E E
E, etc.).

Here are a few examples of syntactic EBNF-expressions along with the sets of constructs
described by the expressions.

(A|B)(C|D) A C, A D, B C, B D
A[B]C A B C, A C
A {B A} A, A B A, A B A B A, A B A B A B A, ...

Refal Plus Reference Manual

50

{A|B} C C, A C, B C, A A C, A B C, B B C, B A C, ...

Since an EBNF-description may be regarded as a text in a language, the syntax of
EBNF-descriptions may also be defined in terms of EBNF in the following way:

Syntax = { SyntFormula }.
SyntFormula = Identifier "=" SyntExpression ".".
SyntExpression = SyntTerm { "|" SyntTerm }.
SyntTerm = SyntFactor { SyntFactor }.
SyntFactor = Identifier | '"' TerminalSymbol '"' |

"(" SyntExpression ")" | "[" SyntExpression "]" |
"{" SyntExpression "}".

Natural Semantics Specifications
The method that is be used to describe the execution of Refal Plus programs is known as
Natural Semantics or Structural Operational Semantics.

The name Natural Semantics [Plotkin1983] on page 52 ,[Apt1983] on page 52 is due to
the similarity of this description technique to Gentzen's Natural Deduction in
mathematical logic. When this technique is applied, the semantics of a language is
considered to be an unordered set of judgments about programs and their fragments.

For example, suppose the language to be described deals with expressions containing
variables, and the evaluation of the expressions may cause side effects (which may be
due to the input/output operations). Then, the language description may involve the
judgments of the form

Env,St' |- E => X,St''

where E is a language expression, Env is an environment, which binds variables to their
values in the context of E, St' and St'' are global states before the evaluation of E and
after the evaluation of E, and X is the result of evaluating E. A global state may contain
the state of the store, the files etc.

Informally, such a judgment may be interpreted in the following way: if the evaluation of E
starts in the environment E and global state St', it may result in producing the value X
and the global state St''.

The symbol |- (which may be pronounced "implies" or "entails") indicates the
dependency of E's evaluation on the current environment Env and the global state St'.

Thus, to define a language semantics, we have to describe a set of (true) judgments
about programs and their fragments.

A Natural Semantics definition is an unordered collection of inference rules, which
enables true judgments to be derived from other true judgments.

A rule has basically two parts, a numerator and a denominator. The numerator of a rule is
an unordered collection of formulae, the premises of the rule, whereas the denominator is
always a single formula, the conclusion. A rule that contains no premise on the numerator
is called an axiom, in which case the horizontal line may be omitted.

Besides, a rule may contain additional conditions, which impose certain restrictions on
the applicability of the rule. The restrictions are placed slightly to the right of the rule or
under the rule.

Refal Plus Reference Manual

51

For example, suppose that the language to be described has the construct if E then
E' else E'', whose meaning may be informally defined as follows.

Evaluate E. If the value of E is true, evaluate E' and assume the value obtained to be
the result of the whole construct. Otherwise, if the value of E is false, evaluate E'' and
assume the value obtained to be the result of the whole construct.

A drawback of the above description is that there is no explicit information about the
environment in which the evaluation of E, E', and E'' takes place. Thus, the description
may be reformulated as follows.

If the result of evaluating E in the environment Env is true, and the result of evaluating E'
in the environment Env is X, then X is the result of evaluating if E then E' else
E'' in the environment Env.

If the result of evaluating E in the environment Env is false, and the result of evaluating
E'' in the environment Env is X, then X is the result of evaluating if E then E' else
E'' in the environment Env.

This verbose definition may be given a more concise and comprehensible formulation by
means of two inference rules:

Env,St |- E => true,St'
Env,St'|- E' => X,St''

Env,St |- if E then E' else E'' => X,St''

Env,St |- E => false,St'
Env,St'|- E'' => X,St''

Env,St |- if E then E' else E'' => X,St''

Take notice of the fact that, in contrast to the informal semantics definition, the formal one
provides a precise description of the way in which the global state is modified when the
program is executed.

Bibliography

[Apt1983] K.R.Apt. Formal Justification of a Proof System for Communicating Sequential
Processes. 197--216. Journal of the ACM (JACM). 30. 1. 1983.

[Plotkin1983] G.D.Plotkin. An Operational Semantics for CSP. 199--223. Formal
Description of Programming Concepts II. . D. Bjørner. North-Holland. Amsterdam. 1983.

Lexical Structure of Programs
A program in Refal Plus is a finite character sequence. The syntax analysis of programs
is done in two steps. First, the program is scanned, in order to break up the character
stream into tokens. Then the token sequence is parsed to produce an abstract syntax
tree.

Thus, the definition of the Refal Plus syntax comprises two parts. The first part describes
the lexical structure of programs, i.e. how tokens are represented by character
sequences, whereas the second part describes how to construct programs by combining
tokens.

Program = { Token | WhiteSpace }.

Refal Plus Reference Manual

52

WhiteSpace = WhiteStuff { WhiteStuff }.

WhiteStuff = Space | HorizontalTab | NewLine | Comment.

A program is a finite sequence of tokens. Tokens may be separated by spaces,
horizontal tabs, new line characters, and comments, which cannot occur within tokens
and are ignored unless they are essential to separate two consecutive tokens.

Comments

Comment = "//" CommentTail NewLine
| "/*" CommentBody "*/".

CommentTail =
any character string not containing NewLine.

CommentBody =
any character string not containing "*/".

A comment may begin with //, in which case it extends to the following new line.
Otherwise, it must be enclosed in "comment brackets" /* and */.

// This is a comment.
// And this is a comment.

/* As well as this one! */

Identifiers

Syntax

Identifier = IdentifierHead IdentifierTail.
IdentifierHead = CapitalLetter | "_" .
IdentifierTail = { Letter | Digit | "_" }.

Letter = CapitalLetter | SmallLetter.

CapitalLetter =
"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
"S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z".

SmallLetter =
"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
"j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z".

Purpose

Identifiers are used as symbolic names and as representations of word symbols.

Tokens

Token =
Bracket | KeyWord |
CharacterStringLiteral |
WordLiteral | NumericLiteral |
Variable.

Bracket = "(" | ")" | "{" | "\{" | "}" | "<" | ">".

Refal Plus Reference Manual

53

A token is either a bracket, a key word, a character string literal, a word literal, a numeric
literal, or a variable.

Keywords

KeyWord =
"$box" | "$channel | "$const" | "$error" | "$fail" |
"$func" | "$func?" | "$iter" | "$l" | "$r" |
"$string" | "$table" | "$trace | | "$traceall" |
"$trap" | "$use" | "$vector" | "$with" |
"#" | "&" | "," | ":" | "::" | ";" | "=" |
"\?" | "\!".

Character Symbols

CharacterStringLiteral =
"'" { CharacterLiteral } "'".

CharacterLiteral =
NonSpecialCharacterLiteral | SpecialCharacterLiteral |
HexadecimalCharacterLiteral.

NonSpecialCharacterLiteral =
any ASCII character except apostrophe ('),
double quote ("), back slash (\), and new line.

SpecialCharacterLiteral =
"\n" | "\t" | "\v" | "\b" | "\r" | "\f" |
"\\" | "\'" | '\"' .

HexadecimalCharacterLiteral = .
"\x" HexadecimalDigit HexadecimalDigit.

Digit =
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
"8" | "9".

HexadecimalDigit =
Digit |
"A" | "B" | "C" | "D" | "E" | "F" |
"a" | "b" | "c" | "d" | "e" | "f".

Each character symbol corresponds to a character, and is represented by a character
literal enclosed in apostrophes. For instance:

'A' 'a' '7' '$'

Ordinarily, a character is represented by itself, except the following characters:

New line (line feed) HL (LF) '\n'
Horizontal tabulation HT '\t'
Backspace BS '\b'
Carriage return CR '\r'
Form feed FF '\f'
Back slash \ '\\'
Apostrophe ' '\''
Double quote " '\"'

A character literal representing a character symbol or appearing in a word symbol can be
written as

\xZZ

where ZZ are two hexadecimal digits, corresponding to the one-byte code of the
character.

For example, \x2A # \x2a are equivalent to *.

A sequence of several character symbols may be written as a single string consisting of
character literals and enclosed in apostrophes. For instance:

Refal Plus Reference Manual

54

'ABC'
'123'
'\"I don\'t like swimming!\" - said a little girl.'

Thus, the sequence of three character symbols 'A', 'B', and 'C' may be written in any
of the following ways:

'A' 'B' 'C'
'A''B''C'
'ABC'

Word Symbols

WordLiteral =
Identifier |
'"' { CharacterLiteral } '"'.

Each word symbol corresponds to a character string and is written as a sequence of
character literals enclosed in double quotes. The character literals appearing in word
symbols are the same as those appearing in character symbols. For example:

"ABC"
"123"
"\"I don\'t like swimming!\" - said a little girl."

It should be noted that "ABC" represents a single word symbol, whereas 'ABC'
represents the sequence of three character symbols. Besides, a word symbol consisting
of a single character is regarded as different from the character symbol consisting of the
same character. For example, the character symbol 'A' is different from the word
symbol "A".

The double quotes enclosing a word symbol may be omitted, provided that the symbol
satisfies the two following restrictions.

•
The word symbol may contain only the following characters: capital letters, small
letters, digits, and underscores.

•
The first character of the word symbol must be either a capital letter or an
underscore.

For example, here are two representations of the same word symbol:

I_do_not_like_swimming
"I_do_not_like_swimming"

Numeric Symbols

NumericLiteral = ["+" | "-"] Digit { Digit }.

Numeric symbols represent signed integers, which may be arbitrarily large. For example:

123 +121 -123 -123456789012345678901234567890

Non-negative integers can be written as

Refal Plus Reference Manual

55

0xZZZ...ZZ

where ZZZ...ZZ is a non-empty sequence of hexadecimal digits.

Variables

Variable =
s-variable | t-variable | e-variable |
v-variable.

s-variable = "s" ["."] VariableIndex.
t-variable = "t" ["."] VariableIndex.
v-variable = "v" ["."] VariableIndex.
e-variable = "e" ["."] VariableIndex.

VariableTypeDesignator = "s" | "t" | "v" | "e".
VariableIndex = IdentifierTail.

A variable consists of a variable type designator followed by a variable index. The type
designator and the index may be separated by an optional dot. For example:

tHead eTail e.1 e1 tX s t e

Hence, eI and e.I represent the same variable.

Adjacent variables must be separated. For example, sAeB is a single variable, whereas
sA eB is a sequence of two variables.

The index of a variable may be omitted, which means that the index is unique and
different from the indices of all other variables appearing in the program. Thus, for
example, if the variables e1000 and e2000 do not appear in the program, the sequence
e e may be replaced with e1000 e2000.

Variables are distinguished into four classes: s-variables, t-variables, v-variables, and
e-variables, the class of a variable being determined by the type designator.

Normalization of the Token Stream
A program is scanned to break up the source character stream into tokens. Despite being
different in form, many tokens have the same meaning. For example, all the three tokens

125 000125 +125

denote the same number 125.

It is for this reason that the description of the lexical structure of programs deals with
such terms as "numeric literal" and "word literal" rather that "number" and "word".

Besides, a token like "character string literal" represents a sequence of characters rather
that a single syntax entity.

Thus, when describing the syntax, we assume the token stream to have been
"normalized", each token having been reduced to its normal form, so that different
tokens always represent different entities.

In addition we assume each character string literal to have been broken up into the string
of separate tokens, a token representing a single character.

The above enables us to describe the syntax in terms of syntax "entities" rather than

Refal Plus Reference Manual

56

"representations of syntax entities".

Here is the correspondence between the source tokens and the normalized tokens:

CharacterStringLiteral ==>
Character1 Character2 ... CharacterN

WordLiteral ==> Word
NumericLiteral ==> Number

The character symbols obtained by scanning a program should not be confused with
the characters appearing in the source text of the program. For example, parsing the
three characters

'A'

results in producing a single character symbol.

Objects and Values
Data processed by a Refal Plus program may be either objects or values.

"Object" is usually understood to mean an entity that exists in time and may vary, but,
nevertheless, does not lose its identity.

"Value" is usually understood to mean an entity that is unable to vary and, in a sense,
exists out of time.

A value may, certainly, be regarded as a special, degenerate, case of object (i.e. as a
rigid object unable to develop). Nevertheless, the term "object" will be usually applied
only to "proper" objects, which are not values.

Since objects may vary, they are more difficult to deal with than values are. Thus objects
are often provided with names. The basic property of names is that a name is
unambiguously associated with an object (i.e. a name unambiguously identifies the
object). In contrast to objects, their names are typical values, there being no changes in
the names in spite of there being drastic changes in the objects.

Programs in Refal Plus deal with both objects and values.

All values manipulated by Refal programs are ground expressions, which are finite
sequences of symbols and parentheses, the parentheses being properly paired.
Parentheses are used for giving a tree structure to ground expressions, whereas symbols
represent basic data, such as characters, numbers, words, and references to objects.

Objects dealt with by a Refal program may contain ground expressions, which, in turn,
may contain references to objects. The contents of objects may be modified by the Refal
program, in which case the objects are accessed through their names, reference
symbols.

Objects may be created at compile time as well as at run time. Theoretically, having been
created, an object exists eternally. In practice, however, Refal programs are to be run by
computers with limited memory capacity, thus all Refal implementations must include a
garbage collector, whose purpose is to automatically destroy objects inaccessible to the
program, and, thus, unable to influence the program's behavior.

Static and Dynamic Symbols
Symbols, along with parentheses, are used for building ground expressions.

Refal Plus Reference Manual

57

Syntax

Symbol = StaticSymbol | DynamicSymbol.
StaticSymbol = Character | Word | Number.
DynamicSymbol = ReferenceToFunction | ReferenceToTable |

ReferenceToBox | ReferenceToVector |
ReferenceToString | ReferenceToChannel.

Purpose

The symbols are divided into two classes: static symbols and dynamic symbols.

A static symbol is either a character symbol, a word symbol, or a numeric symbol.

The static symbols exist "objectively": a static symbol may be written to an input/output
channel, and then read back, the symbol read back being the same as the symbol that
has been written. Thus, the static symbols, in a sense, exist before the program is run,
and continue to exist after the program has been run.

A dynamic symbol is either a reference to a function definition or to an object. This
symbol contains a pointer to the memory location where the function definition or the
object resides at run time.

The dynamic symbols, in contrast to the static ones, exist "subjectively". A dynamic
symbol is created either at the moment the program is loaded, or when the program is
being executed. A dynamic symbol may be written into an input/output channel, but it
cannot be read back. The execution of a program having terminated, all dynamic symbols
created during the execution lose any meaning.

Ground Expressions
Ground expressions are used for representing tree-like structures at run-time.

Syntax

GroundExpression = { GroundTerm }.
GroundTerm = Symbol | "(" GroundExpression ")".

Notation

Ground expressions are denoted by Ge, ground terms by Gt, and symbols by Gs.

Symbolic Names
Symbolic names are used for denoting various entities declared in Refal Plus programs.

Syntax

SymbolicName =
ExpressionName | FunctionName | ReferenceName |

ModuleName.

Expression Names

Refal Plus Reference Manual

58

Syntax

ExpressionName = Identifier.

Purpose

Ground Expressions appearing in a Refal Plus program can be given symbolic names.

Function Names

Syntax

FunctionName = Identifier.

Purpose

Functions appearing in a Refal Plus program are given symbolic names.

Reference Names

Syntax

ReferenceName = Identifier.

Purpose

References to objects appearing in a Refal Plus program can be given symbolic names.

Module Names

Syntax

ModuleName = Identifier.

Purpose

Modules a Refal Plus program consists of are given symbolic names.

Named Ground Expressions
A named expression appearing in a construct is equivalent to the ground expression it
denotes.

Syntax

NamedExpression = "&" ExpressionName.

Refal Plus Reference Manual

59

Purpose

Ground expressions appearing in a Refal Plus program may be given symbolic names
(which syntactically are identifiers).

A symbolic name should be declared somewhere in the program by means of a
declaration, and may denote:

• A static ground expression.
• A reference to an object.
• A reference to a function.

If a name N denotes a ground expression Ge, the construct &N may be used instead of
the expression Ge, since Ge is substituted for &N at compile time.

Since all references to objects as well as the objects are created when the program is
compiled, loaded or executed, references cannot appear in the source program text as
literals. Nevertheless, when an object is declared in a program, the references to the
object are given a symbolic name, which may be used in the program for denoting the
references.

Elimination of Symbolic Expression Names

If an identifier N is a symbolic name for a ground expression Ge, all occurrences of the
name in a program may be eliminated by replacing each construct &N with Ge.

When describing context dependent restrictions and the syntax of the language, we
assume the above transformation to have been done and, thus, symbolic expression
names not to appear in the program. On the other hand, the transformed program text
may well contain dynamic symbols.

Variable Values and Environments
An environment binds variables to ground expressions.

Purpose

To evaluate a Refal Plus construct, it is necessary to know the values of the variables
appearing in the construct. The information about the variable values may be represented
in a natural way by an environment, which is a function with finite domain that associates
each variable from the domain with the variable's value.

Notation

Let Env be an environment with the domain {V1, ..., Vn}, Env(Vj) = Gej being
the value the variable Vj is bound to. Then this environment is denoted by {V1 = Ge1,
..., Vn = Gen}. In particular, the empty environment is denoted by {}.

The domain of the environment Env is denoted by dom[Env]. Thus, dom[{V1 = Ge1,
..., Vn = Gen}] = {V1, ..., Vn}.

All environments are assumed to satisfy the requirement that a variable's value should be
consistent with the type of the variable. Thus, an s-variable's value must be a symbol, a
t-variable's value must be a ground term, an e-variable's value must be a ground
expression, and a v-variable's value must be a non-empty ground expression.

Env+Env' denotes the environment Env extended with the bindings from the
environment Env' in the following way.

dom[Env+Env'] contains the variables from dom[Env'], as well as the variables from
dom[Env], whose indices are different from the indices of the variables from

Refal Plus Reference Manual

60

dom[Env'].

For all V in dom[Env+Env'], if Env'(V) is defined, then (Env+Env')(V) =
Env'(V), otherwise, if Env'(V) is undefined, then (Env+Env')(V) = Env(V).

Examples

{sX = 1, sY = 2} + {sY = 200, sZ = 300}
= {sX = 1, sY = 200, sZ = 300}

{sX = 1, sY = 2} + {eY = 200, sZ = 300}
= {sX = 1, eY = 200, sZ = 300}

Result Expressions
A result expression consists of symbols, parentheses, variables and function calls. The
evaluation of a result expression produces either a ground expression, a failure, or an
error.

Syntax

ResultExpression =
{ ResultTerm | NamedExpression }.

ResultTerm =
StaticSymbol | Variable |
"(" ResultExpression ")" |
FunctionCall.

FunctionCall =
"<" FunctionName CallArgument ">".

CallArgument =
ResultExpression.

If two different variables appear in the same result expression, they must have different
indices.

Notation

Henceforth, result expressions will be denoted by Re, result terms by Rt, variables by V,
e-variables by Ve, and function names by Fname.

Evaluation of Result Expressions

A result expression Re may be evaluated in an environment Env, on condition that Env
provides values for all variables appearing in Re.

If the evaluation of Re terminates, it results in producing either a ground expression Ge, a
failure $fail(0), or an error $error(Ge), where Ge is an error message.

Evaluating a function call may result in the global program state being changed (for
example, if it involves input/output or some manipulations with objects). Hence, if a result
expression contains function calls, evaluating the expression may also result in the global
state being changed.

A judgment Env,St |- Re => X,St' means that the result of evaluating the result
expression Re in the environment Env is X, and if the evaluation starts in the global state
St, it terminates in the global state St'.

A result expression Re is evaluated from left to right, the variables being replaced with
their values, and the function calls being executed.

Refal Plus Reference Manual

61

The evaluation of a function call <Fname Re> begins by evaluating the result expression
Re. If a ground expression Ge is returned, the function Fname is applied to Ge.

A judgment St |- <Fname Ge> => X,St' means that the result of applying the
function Fname to the ground expression Ge is X, and if the evaluation starts in the global
state St, it terminates in the global state St'.

Env,St |- => ,St

Env,St |- Re => Ge',St'
Env,St'|- Rt => Ge",St"

Env,St |- Re Rt => Ge' Ge",St"

Env,St |- Re => Ge',St'
Env,St'|- Rt => $fail(0),St"

Env,St |- Re Rt => $fail(0),St"

Env,St |- Re => Ge',St'
Env,St'|- Rt => $error(Ge"),St"

Env,St |- Re Rt => $error(Ge"),St"

Env,St |- Re => $fail(0),St'

Env,St |- Re Rt => $fail(0),St'

Env,St |- Re => $error(Ge'),St'

Env,St |- Re Rt => $error(Ge'),St'

Env,St |- Gs => Gs,St

Env,St |- V => Ge,St
where Ge=Env(V).

Env,St |- Re => Ge,St'

Env,St |- (Re) => (Ge),St'

Env,St |- Re => $fail(0),St'

Env,St |- (Re) => $fail(0),St'

Env,St |- Re => $error(Ge),St'

Env,St |- (Re) => $error(Ge),St'

Env,St |- Re => Ge,St'
St' |- <Fname Ge> => X,St"

Env,St |- <Fname Re> => X,St"

Env,St |- Re => $fail(0),St'

Env,St |- <Fname Re> => $fail(0),St'

Env,St |- Re => $error(Ge),St'

Env,St |- <Fname Re> => $error(Ge),St'

Examples
Here are examples of result expressions:

(A B) C D

Refal Plus Reference Manual

62

t.Head e.Tail
While t.Condition Do t.Statement
<Mult sN <Factorial <Sub sN 1>>

The following result expressions are result terms:

(A B)
t.Head
<Mult sN <Factorial <Sub sN 1>>

Let Env1 = {sM = 2, sN = 3, eA = A B C, tB = (D E F)}, Add be the name
of the function that adds integers, and Mult be the name of the function that multiplies
integers. Thus, the judgments

St |- <Add 3 100> => 103, St
St |- <Mult 2 103> => 206, St

hold for any global state St, because the functions Add and Mult do not change the
global state.

Then we have

Env1,St |- eA (eA tB) tB =>
A B C (A B C (D E F)) (D E F), St

Env1,St |- <Mult sM <Add sN 100>> => 206, St

Patterns
Patterns accept ground expressions, decompose them, and bind parts of ground
expressions to variables. At run-time, matching a ground expression against a pattern
either succeeds or fails.

Syntax

Pattern = DirectionDesignator PatternExpression.
DirectionDesignator = ["$l" | "$r"].

PatternExpression =
{ PatternTerm | NamedExpression }.

PatternTerm =
StaticSymbol | Variable |
"(" PatternExpression ")".

A pattern is a pattern expression, which may be preceded by a direction designator $l or
$r. The designator $l indicates that the pattern matching must be done from left to right.
The designator $r indicates that it must be done from right to left. If the direction
designator is omitted, the designator $l is implied.

If two different variables appear in the same pattern expression, they must have different
indices.

Notation

Patterns are denoted by P, pattern expressions by Pe, pattern terms by Pt, and direction
designators by D.

Pattern Matching
An environment Env is said to be a result of matching a ground expression Ge against a
pattern P in an initial environment Env0 , if the following conditions holds.

Refal Plus Reference Manual

63

1.
The environment Env is an extension of Env0 , i.e. dom[Env] includes
dom[Env0], and for all V in dom[Env0] holds Env(V)=Env0(V).

2.
If each variable V appearing in P is replaced with Env(V), and the direction
designator is removed, the ground expression thus obtained is Ge.

This environment Env is said to be a variant of matching Ge against P in the environment
Env0 , and the set of such variants of matching is denoted by Match(Env0,Ge,P).

The set Match(Env0,Ge,P) is assumed to be equipped with the order relation defined
by the following rules.

Suppose Match(Env0,Ge,P) contains two different variants of matching Env1 and
Env2 . Consider all occurrences of variables in P.

If P has the direction designator $l, find the leftmost occurrence that is given different
values by the matching variants Env1 and Env2 .

If P has the direction designator $r, find the rightmost occurrence that is given different
values by the matching variants Env1 and Env2 .

Suppose the occurrence found is an occurrence of a variable V. Then compare Env1(V)
to Env2(V). If Env1(V) is shorter than Env2(V), then Env1 is taken to precede Env2 .
Otherwise Env2 is taken to precede Env1 .

A finite sequence of environments Env1 , Env2 , ..., Envn is written as [Env1, Env2,
... , Envn], and the empty sequence as [].

[Env0]^[Env1,...,Envn] denotes [Env0, Env1,..., Envn].

A judgment Env0 |- Ge : P => [Env1,...Envn] means that Match(Env0,Ge,P)
= {Env1,...,Envn}, where Envi precedes Envj for all i<j.

Examples
Here are examples of patterns:

t.Head e.Tail
eX (eY)
eA '+' eB
$l eA '+' eB
$r eA '+' eB

Here are examples of pattern matching:

{} |- A () C D E : $l sX tY tZ e1
=> [{sX = A, tY = (), tZ = C, e1 = D E}]

{} |- 1 2 3 : $l eA eB => [
{eA = , eB = 1 2 3},
{eA = 1, eB = 2 3},
{eA = 1 2, eB = 3},
{eA = 1 2 3, eB = }]

{} |- 1 2 3 : $r eA eB => [
{eA = 1 2 3, eB = },
{eA = 1 2, eB = 3 },
{eA = 1, eB = 2 3 },
{eA = , eB = 1 2 3 }]

{eA = 1 2} |- $l 1 2 3 4 5 : eA eB
=> [{eA = 1 2, eB = 3 4 5}]

Refal Plus Reference Manual

64

Hard Expressions
Hard expressions are patterns that accept ground expressions, decompose them, and
bind parts of ground expressions to variables. At run-time, matching a ground expression
against a hard expression always succeeds, which is guaranteed by the context
dependent restrictions on Refal Plus programs checked at compile-time.

Syntax

HardExpression =
{ HardCorner } |
{ HardCorner } e-variable { HardCorner } |
{ HardCorner } v-variable { HardCorner }.

HardCorner = { HardTerm | NamedExpression }.
HardTerm =

StaticSymbol | s-variable | t-variable |
"(" HardExpression ")".

Thus, any subexpression of a hard expression may contain no more that one occurrence
of e-variable or v-variable at the top level of parentheses.

A variable may appear in a hard expression no more that once. If two different variables
appear in the same hard expression, they must have different indices.

Notation

Hard expressions are denoted by He, and hard terms by Ht.

Matching Against Hard Expressions

Hard expressions may be regarded as a particular case of pattern expressions. A feature
of hard expressions is that there can exist no more that one way of matching a ground
expression Ge against a hard expression He. Thus there holds either {} |- Ge : He
=> [] or {} |- Ge : He => [Env].

A judgment Env |- Ge :: He => Env' means that {} |- Ge : He => Env''
and Env' = Env+Env''. Consequently, Env' is produced from Env in the following
way. First, Ge is matched against He in the empty environment. Thus, the variable values
provided by the current environment Env are not taken into account. The environment
Env'' thus obtained contains bindings for all variables appearing in He. Then the original
environment Env is extended with the bindings from Env'' to produce the final
environment Env'.

Examples
Here are example hard expressions:

t.Head e.Tail
sX (eY) eZ (A eA)

Here are examples of matching hard expressions:

{sX = XXX, eA = A B C} |- X Y Z :: sY eA
=> {sX = XXX, eA = Y Z, sY = X}

{sX = XXX, eA = A B C} |- X Y Z :: eA sY
=> {sX = XXX, eA = X Y, sY = Z}

Paths

Refal Plus Reference Manual

65

The evaluation of a path produces either a ground expression, a failure, or an error.

Syntax

Path =
Condition | Binding | Search | Match |
Rest | Source.

The syntax of paths seems to be rather complicated. This is due to the desire to save the
user the trouble of writing redundant delimiters without real necessity.

This is achieved by distinguishing two particular cases of paths: "rests" and "sources",
which possess some useful syntax properties. Rests begin with key words, which are
easy to recognize. Thus, if a result expression or a pattern is followed by a rest, there is
no danger that they could "stick" together. Sources cannot contain commas at the top
level of curly brackets, for which reason they can be unambiguously separated from the
constructs they are followed by.

Notation

Paths are denoted by Q, rests by R, sources by S, pattern alternatives by Palt, and
sentences by Snt.

Evaluation

A path Q is evaluated with respect to an environment Env and a non-negative integer m.
The environment Env associates variables with their values, which may be necessary to
evaluate the path. The integer m, which is referred to as the level of the path, specifies
the number of fences \? that surrounds Q without being closed by cuts \!.

If the evaluation of Q terminates, it returns either a ground expression Ge, a failure
$fail(k), the non-negative integer k being the "level" of the failure, or an error
$error(Ge), Ge being an error message.

If evaluating a path at the level m returns a failure $fail(k), the failure level is certain to
satisfy the restriction 0 <= k <= m+1 . In particular, if a path is evaluated at the level 0,
there holds either k=0 or k=1.

A judgment Env,m,St |- Q => X,St' means that evaluating the path Q in the
environment Env at the level m returns X, and if the evaluation of Q starts in the global
state St, it terminates in the global state St'.

Rests and sources are particular cases of paths, for which reason the above notation is
also used for describing the evaluation of rests and sources.

The meaning of a path Q can often be reduced to the meaning of other path Q'. To put it
more exactly, the evaluation of Q is done by evaluating Q', and the result thus obtained is
taken to be the result of evaluating Q. This may be formulated by means of the following
inference rule:

Env,m,St |- Q' => X,St'

Env,m,St |- Q => X,St'

Such rules are rather frequent, for which reason they will be abbreviated in the following
way:

Refal Plus Reference Manual

66

Q =>=> Q'

Conditions

Syntax

Condition =
Source Rest.

Evaluation

The evaluation of a path S R proceeds as follows. The source S is evaluated, and, if the
evaluation succeeds, the rest R is evaluated.

The source S is considered to be at the zero level.

Env,0,St |- S => ,St'
Env,m,St'|- R => X,St''

Env,m,St |- S R => X,St''

Env,0,St |- S => $fail(k),St'

Env,m,St |- S R => $fail(0),St'

Env,0,St |- S => $error(Ge),St'

Env,m,St |- S R => $error(Ge),St'

Bindings

Syntax

Binding =
Source "::" HardExpression [Rest].

Evaluation

The evaluation of a path S :: He R proceeds as follows. The source S is evaluated,
and, if the evaluation succeeds, the ground expression obtained is matched against He.
The variables from He are bound to new values, and the environments is extended with
the new bindings. Then the tail R is evaluated in the new environment.

The source S is considered to be at the zero level.

If the rest R is an empty delimited path (which always returns an empty ground
expression), it may be omitted.

S :: He =>=> S :: He ,

Env,0,St |- S => Ge,St'
Env |- Ge :: He => Env'
Env',m,St' |- R => X,St''

Env,m,St |- S :: He R => X,St''

Refal Plus Reference Manual

67

Env,0,St |- S => $fail(k),St'

Env,m,St |- S :: He R => $fail(0),St'

Env,0,St |- S => $error(Ge),St'

Env,m,St |- S :: He R => $error(Ge),St'

Examples
The evaluation of the path

100 :: sN, <Add sN 1> :: sN = sN

produces the number 101.

Searches

Syntax

Search =
Source "$iter" Source

["::" HardExpression] [Rest].

Evaluation
The goal of evaluating the path

S'' $iter S' :: He R

is to find such values for the variables appearing in He that the evaluation of R succeeds,
in which case the result obtained is taken to be the result of evaluating the whole
construct.

An empty hard expression He may be omitted along with the key word ::. If the rest R is
an empty delimited path (which always returns an empty ground expression), it may be
omitted.

S'' $iter S' =>=> S'' $iter S' :: ,

S'' $iter S' R =>=> S'' $iter S' :: R

S'' $iter S' :: He =>=> S'' $iter S' :: He ,

The initial values for the variables appearing in He are obtained by evaluating the source
S'', whereas the evaluation of S' enables the new variable values to be obtained from
the previous ones.

The sources S'' and S' are considered to be at the zero level.

The search for the variable values proceeds as follows. First, the initial variable values
are found by evaluating the source S'' and matching the ground expression Ge obtained
against the pattern He. Then an attempt is made to evaluate the rest R in the new
environment. If the value returned is a failure $fail(0), then S' is evaluated and a
ground expression obtained is matched against He, and then a new attempt is made to
evaluate R, etc.

Refal Plus Reference Manual

68

S'' $iter S' :: He R =>=>
S'' :: He, \{ R; S' $iter S' :: He R; }

Examples
If the values of the variables eA and eB are not defined in the current environment, the
match

eX : $l eA eB,
<Writeln eA>, <Writeln eB> $fail

is equivalent to the search

()(eX)
$iter \{ eB : t1 e2 = (eA t1)(e2); }

:: (eA)(eB),
<Writeln eA>, <Writeln eB> $fail

Matches

Syntas

Match =
Source ":" Pattern [Rest].

Evaluation

The evaluation of a path S : P R proceeds as follows. The source S is evaluated and a
ground expression Ge obtained is matched against the pattern P to produce a sequence
of the variants of matching. Then an attempt is made to find the first variant of matching
appearing in this sequence such that the evaluation of the rest R succeeds.

If the rest R is an empty delimited path (which always returns an empty ground
expression), it may be omitted.

To describe the semantics of matches, we need the following notation. A judgment
EnvList,m,St ||- Q => X,St' means that the evaluation of the path Q at the level
m with the list of environments EnvList returns X.

Env,m,St |- Q => Ge,St'

[Env]^EnvList,m,St ||- Q => Ge,St'

Env,m,St |- Q => $fail(0),St'
EnvList,m,St' ||- Q => X,St''

[Env]^EnvList,m,St ||- Q => X,St''

Env,m,St |- Q => $fail(k+1),St'
--
[Env]^EnvList,m,St ||- Q => $fail(k+1),St'

Env,m,St |- Q => $error(Ge),St'
--
[Env]^EnvList,m,St ||- Q => $error(Ge),St'

[],m,St ||- Q => $fail(0),St.

Now we describe the semantics of matches.

Refal Plus Reference Manual

69

S : P =>=> S : P ,

Env,0,St |- S => Ge,St'
Env |- Ge : P => EnvList
EnvList,m,St' ||- R => X,St''

Env,m,St |- S : P R => X,St''

Env,0,St |- S => $fail(k),St'

Env,m,St |- S : P R => $fail(0),St'

Env,0,St |- S => $error(Ge),St'

Env,m,St |- S : P R => $error(Ge),St'

Examples
The evaluation of the following path fails, which results in the character string 'CBA'
being printed:

'ABC' : $r e sX e, <Print sX> $fail

Rests

Syntax

Rest =
DelimitedPath | NegativeCondition |
Fence | Cut |
Failure | RightHandSide | ErrorGenerator |
ErrorTrap.

Delimited Paths

Syntax

DelimitedPath =
"," Path.

Evaluation
Evaluating the rest

, Q

always produces the same result as the evaluation of the path Q

, Q =>=> Q

Negative Conditions

Syntax

NegativeCondition =
"#" Source [Rest].

Refal Plus Reference Manual

70

Evaluation

The evaluation of a rest # S R proceeds as follows. The source S is evaluated. If the
result obtained is an empty ground expression, the evaluation of the whole construct fails,
but, if the result is a failure, the rest R is evaluated, and the result obtained is taken to be
the result of the whole construct. Thus, this construct enables us to test the "logical
negation" of the condition S.

If the rest R is an empty delimited path (which always returns an empty ground
expression), it may be omitted.

S =>=> # S ,

Env,0,St |- S => ,St'

Env,m,St |- # S R => $fail(0),St'

Env,0,St |- S => $fail(k),St'
Env,m,St' |- R => X,St''

Env,m,St |- # S R => X,St''

Env,0,St |- S => $error(Ge),St'

Env,m,St |- # S R => $error(Ge),St'

Fences

Syntax

Fence =
"\?" Path.

Evaluation

The evaluation of a rest \? Q proceeds as follows. The path Q is evaluated. If the result
obtained is a failure $fail(k), where k>0, then the "weakened" failure $fail(k-1) is
taken to be the result of the whole construct. Otherwise, the result of evaluating Q is
taken to be the result of the whole construct.

The path Q is evaluated at the level m+1, where m is the level at which the whole
construct is evaluated.

Env,m+1,St |- Q => Ge,St'

Env,m,St |- \? Q => Ge,St'

Env,m+1,St |- Q => $fail(0),St'

Env,m,St |- \? Q => $fail(0),St'

Env,m+1,St |- Q => $fail(k+1),St'

Env,m,St |- \? Q => $fail(k),St'

Env,m+1,St |- Q => $error(Ge),St'

Env,m,St |- \? Q => $error(Ge),St'

Cuts

Syntax

Refal Plus Reference Manual

71

Cut =
"\!" Path.

Evaluation

The evaluation of the rest \! Q proceeds as follows. The path Q is evaluated. If the result
obtained is a failure $fail(k), then the "strengthened" failure $fail(k+1) is taken to
be the result of the whole construct. Otherwise, the result of evaluating Q is taken to be
the result of the whole construct.

The path Q is evaluated at the level m-1, where m is the level at which the whole
construct is evaluated.

Env,m,St |- Q => Ge,St'

Env,m+1,St |- \! Q => Ge,St'

Env,m,St |- Q => $fail(k),St'

Env,m+1,St |- \! Q => $fail(k+1),St'

Env,m,St |- Q => $error(Ge),St'

Env,m+1,St |- \! Q => $error(Ge),St'

Examples

The evaluation of the following path results in the character string 'ABD' being printed,
and the result '2' being returned.

{
\? {

<Print 'A'> $fail;
<Print 'B'> \! $fail;
<Print 'C'> = '1';
};

<Print 'D'> = '2';
}

Failures

Syntax

Failure =
"$fail".

Evaluation

The evaluation of the rest $fail always returns the failure $fail(0).

Env,m,St |- $fail => $fail(0),St

Right Hand Sides

Syntax

RightHandSide =
"=" Path.

Refal Plus Reference Manual

72

Evaluation

The evaluation of a rest = Q at a level m proceeds as follows. The path Q is evaluated at
the level 0. If the result obtained is a failure $fail(k), then the whole construct returns
the failure $fail(m+1), which is so strong as to overcome all surrounding fences that
are not neutralized by cuts.

Env,0,St |- Q => Ge,St'

Env,m,St |- = Q => Ge,St'

Env,0,St |- Q => $fail(k),St'

Env,m,St |- = Q => $fail(m+1),St'

Env,0,St |- Q => $error(Ge),St'

Env,m,St |- = Q => $error(Ge),St'

Error Generators

Syntax

ErrorGenerator =
"$error" Path.

Evaluation

The evaluation of a rest $error Q returns an error $error(Ge), where Ge is the result
of evaluating the path Q.

Env,0,St |- Q => Ge,St'

Env,m,St |- $error Q => $error(Ge),St'

Env,0,St |- Q => $fail(0),St'

Env,m,St |- $error Q => $error(Fname "Unexpected fail"),St'

Fname is the name of the function in which
the construct appears.

Env,0,St |- Q => $error(Ge),St'

Env,m,St |- $error Q => $error(Ge),St'

Error Traps

Syntax

ErrorTrap =
"$trap" Path "$with" PatternAlternative.

Evaluation
The evaluation of a rest

$trap Q $with Palt

Refal Plus Reference Manual

73

proceeds as follows. An attempt is made to evaluate the path Q. If the result obtained is
an error $error(Ge), then the alternative match

Ge : Palt

is evaluated, and the result obtained is taken to be the result of the whole construct.

The path Q is evaluated at the level 0.

Env,0,St |- Q => Ge,St'
--
Env,m,St |- $trap Q $with Palt => Ge,St'

Env,0,St |- Q => $fail(k),St'
Env,m,St' |- Fname "Unexpected fail" : Palt => X,St''

Env,m,St |- $trap Q $with Palt => X,St''

Fname is the name of the function in which
the construct appears.

Env,0,St |- Q => $error(Ge),St'
Env,m,St' |- Ge : Palt => X,St''
--
Env,m,St |- $trap Q $with Palt => X,St''

Sources

Syntax

Source =
Alternative | AlternativeMatch | ResultExpression.

Alternatives

Syntax

Alternative =
"\{" PathList "}" |
"{" PathList "}".

PathList = { Path ";" }.

Evaluation

The evaluation of a source \{Q1; Q2; ... Qn;} proceeds as follows. The paths Q1,
Q2, ..., Qn are evaluated from left to right until the evaluation of a path succeeds.

More specifically, consider the result of evaluating the path Qj .

If the result is a ground expression Ge, then Ge is taken to be the result of the whole
construct. If the result is $error(Ge), then $error(Ge) is the result of the whole
construct. If the result is $fail(k+1), then $fail(k+1) is the result of the whole
construct. And, finally, if the result is $fail(0), this failure is "caught", i.e. an attempt is
made to evaluate the next path. If there exists no next path (i.e. j=n), the failure
$fail(0) is the result of the whole construct.

An alternative {Q1; Q2; ... Qn;} is equivalent to the alternative \{Q1; Q2; ...
Qn; $error(Fname "Unexpected fail");}, where Fname is the name of the
function in which the construct appears.

Refal Plus Reference Manual

74

{Q1; Q2; ... Qn;} =>=>
\{Q1; Q2; ... Qn;

$error(Fname "Unexpected fail");}
Fname is the name of the function in which
the construct appears.

Env,m,St |- \{} => $fail(0),St

Env,m,St |- Q1 => Ge,St'
--
Env,m,St |- \{Q1; Q2; ... Qn;} => Ge,St'

Env,m,St |- Q1 => $fail(0),St'
Env,m,St'|- \{Q2; ... Qn;} => X,St''
--
Env,m,St |- \{Q1; Q2; ... Qn;} => X,St''

Env,m,St |- Q1 => $fail(k+1),St'
--
Env,m,St |- \{Q1; Q2; ... Qn;} => $fail(k+1),St'

Env,m,St |- Q1 => $error(Ge),St'
--
Env,m,St |- \{Q1; Q2; ... Qn;} => $error(Ge),St'

Alternative Matches

Syntax

AlternativeMatch =
Source ":" PatternAlternative.

Evaluation

The evaluation of a source S : \{Snt1; ... Sntn;} always produces the same
result as the evaluation of the path S : Ve, \{Ve : Snt1; ... Ve : Sntn;},
provided that Ve is an e-variable that does not appear in the program in other places.

A source S : {Snt1; ... Sntn;} is equivalent to the source S : \{Snt1; ...
Sntn; e $error(Fname "Unexpected fail");}, where Fname is the name of the
function in which the construct appears.

S : {Snt1; ... Sntn;} =>=>
S : \{Snt1; ... Sntn;

e $error(Fname "Unexpected fail");}
Fname is the name of the function in which
the construct appears.

Env,0,St |- S => Ge,St'
Env,m,St'|- \{Ge : Snt1; ... Ge : Sntn;} => X,St''
--
Env,m,St |- S : \{Snt1; ... Sntn;} => X,St''

Env,0,St |- S => $fail(k),St'
--
Env,m,St |- S : \{Snt1; ... Sntn;} => $fail(0),St'

Env,0,St |- S => $error(Ge),St'
--
Env,m,St |- S : \{Snt1; ... Sntn;} => $error(Ge),St'

Result Expressions as Sources

Evaluation

Refal Plus Reference Manual

75

A source of the form Re, where Re is a result expression, is evaluated by evaluating the
result expression Re. The result thus obtained is taken to be the result of the source.

Env,St |- Re => X,St'

Env,m,St |- Re => X,St'

Sentences
A sentence accepts a given ground expression and tries to match it against a pattern. If
the matching succeeds, the following rest is evaluated.

Syntax

Sentence = Pattern [Rest].

Pattern Alternatives
A pattern alternative matches a given ground expression against a list of sentences.

Syntax

PatternAlternative =
"\{" SentenceList "}" |
" {" SentenceList "}" |

SentenceList =
{ Sentence ";" }.

Function Definitions
A function's definition binds the function's name to the function's body, thereby describing
the way in which the function is to be evaluated.

Syntax

FunctionDefinition =
FunctionName FunctionBody ";".

FunctionBody =
PatternAlternative | Sentence.

A function definition of the form Fname Snt; is equivalent to the definition Fname \{
Snt; }; .

Evaluation
Let the definition of a function Fname be of the form

Fname Palt

Then evaluating a function call <Fname Ge> amounts to evaluating the source Ge :
Palt. If the result obtained is a ground expression Ge' or an error $error(Ge'), it is

Refal Plus Reference Manual

76

taken to be the result of evaluating the call. Otherwise, if the result is a failure $fail(k),
the following actions depend on the function Fname having been declared either failing or
unfailing. If the function is a failing one, the result returned is $fail(0), otherwise, if the
function is an unfailing one, the result returned is $error(Fname "Unexpected
fail").

{},0,St |- Ge : Palt => Ge',St'

St |- <Fname Ge> => Ge',St'

{},0,St |- Ge : Palt => $fail(k),St'

St |- <Fname Ge> => $fail(0),St'

where the function Fname is a failing one,
i.e. it has been declared as
$func? Fname Farg = Fres;.

{},0,St |- Ge : Palt => $fail(k),St'

St |- <Fname Ge> => $error(Fname "Unexpected fail"),St'

where the function Fname is an unfailing one,
i.e. it has been declared as
$func Fname Farg = Fres;.

{},0,St |- Ge : Palt => $error(Ge'),St'

St |- <Fname Ge> => $error(Ge'),St'

The above inference rules assume the function Fname to have the definition Fname
Palt.

Declarations
A declaration binds a symbolic name to a constant ground expression, an object, or a
function.

Syntax

Declaration =
ConstantDeclaration | ObjectDeclaration |
FunctionDeclaration.

Constant Declarations

Syntax

ConstantDeclaration =
"$const" [ConstDecl { "," ConstDecl }] ";".

ConstDecl = ExpressionName "=" ConstantExpression.
ConstantExpression =

{ ConstantTerm | NamedExpression }.
ConstantTerm =

StaticSymbol | "(" ConstantExpression ")".

Purpose

Constant declarations enable ground expressions to be denoted by symbolic names to
be used instead of the expressions. A symbolic name is an identifier. If a ground
expression has been given a name N, the construct &N is a representation of the
expression Ge.

Refal Plus Reference Manual

77

A constant declaration may contain references to previous declarations of constants,
boxes, tables, channels, and functions.

Examples
The declaration

$const Lf = 10, Cr = 13, ABC = A B C;

gives names to three ground expressions, so that &Lf denotes 10, &Cr denotes 13, and
&ABC denotes A B C.

The declaration

$const CrLf_ABC = &Cr &Lf &ABC;

gives a name to an expression, so that &CrLf_ABC stands for 13 10 A B C.

Object Declarations

Syntax

ObjectDeclaration =
BoxDeclaration | VectorDeclaration | StringDeclaration |
TableDeclaration | ChannelDeclaration.

BoxDeclaration = "$box" { ReferenceName } ";".
VectorDeclaration = "$vector" { ReferenceName } ";".
StringDeclaration = "$string" { ReferenceName } ";".
TableDeclaration = "$table" { ReferenceName } ";".
ChannelDeclaration = "$channel" { ReferenceName } ";".

Purpose

An object declaration associates symbolic names with references to boxes, vectors,
strings, tables, and channels. These objects are to be created at the moment the
program is loaded.

The symbolic names introduced by an object declaration may be used for getting
references to the objects declared.

Thus, the declaration $box X; makes the construct &X denote a reference to a box.

Examples

$box B1 B2 B3;
$vector V1 V2;
$table T1 T2;
$channel Input Output;

Function Declarations

Syntax

FunctionDeclaration =
"$func" FunctionName

InputFormat "=" OutputFormat ";" |
"$func?" FunctionName

InputFormat "=" OutputFormat ";".
InputFormat = FormatExpression.
OutputFormat = FormatExpression.

Refal Plus Reference Manual

78

FormatExpression = HardExpression.

Purpose

A function declaration introduces a function name. The declaration of a function must
precede all references to the function as well as the definition of the function.

The declaration of a function imposes restrictions on the forms that can take the calls to
the function, the input patterns in the function's definition and the result expressions
producing the values returned by the function. These restrictions will be described in
detail below.

The input and output formats must be hard, i.e. any subexpression of a format expression
may contain no more than one e-variable or v-variable.

The variable indices appearing in formats serve as comments, thus they have no effect
on the meaning of the program and may be omitted.

It should be noted that the format expressions and the hard expressions are considered
to be different constructs, despite their having the same context-free syntax. This is due
to the differences in the interpretation of variable indices.

If the declaration of a function begins with the key word $func, the function is an
unfailing one, i.e. evaluating a call to the function may result in returning either a ground
expression or an error.

If the declaration of a function begins with the key word $func?, the function is a failing
one, i.e. evaluating a call to the function may result in returning either a ground
expression, a failure, or an error.

Examples

$func Interpreter (e.Program) (e.Input) = e.Result;
$func? Attempt t.Arg = s.Result1 t.Result2 (e.Result3);

Context Dependent Restrictions
Any program written in Refal Plus must satisfy a number of context dependent
restrictions.

Elimination of Redundant Constructs

In order for the description of the context dependent restrictions to be concise, the
program is supposed to have been "normalized". Namely, all constructs considered to be
abbreviations for other constructs must have been replaced with their expansions.

The normalization is performed as follows.

The empty hard expressions and empty delimited paths omitted in bindings, searches,
and matches are restored.

S :: He => S :: He ,
S' $iter S'' => S' $iter S'' :: ,
S' $iter S'' :: He => S' $iter S'' :: He ,
S' $iter S'' R => S' $iter S'' :: R
S : P => S : P ,

Refal Plus Reference Manual

79

S => # S ,

The empty delimited paths omitted in sentences are restored.

P => P ,

The "opaque" curly brackets { appearing in alternatives and alternative matches are
replaced with the "transparent" curly brackets \{.

{Snt1; ... Sntn;} =>
\{Snt1; ... Sntn;

$error(Fname "Unexpected fail");}

S : {Snt1; ... Sntn;} =>
S : \{Snt1; ... Sntn;

e $error(Fname "Unexpected fail");}

where Fname is the name of the function in which the construct appears.

The "opaque" curly brackets { appearing in function definitions are replaced with the
"transparent" curly brackets \{.

Fname {Snt1; ... Sntn;} =>
Fname \{Snt1; ... Sntn;

Farg $error(Fname "Unexpected fail");}

where Farg is the input format provided by the declaration of the function Fname (the
variable indices in function declarations are supposed to be omitted).

The function bodies consisting of a sentence are replaced with the corresponding pattern
alternatives:

Fname Snt; => Fname \{ Snt; };

Restrictions Imposed by Function Declarations

The definition of a function must satisfy the restrictions imposed by the input and output
formats of the function.

Let a function declaration have either of the two forms

$func Fname Farg = Fres;
$func? Fname Farg = Fres;

where Farg is the input format of the function, i.e. a format expression which specifies
the structure of the function's argument, and Fres is the output format of the function, i.e.
a format expression which specifies the structure of the function's result. As mentioned
previously the variable indices appearing in formats are of no significance, for which
reason, without any loss of generality, they will be supposed to have been omitted.

Then, to formulate the restrictions imposed by the input and output formats of the
function, we assume the set of format expressions to be equipped with the following
partial ordering.

Let F1 and F2 be two formats. Then F2 >> F1 means that the format F1 is an instance
of the format F2. The relation >> is defined by the following rules.

1.
F >> F.

Refal Plus Reference Manual

80

2.
If F1' >> F1 and F2' >> F2 , then F1' F2' >> F1 F2 .

3.
If F1 >> F2 , then (F1) >> (F2) .

4.
e >> F .

5.
If F is not of the form e e ... e, then v >> F .

6.
t >> Gs , for all symbols Gs.

7.
t >> s .

8.
t >> (F) .

9.
s >> Gs , for all symbols Gs.

Now consider a program written in Refal Plus and the constructs appearing in the
program.

Let Re be a result expression appearing in the program. A format expression F is said to
be the format of Re, if F can be produced from Re by the following transformations.

1.
The indices of all variables appearing in Re are discarded.

2.
All function calls appearing in Re are replaced with the output formats of the
corresponding functions. In other words, suppose that a function Fname has been
declared as either $func Fname Farg = Fres; or $func? Fname Farg =
Fres; . Then each call <Fname Re'> is replaced with Fres.

Let P be a pattern appearing in the program. A format expression F is said to be the
format of P, if F can be produced from P by the following transformations.

1.
The indices of all variables appearing in P are discarded.

2.
If P has a direction designator, the designator is discarded.

Let He be a hard expression appearing in the program. A format expression F is said to
be the format of He, if F can be produced from P by discarding the indices of all variables
appearing in He.

Henceforth, the format of a result expression will be denoted by form[Re], the format of
a pattern P by form[P], and the format of a hard expression He by form[He].

It should be emphasized that not only does the format of a result expression Re depend
on the structure of Re, but it also depends on the output formats of the functions called in
Re. Nevertheless, given a particular program, the meaning of form[Re] is
unambiguously defined.

Now we can formulate the restrictions that must be met by the function definitions. These
restrictions are imposed on the function calls, the input patterns in the function definitions,
and the results returned by the paths.

Suppose the declaration of a function Fname contains the input format Farg, the output
format Fres, whereas the pattern alternative Palt appearing in the function definition

Fname Palt

Refal Plus Reference Manual

81

has the form \{P1 R1; ... Pn Rn;}.

Then the following conditions must be satisfied.

The function's input patterns P1 , ..., Pn must satisfy the restriction Farg >>
form[Pj].

The calls to the function Fname in all function definitions must satisfy the following
condition.

Let a call to the function Fname have the form <Fname Re> . Then there must be
satisfied the restriction Farg >> form[Re].

To describe the restrictions imposed on the results returned by paths, we use the
following notation.

The fact that the results returned by a path Q satisfy a format F will be written as F |- Q.

Rests, sources, and result expressions may be regarded as particular cases of paths, for
which reason the above notation is applicable to them as well as to paths.

Similarly, the fact that the results returned by a pattern alternative Palt satisfy a format F
will be written as F |- Palt.

Now we can formulate the restrictions imposed on the function definitions by the output
formats of the functions.

Let the definition of a function Fname be Fname Palt, and the output format Fres. Then
there must be satisfied Fres |- Palt.

The relations F |- Q and F |- Palt are defined by the following inference rules.

form[] |- S form[He] |- S
F |- R F |- R
------------ ---------------
F |- S R F |- S :: He R

form[He] |- S''
form[He] |- S'
F |- R

F |- S'' $iter S' :: He R

form[] |- S
F |- R F |- Q F |- R
------------- --------- ------------
F |- S : P R F |- , Q F |- # S R

F |- Q F |- Q
---------- ---------- F |- $fail
F |- \? Q F |- \! Q

F |- Q
--------- F |- $error Q
F |- = Q

F |- Q
F |- Palt

F |- $trap Q $with Palt

F |- Qj for all j=1,...,n

Refal Plus Reference Manual

82

F |- \{Q1; ... Qn;}

F |- Palt F >> form[Re]
-------------- --------------
F |- S : Palt F |- Re

F |- Rj for all j=1,...,n

F |- \{P1 R1; ... Pn Rn;}

Restrictions on the Use of References to Functions

If a reference to a function appears as a symbol in a ground expression, the function
must be capable of taking as input any ground expression and is allowed to return any
ground expression.

Namely, if a construct &Fname, which is a reference to the function Fname, appears in a
pattern expression or in a result expression, the function Fname must be declared as
either $func Fname e = e or $func? Fname e = e.

Restrictions on the Use of Variables

A variable appearing in a result expression must have been already defined. A variable
gets defined, when it appears in a pattern or in a hard expression. If several different
variables get defined at the same place, their indices must be different.

To give these restrictions a more exact formulation, we introduce the following notation.

vars[X] denotes the set of variables appearing in the construct X.

{} denotes the empty set.

v1+v2 denotes the union of the sets v1 and v2.

v1++v2 denotes the variable set v1 extended with the variable set v2. To put it more
exactly, v1++v2 contains all the variables from v2, as well as all variables from v1
whose indices are different from the indices of the variables contained in v2. For
example, {sX, sY} ++ {eY, eZ} = {sX, eY, eZ} .

A judgment v |- Q means that all variables in v have different indices, and all variables
whose values are needed for the evaluation of the path Q belong to v.

Rests, sources, and result expressions may be regarded as particular cases of paths, for
which reason the above notation is applicable to them as well as to paths.

Similarly, a judgment v |- Palt means that all variables in v have different indices,
and all variables whose values are needed for the evaluation of the pattern alternative
Palt belong to v.

Now we can formulate the restrictions imposed on the use of variables in the function
definitions.

Let the definition of a function Fname be Fname Palt. Then there must be satisfied {}
|- Palt.

The relations v |- Q and v |- Palt are defined by the following inference rules.

v |- S v |- S
v |- R v++vars[He] |- R

Refal Plus Reference Manual

83

---------- -----------------
v |- S R v |- S :: He R

v |- S''
v++vars[He] |- S' v |- S
v++vars[He] |- R v+vars[P] |- R
------------------------- ---------------
v |- S'' $iter S' :: He R v |- S : P R

v |- S
v |- Q v |- R v |- Q
--------- ----------- ----------
v |- , Q v |- # S R v |- \? Q

v |- Q v |- Q
---------- v |- $fail ---------
v |- \! Q v |- = Q

v |- Q
v |- Q v |- Palt
-------------- ------------------------
v |- $error Q v |- $trap Q $with Palt

v |- Qj for all j=1,...,n

v |- \{Q1; ... Qn;}

v |- S
v |- Palt

v |- S : Palt

all variables in v have different indices
all variables in vars[Re] belong to v

v |- Re

v+vars[Pj] |- Rj for all j=1,...,n

v |- \{P1 R1; ... Pn Rn;}

Restrictions on the Use of Cuts

For each cut \! in a function definition there must exist a corresponding fence \?.

More exactly, each path appearing in a function definition can be assigned a
non-negative integer k, the level of the path. If we move forward along a path, the level
increases by 1 each time we pass over \?, and decreases by 1 each time we pass over
\!. Thus, each cut \! unambiguously corresponds to its "pair" fence \?.

Now, to give this requirement a more exact formulation, we introduce the following
notation.

Let k be a non-negative integer, and Q a path. The judgment k |- Q means that the
path Q can be assigned the level k.

Rests, sources, and result expressions may be regarded as particular cases of paths, for
which reason the above notation is applicable to them as well as to paths.

Similarly, let Palt be a pattern alternative. Then the judgment k |- Palt means that
the pattern alternative Palt can be assigned the level k.

Now we can formulate the restrictions imposed on the use of cuts in the function
definitions.

Refal Plus Reference Manual

84

Let the definition of a function Fname be Fname Palt. Then there must be satisfied 0
|- Palt.

The relations k |- Q and k |- Palt are defined by the following inference rules.

0 |- S 0 |- S
k |- R k |- R
--------- ---------------
k |- S R k |- S :: He R

0 |- S''
0 |- S' 0 |- S
k |- R k |- R
------------------------- -------------
k |- S'' $iter S' :: He R k |- S : P R

0 |- S
k |- Q k |- R k+1 |- Q
--------- ----------- ----------
k |- , Q k |- # S R k |- \? Q

k |- Q 0 |- Q
------------ k |- $fail ---------
k+1 |- \! Q k |- = Q

0 |- Q
0 |- Q k |- Palt
-------------- ------------------------
k |- $error Q k |- $trap Q $with Palt

k |- Qj for all j=1,...,n

k |- \{Q1; ... Qn;}

0 |- S
k |- Palt
-------------- k |- Re
k |- S : Palt

k |- Rj for all j=1,...,n

k |- \{P1 R1; ... Pn Rn;}

Trace Directives
Trace directives specify what debugging information is to be output at run-time.

Syntax

TraceDirective =
"$trace" { FunctionName } ";" |
"$traceall" ";".

Purpose

A directive $trace specifies that some debugging information is to be printed at the run
time about the functions listed in the directive. When a function is called, its name is
printed as well as the arguments passed. Then, when the call has been evaluated, the
function name is printed as well as the results returned by the function.

A directive $traceall specifies that the debugging information is to be printed about all
the functions whose definitions appear below the directive.

Refal Plus Reference Manual

85

Modules
A program written in Refal Plus consists of one or more modules. Each module
comprises two components: the interface of the module and the implementation of the
module.

The interface of a module contains the parts of the module that may be visible in other
modules, whereas the implementation of the module contains the parts of the module
that are invisible in other modules.

Each module MMMM occupies two files. Namely, the interface of the module is kept in the
file MMMM.rfi, and the implementation in the file MMMM.rf.

ModuleInterface =
{ Declaration }.

ModuleImplementation =
{ Import } { ImplementationDirective }.

Import = "$use" { ModuleName } ";".

ImplementationDirective =
Declaration |
TraceDirective |
FunctionDefinition.

The names declared in the interface of a module YYYY can be made visible in the
implementation of a module XXXX by putting the directive $use YYYY into the
implementation of the module XXXX in the following way:

// File XXXX.rfi
// The interface of the module XXXX.
......

// File XXXX.rf
$use ... YYYY ... ;
// Henceforth, the names declared in YYYY.rfi
// will be visible.
......

// File YYYY.rfi
// The interface of the module YYYY.
......

// File YYYY.rf
// The implementation of the module YYYY.
......

Some operating systems disregard the difference between small and captial letters in file
names. For example, StdIO.rfi, StdIo.rfi, Stdio.rfi are regarded as equivalent.
Thus it is reasonable to avoid the situation in which there are two modules in a program
whose names differ only in the case of letters.

Program Execution
A program in Refal Plus may consist of several modules, one of which must export the
function Main. The execution of the program amounts to evaluating the call to the
function Main.

Refal Plus Reference Manual

86

The function Main is said to be the main function of the program, and must have the
following declaration:

$func Main = e;

If a function with the name Main is declared in some other way, but, nevertheless, is
exported by a module, this situation is considered to be an error.

The execution of the Refal program amounts to evaluating the call to the function Main,
the argument of the call being empty:

<Main >

The module that contains the definition of the main function is permitted to have no
interface part, in which case the Refal Plus compiler assumes the module's interface to
consist of the single function declaration:

$func Main = e;

Refal Plus Reference Manual

87

Refal Plus Library Functions
This chapter describes the library of functions, which is an essential part of the Refal Plus
system, and consists of several modules.

At present, the library of functions comprises the modules described in this chapter, but,
in future, it may be extended with other modules.

If a user-written module contains references to library functions defined in a library
module MMMM, then, at the beginning of the user-written module, there must appear the
directive

$use MMMM;

which imports into the user-written module the declarations of all functions defined in the
library module MMMM.

Access: Direct Access to Ground Expressions

$func Length e.Exp = s.ExpLen;
$func? Left s.Left s.Len e.Exp = e.SubExp;
$func? Right s.Right s.Len e.Exp = e.SubExp;
$func? Middle s.Left s.Right e.Exp = e.SubExp;
$func? L s.Left e.Exp = t.SubExp;
$func? R s.Right e.Exp = t.SubExp;

These functions provide direct access to the components of ground expressions. The
arguments s.Left, s.Right, and s.Len must be non-negative integers. e.Exp may
be any ground expression.

If s.Left, s.Right, and s.Len are not non-negative integers, the functions return the
error $error(Fname "Invalid argument"), where Fname is the function's name.

Length returns the length of the expression e.Exp measured in terms. In other words, a
ground expression Ge of the form Gt1 Gt2 ... GtN is assumed to have the length N.

For example:

<Length > => 0
<Length A B C> => 3
<Length (A B) C (D E)> => 3

Left removes the first s.Left terms from e.Exp, and then returns the first s.Len
terms of the remaining expression.

Right removes the last s.Right terms from e.Exp, and then returns the last s.Len
terms of the remaining expression.

Middle removes the first s.Left and the last s.Right terms from e.Exp, and returns
the remaining expression.

L removes the first s.Left terms from e.Exp, and returns the first term of the remaining
expression.

R removes the last s.Right terms from e.Exp, and returns the last term of the
remaining expression.

Refal Plus Reference Manual

88

If the length of e.Exp is not sufficient for the operation to be performed, all of the above
functions return $fail(0).

For example:

<Middle 2 3 A B C D E F> => C
<Middle 2 3 A B C D> => $fail(0)
<Middle 0 0 A B C> => A B C
<Left 2 3 A B C D E F> => C D E
<Left 2 3 A B C D> => $fail(0)
<Left 0 0 A B C> =>
<Right 2 3 A B C D E F> => B C D
<Right 2 3 A B C D> => $fail(0)
<Right 0 0 A B C> =>
<L 2 A B C D E F> => C
<L 2 A B> => $fail(0)
<R 2 A B C D E F> => D
<R 2 A B> => $fail(0)

The operations Middle, Left, and Right may be depicted in the following way:

s.Left s.Right
+-------+-------+-------+
| |XXXXXXX| | <Middle s.Left s.Right e.Exp>
+-------+-------+-------+

s.Left s.Len
+-------+-------+-------+
| |XXXXXXX| | <Left s.Left s.Len e.Exp>
+-------+-------+-------+

s.Len s.Right
+-------+-------+-------+
| |XXXXXXX| | <Right s.Right s.Len e.Exp>
+-------+-------+-------+

Apply: Application of Functions Passed as Arguments

$func? Apply s.Name e.Exp = e.Exp;

Apply returns the result of applying the function referred to by the reference s.Name to
the expression e.Exp.

Arithm: Arithmetic Operations on Integers

$func Add s.Int1 s.Int2 = s.Int;
$func Sub s.Int1 s.Int2 = s.Int;
$func Mult s.Int1 s.Int2 = s.Int;
$func DivRem s.Int1 s.Int2 = s.Quo s.Rem;
$func Div s.Int1 s.Int2 = s.Quo;
$func Rem s.Int1 s.Int2 = s.Rem;
$func GCD s.Int1 s.Int2 = s.GCD;

These functions provide operations on signed integers of arbitrary size. Each of the
arguments of the arithmetic functions must be a single numeric symbol.

If one of the arguments of an arithmetic function is not a numeric symbols, the function
returns the error $error(Fname "Invalid argument"), where Fname is the
function's name.

If both arguments of an arithmetic function are numeric symbols, the function produces
the result, depending on the function.

Refal Plus Reference Manual

89

Add returns the sum of its arguments, Sub the difference of its arguments, Mult the
product of its arguments, Div and Rem respectively the quotient and the remainder of its
arguments, DivRem both the quotient and the remainder of its arguments, GCD the
greatest common divisor of its arguments.

If the result produced by one of the operations Add, Sub, or Mult exceeds the size limit
imposed by the Refal Plus implementation, the value returned is the error
$error(Fname "Size limit exceeded"), where Fname is the function's name.

For example:

<Add 3 5> => 8
<Add 3 -5> => -2
<Sub 3 -5> => 8
<Mult -2 3> => -6
<Div 5 2> => 2
<Rem 5 2> => 1
<DivRem 5 2> => 2 1
<Div 6 2> => 3
<Rem 6 2> => 0
<DivRem 6 2> => 3 0

The signs of the quotient and the remainder are determined according to the following
rule. If the sign of the dividend is the same as that of the divisor, the quotient must be
positive, otherwise the quotient must be negative. The sign of the remainder must be the
same as that of the dividend. Thus, there must always hold the equation

dividend = (quotient * divisor) + remainder

For example:

<Div 5 3> => 1
<Rem 5 3> => 2
<Div 5 -3> => -1
<Rem 5 -3> => 2
<Div -5 3> => -1
<Rem -5 3> => -2
<Div -5 -3> => 1
<Rem -5 -3> => -2

An attempt at dividing a number by zero results in returning the error $error(Fname
"Divide by zero"), where Fname is the function's name. For example:

<Div 5 0> => $error(Div "Divide by zero")
<Rem 5 0> => $error(Rem "Divide by zero")
<DivRem 5 0> => $error(DivRem "Divide by zero")

The function GCD, unless both its arguments are equal to zero, returns a positive integer,
the greatest common divisor of its arguments. Otherwise, if both arguments are equal to
zero, the result is the error $error(GCD "Zero arguments"). For example:

<GCD 6 15> => 3
<GCD -6 15> => 3
<GCD 15 1> => 1
<GCD 15 0> => 15
<GCD 0 0> => $error(GCD "Zero arguments")

Bit: Bitwise Operations
The functions providing bitwise operations are defined in the module Bit.

Refal Plus Reference Manual

90

These functions deal with sequences of binary digits represented by signed integers.

Each integer represents a sequence of binary digits, which is infinite to the left, and can
be obtained by writing the integer as a two's complement binary number of infinite size. If
the integer is non-negative, the sequence thus obtained contains a finite number of ones.
Otherwise, if the integer is negative, the sequence contains a finite number of zeros. For
example:

+3 ...000011
+2 ...000010
+1 ...000001
+0 ...000000
-1 ...111111
-2 ...111110
-3 ...111101

The positions in the binary sequence are numbered from right to left, starting from zero.

$func BitOr s.Int1 s.Int2 = s.Int;
$func BitAnd s.Int1 s.Int2 = s.Int;
$func BitXor s.Int1 s.Int2 = s.Int;

BitOr returns the bitwise logical "or" of the arguments.

BitAnd returns the bitwise logical "and" of the arguments.

BitXor returns the bitwise logical "exclusive or" of the arguments.

$func BitNot s.Int = s.Int;

BitNot returns the bitwise logical "not" of the argument.

$func BitLeft s.Int s.Shift = s.Int;
$func BitRight s.Int s.Shift = s.Int;

BitLeft returns the result of logically shifting s.Int by the number of positions
specified by s.Shift. If s.Shift is non-negative, s.Int is shifted left, the new bits
being zerofilled. Otherwise, if s.Shift is negative, s.Int is shifted right.

BitRight returns the result of logically shifting s.Int by the number of positions
specified by s.Shift. If s.Shift is non-negative, s.Int is shifted right. Otherwise, if
s.Shift is negative, s.Int is shifted left, the new bits being zero-filled.

$func? BitTest s.Int s.Pos = ;

BitTest returns a failure, if the position s.Pos in s.Int is equal to zero, otherwise, it
returns an empty ground expression.

$func BitSet s.Int s.Pos = s.Int;
$func BitClear s.Int s.Pos = s.Int;

BitSet sets the position s.Pos in s.Int to 1, and returns the integer thus obtained.

BitClear sets the position s.Pos in s.Int to 0, and returns the integer thus obtained.

Refal Plus Reference Manual

91

$func BitLength s.Int = s.Len;

BitLength returns the "length" of s.Int. Namely, if s.Int is non-negative, the
function returns the position of the right-most 0 such that there is no 1 to the left of this 0.
Otherwise, if s.Int is negative, the function returns the position of the rightmost 1 such
that there is no 0 to the left of this 1.

For example:

<BitLength 3> ==> 2
<BitLength 2> ==> 2
<BitLength 1> ==> 1
<BitLength 0> ==> 0
<BitLength -1> ==> 0
<BitLength -2> ==> 1
<BitLength -3> ==> 2

Box: Box Operations

$func Box e.Exp = s.Box;
$func Get s.Box = e.Exp;
$func Store s.Box e.Exp = ;

Box creates a new box, puts the expression e.Exp into the box, and returns a reference
to the box.

Get returns the contents of the box referred to by s.Box.

Store puts the expression e.Box into the box referred to by s.Box.

Class: Predicates for Determining Classes of Symbols

$func? IsBox e.Exp = ;
$func? IsChannel e.Exp = ;
$func? IsChar e.Exp = ;
$func? IsDigit e.Exp = ;
$func? IsFunc e.Exp = ;
$func? IsInt e.Exp = ;
$func? IsLetter e.Exp = ;
$func? IsString e.Exp = ;
$func? IsTable e.Exp = ;
$func? IsVector e.Exp = ;
$func? IsWord e.Exp = ;

These functions provides a way to determine whether e.Exp is a symbol belonging to a
certain class of symbol.

If e.Exp is not a single symbol, the functions return $fail(0).

If e.Exp is a symbol, the test is performed whether the symbol belongs to the
corresponding class of symbols. If so, the value returned is an empty ground expression.
Otherwise, the value returned is $fail(0).

The correspondence between the predicate functions and the sets of symbols is as
follows.

Compare: Comparison Operations

Refal Plus Reference Manual

92

$func? Eq (e.Exp1)(e.Exp2) = ;
$func? Ne (e.Exp1)(e.Exp2) = ;
$func? Ge (e.Exp1)(e.Exp2) = ;
$func? Gt (e.Exp1)(e.Exp2) = ;
$func? Le (e.Exp1)(e.Exp2) = ;
$func? Lt (e.Exp1)(e.Exp2) = ;

These functions compare two expressions e.Exp1 and e.Exp2 to determine whether
the corresponding relation between the arguments holds. The correspondence between
the functions and the relations is as follows. Eq corresponds to "equal to", Ne to "not
equal to", Ge to "greater than or equal to", Gt to "greater than", Le to "less than or equal
to", Lt to "less than".

If the condition is satisfied, the value returned by the functions is an empty ground
expression, otherwise $fail(0).

$func Compare (e.Exp1)(e.Exp2) = s.Res; /* '<', '>', '=' */

Compare compares two expressions e.Exp1 and e.Exp2, and returns either '<', if
e.Exp1 is less than e.Exp2, '>' , if e.Exp1 is greater than e.Exp2, or '=', if e.Exp1
is equal to e.Exp2.

Ground expressions are compared according to the following linear ordering relation <.

For any ground expressions Ge' and Ge'', there holds either Ge' < Ge'', Ge' =
Ge'', or Ge'' < Ge'.

Two expressions Ge' = Gt'1 ... Gt'm and Ge'' = Gt''1 ... Gt''n are
compared lexicographically, which means that their top level terms are compared
pairwise from left to right, until a pair is found of two unequal terms Gt'k and Gt''k .
Then, if Gtk' < Gtk'', it is assumed that Ge' < Ge''.

If Ge' turns out to be shorter than Ge'', and all top level terms in Ge' are equal to the
corresponding terms in Ge'', it is assumed that Ge' < Ge''.

Formally speaking, for all ground expressions Ge, Ge', Ge'' and for all ground terms Gt,
Gt', Gt'' the following holds:

•
If Ge' < Ge'' , then Gt Ge' < Gt Ge'' .

•
If Gt' < Gt'' , then Gt' Ge' < Gt'' Ge'' .

•
[] < Gt Ge .

where [] denotes an empty ground expression.

The ordering of the ground terms is defined as follows.

Symbols are assumed to be less than the terms of the form (Ge). In other words, for all
symbols Gs and ground expressions Ge,

•
Gs < (Ge)

Comparing the terms of the form (Ge) is reduced to comparing their contents according
to the rule:

•
If Ge' < Ge'' , then (Ge') < (Ge'') .

Each symbol belongs to one and only one of the following sets of symbols:
• Character symbols.

Refal Plus Reference Manual

93

• Word symbols.
• Numeric symbols.
• Reference symbols

These sets will be referred to as symbol classes. We consider the set of symbol classes
as equipped with a linear ordering, the ordering being given by the above list of symbol
classes. Thus the set of character symbols precedes the set of word symbols, etc.

If two symbols Gs' and Gs'' belong to two different classes Class' and Class'', and
Class' < Class'', then it is assumed that Gs' < Gs''.

If two symbols belong to the same class, they are compared according to the following
rules.

• Character symbols are ordered according to their codes.
• Word symbols are converted to corresponding sequences of character symbols,

which are compared as described above.
• Numeric symbols are compared as corresponding numbers.
• The ordering on the set of reference symbols depends on the Refal Plus

implementation.

Convert: Data Convertions

$func ToLower e.Char = e.Char;
$func ToUpper e.Char = e.Char;
$func CharsToBytes e.Char = e.Int;
$func BytesToChars e.Int = e.Char;
$func ToChars e.Exp = e.Char;
$func ToWord e.Exp = s.Word;
$func? ToInt e.Exp = s.Int;

ToLower converts a sequence of character symbols to a character sequence in which all
capital letters are replaced with the correspondent small letters.

ToUpper converts a sequence of character symbols to a character sequence in which all
small letters are replaced with the corresponding capital letters.

CharsToBytes converts a sequence of character symbols to a sequence of numbers,
each number being the ASCII code of the corresponding character.

If one of the above functions is given an argument that is not a sequence of character
symbols, the value returned is $error(Fname "Invalid argument"), where Fname
is the function's name.

For example:

<ToLower 'AbCd+'> => 'abcd+'
<ToLower 25> => $error(ToLower "Invalid argument")
<ToUpper 'AbCd+'> => 'ABCD+'
<ToUpper 25> => $error(ToUpper "Invalid argument")
<CharsToBytes 'ABC'> => 65 66 67

BytesToChars takes as argument a sequence of numbers, each number ranging
between 0 and 255, and converts it to a sequence of character symbols, each character
having the ASCII code equal to the corresponding number.

For example:

<BytesToChars 65 66 67> => 'ABC'

Refal Plus Reference Manual

94

ToChars, ToWord, and ToInt take an arbitrary ground expression as argument, and,
first of all, convert it to a character sequence. The conversion is performed as follows.
Character symbols are replaced with the corresponding characters, the parentheses are
replaced with the characters '(' and ')', word symbols are replaced with the
corresponding character sequences, numeric symbols are replaced with their character
representations, references to strings are replaced with the contents of the strings, all
other references are replaced with their character representations, which depend on the
Refal Plus implementation.

If the character sequence thus obtained exceeds the size limit imposed by the Refal Plus
implementation, the value returned by the functions is $error(Fname "Argument too
large for conversion"), where Fname is the function's name.

Then the functions ToChars, ToWord, and ToInt proceed in the following way.

ToChars just returns the character sequence thus obtained as its result.

<ToChars "John"> => 'John'
<ToChars 'John'> => 'John'
<ToChars 326> => '326'
<ToChars -326> => '-326'
<ToChars (-326) "John"> => '(-326)John'

ToWord converts the character sequence thus obtained to the corresponding word.

<ToWord "John"> => "John"
<ToWord 'John'> => "John"
<ToWord 326> => "326"
<ToWord -326> => "-326"
<ToWord (-326) "John"> => "(-326)John"

ToInt considers the character sequence thus obtained as the character representation
of an integer, and converts it to the corresponding numeric symbol. If the character string
is not a correct representation of an integer, the value returned is $fail(0).

For example:

<ToInt '326'> => 326
<ToInt '+326'> => 326
<ToInt "-3" '26'> => -326
<ToInt -32 006> => -326
<ToInt 'John'> => $fail(0)

Dos: Calls to the Operating System

$func Arg s.Int = e.Arg;
$func Args = e.Args;
$func GetEnv e.VarName = e.Value;
$func Time = e.String;
$func Exit s.ReturnCode = ;
$func Delay s.MSeconds = ;
$func Sleep s.Seconds = ;
$func Random s.Max = s.Rand; /* 0 <= s.Rand < s.Max */
$func Randomize = ;

These functions provide some ways of calling the operating system.

The arguments of the functions must satisfy the following restrictions. s.Int must be a
non-negative integer, e.VarName a sequence of character and word symbols,
s.ReturnCode an integer ranging from 0 to 255. If one or more of the above restrictions

Refal Plus Reference Manual

95

are violated, the result returned by the functions is $error(Fname "Invalid
argument"), where Fname is the function's name.

Arg returns the command line argument having the number s.Int. If there is no such
argument, an empty ground expression is returned.

Args returns the command line arguments as a sequence of terms, each term being a
sequence of charachter symbols enclosed in parentheses.

GetEnv returns the value associated in the OS environment with the variable having the
name e.VarName.

Time returns the current date and time represented by a ground expression of the form

DD MMM YYYY HH:MM:SS.SS

where DD is the month's day, MMM the abbreviated month name ("Jan", "Feb", "Mar",
"Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), YYYY the year
number, HH:MM:SS.SS the ours, minutes, seconds, and hundredth of a second. DD,
YYYY, HH, MM, SS are represented by integers, MMM by a word. The separators are
character symbols ' ', ':' and '.'.

Exit terminates the execution of the program, with the completion code being equal to
s.ReturnCode. If the program terminates in the normal way, i.e. the evaluation of the
call to the main function Main terminates, the completion code depends on the result
returned by the function Main. If the result is a ground expression, the completion code is
equal to 0. Otherwise, if the result has the form $error(Ge), the completion code is
equal to 100.

Delay suspends the current program from execution for the number of milliseconds
specified by s.MSeconds. The interval is accurate only to the nearest hundredth of a
second, or the accuracy or the MSDOS clock, whichever is less accurate.

Sleep suspends the current program from execution for the number of seconds specified
by s.Seconds. The interval is accurate only to the nearest hundredth of a second, or the
accuracy or the MSDOS clock, whichever is less accurate.

Random returns a pseudorandom integer in the range 0 to s.Max minus 1.

Randomize initializes the random number generator with a random value.

StdIO: Standard Input/Output

$channel StdIn StdOut StdErr;

StdIn, StdOut, and StdErr are the standard input/output channels, which are
automatically opened before the program execution starts, and automatically closed after
the program execution has terminated.

$func Channel = s.Channel;

Channel creates a new channel s.Channel.

$func? OpenFile s.Channel e.FileName s.Mode = ;
$func CloseChannel s.Channel = ;

Refal Plus Reference Manual

96

OpenFile opens the channel s.Channel and associates it with the file having the
name e.FileName. s.Mode is a word symbol specifying the mode in which the file is to
be dealt with: "r" or "R" indicates that data are to be read from the file, "w" or "W" that
data are to be written to the file, "a" or "A" that data are to be appended to the existing
file. If the file cannot be opened, OpenFile returns $fail(0).

CloseChannel closes the channel s.Channel.

$func? IsEof s.Channel = ;

IsEof tests whether the current position in the file associated with the channel
s.Channel is at the end of the file.

$func? Read = t.Term;
$func? ReadChar = s.Char;
$func? ReadLine = e.Char;
$func Write e.Exp = ;
$func WriteLn e.Exp = ;
$func Print e.Exp = ;
$func PrintLn e.Exp = ;

Read reads the current character representation of a ground term from the channel
&StdIn. If there is no term to be read, the function returns $fail(0).

ReadChar reads the current character from the channel &StdIn. If there is no character
to be read, the function returns $fail(0).

ReadLine reads the characters from the channel &StdIn up to the nearest newline
character (inclusive), and returns the characters as the result (not including the newline
character). If there is no character to be read, the function returns $fail(0).

Write writes the character representation of the expression e.Exp to the channel
&StdOut (if e.Exp does not contain dynamic symbols, the terms comprising the
expression can later be read back by the function Read).

WriteLn works in the same way as Write does, except that it adds a newline character
to the end of the expression's representation.

Print converts the expression e.Exp to a character sequence in the way the function
ToChars does, and writes this sequence to the channel &StdOut.

PrintLn works in the same way as Print does, except that it adds a newline character
to the end of the character sequence.

$func? ReadCh s.Channel = t.Term;
$func? ReadCharCh s.Channel = s.Char;
$func? ReadLineCh s.Channel = e.Char;
$func WriteCh s.Channel e.Exp = ;
$func WriteLnCh s.Channel e.Exp = ;
$func PrintCh s.Channel e.Exp = ;
$func PrintLnCh s.Channel e.Exp = ;

These functions work in the same way as the corresponding functions without "Ch" do,
except that the operations are performed on the channel s.Channel.

String: String Operations

Refal Plus Reference Manual

97

$func String e.Source = s.String;
$func StringInit s.String s.Len s.Fill = ;
$func StringFill s.String s.Fill = ;
$func StringLength s.String = s.Len;
$func StringRef s.String s.Index = s.Char;
$func StringSet s.String s.Index s.Char = ;
$func StringReplace s.String e.Source = ;
$func Substring s.String s.Index s.Len = s.NewString;
$func SubstringFill s.String s.Index s.Len s.Fill = ;

These functions provide a way to create, modify, and access strings. The arguments of
the functions must satisfy the following restrictions. s.String must be a reference to a
string, s.Index and s.Len non-negative integers, s.Fill a character symbol,
e.Source a sequence of references to strings, word symbols, and character symbols.

If one or more of the above restrictions are violated, the result returned by the functions is
$error(Fname "Invalid argument"), where Fname is the function's name.

At any moment, a string contains a finite sequence (which may be empty) of character
symbols, which is said to be the contents of the string. A string containing a sequence of
N+1 character symbols Gc0 , Gc1 , ..., GcN is said to have the length N+1. The contents
of the string will be written as

Gc0 Gc1 ... GcN

Thus the string components Gc0 , Gc1 , ..., GcN are numbered starting from zero.

String creates a new string and returns a reference to the new string. The contents of
the new string is formed from e.Source in the following way.

Suppose the parameter e.Source has the form Gs1 Gs2 ... GsM , where each
symbol Gsj is either a character symbol, a word symbol, or a reference to a string. Then
each symbol Gsj is transformed as follows.

If Gsj is a character symbol Gc, Gsj is left unchanged.

If Gsj is a word symbol, Gsj is replaced with the character sequence that is the
contents of the word.

If Gsj is a reference to a string, Gsj is replaced with the contents of the string (without
changing the state of the string).

The value of the parameter e.Source thus transformed becomes the contents of the
new string.

StringInit replaces the contents of the string referred to by s.String with a new
contents of length s.Len where all the characters are s.Fill.

StringFill replaces each character in the string referred to by s.String with
s.Fill. The length of the string remains unchanged.

StringLength returns the length of the string referred to by s.String.

StringRef returns the character contained in the position s.Index in the string
referred to by s.String.

StringSet replaces the character contained in the position s.Index in the string
referred to by s.String with s.Char. The length of the string remains unchanged.

Refal Plus Reference Manual

98

StringReplace replaces the contents of the string referred to by s.String with the
new contents formed from s.Source in the same way as it is done by the function
String.

Substring creates a new string, and returns a reference to the new string, the contents
of which is formed in the following way. Let the contents of the string referred to by
s.String be Gc0 Gc1 ... GcN . Then the contents of the new string is obtained by
removing the first s.Index characters from this sequence, and selecting the first s.Len
characters of the remaining sequence.

The contents of the source string remains unchanged.

SubstringFill replaces s.Len consecutive characters in the string referred to by
s.String with s.Char, starting from the character in the position s.Index. The length
of the string remains unchanged.

If the length of the string is not sufficient for one of the above operations to be performed,
the string remains unchanged, and the value returned by the functions is $error(Fname
"Index out of range"), where Fname is the function's name.

If one of the above operations has to create a string contents whose length exceeds the
size limit imposed by the Refal Plus implementation, the string remains unchanged, and
the value returned by the functions is $error(Fname "Size limit exceeded"),
where Fname is the function's name.

Table: Table Operations

$func Table = s.Tab;
$func Bind s.Tab (e.Key) (e.Val) = ;
$func Unbind s.Tab e.Key = ;
$func? Lookup s.Tab e.Key = e.Val;
$func? IsInTable s.Tab e.Key = ;
$func Domain s.Tab = e.Domain ;
$func TableCopy s.Tab = s.TabCopy;
$func ReplaceTable s.TargetTable s.SourceTable = ;

Table creates a new empty table, and returns a reference to this table.

Bind binds the key e.Key to the value e.Val in the table referred to by s.Tab.

Unbind removes the key e.Key as well as the value associated with the key in the table
referred to by s.Tab. If the table does not contain the key e.Key, the state of the table
remains unchanged.

Lookup returns the value associated with the key e.Key in the table referred s.Tab. If
the table does not contain the key e.Key, the function returns $fail(0).

IsInTable tests whether the table referred to by s.Tab contains the key e.Key.

Domain returns the list of the keys registered in the table referred to by s.Tab. Let the
set of the keys registered in the table be {Ge1, Ge2, ..., Gen}, then e.Domain has
the form

(Ge1)(Ge2) ... (Gen)

where the order of the keys depends on the Refal Plus implementation.

TableCopy creates a new table, copies into the new table the contents of the table

Refal Plus Reference Manual

99

referred to by s.Tab, and returns a reference to the new table.

ReplaceTable replaces the contents of the table referred to by s.TargetTable with a
copy of the contents of the table referred to by s.SourceTable.

Vector: Vector Operations

$func Vector e.Source = s.Vector;
$func VectorToExp s.Vector = e.Exp;
$func VectorInit s.Vector s.Len e.Fill = ;
$func VectorFill s.Vector e.Fill = ;
$func VectorLength s.Vector = s.Len;
$func VectorRef s.Vector s.Index = e.Exp;
$func VectorSet s.Vector s.Index e.Exp = ;
$func VectorReplace s.Vector e.Source = ;
$func Subvector s.Vector s.Index s.Len = s.NewVector;
$func SubvectorFill s.Vector s.Index s.Len e.Fill = ;

These functions provide a way to create, modify, and access vectors. The arguments of
the functions must satisfy the following restrictions. s.Vector must be a reference to a
vector, s.Index and s.Len non-negative integers, e.Fill an arbitrary ground
expression, e.Source a sequence of references to vectors and terms of the form (Ge).

If one or more of the above restrictions are violated, the result returned by the functions is
$error(Fname "Invalid argument") , where Fname is the function's name.

At any moment, a vector contains a finite sequence (which may be empty) of ground
expressions, which is said to be the contents of the vector. A vector containing a
sequence of N+1 ground expressions Ge0, Ge1, ..., GeN is said to have the length
N+1. The contents of the vector will be written as

(Ge0)(Ge1) ... (GeN)

Thus the vector components Ge0, Ge2, ..., GeN are numbered starting from zero.

Vector creates a new vector and returns a reference to the new vector. The contents of
the new vector is formed from e.Source in the following way.

Suppose the parameter e.Source has the form Gt1 Gt2 ... GtM , where each
ground term Gtj either is a reference to a vector, or has the form (Ge). Then each term
Gtj is transformed as follows.

If Gtj has the form (Ge), Gtj is left unchanged.

If Gtj is a reference to a vector, Gtj is replaced with the contents of the vector (without
changing the state of the vector).

The value of the parameter e.Source thus transformed becomes the contents of the
new vector.

VectorToExp returns the ground expression representing the contents of the vector
referred to by s.Vector.

VectorInit replaces the contents of the vector referred to by s.Vector with a new
contents of length s.Len where all the components are e.Fill.

VectorFill replaces each component in the vector referred to by s.Vector with
e.Fill. The length of the vector remains unchanged.

Refal Plus Reference Manual

100

VectorLength returns the length of the vector referred to by s.Vector.

VectorRef returns the ground expression contained in the position s.Index in the
vector referred to by s.Vector.

VectorSet replaces the ground expression contained in the position s.Index in the
vector referred to by s.Vector with e.Exp. The length of the vector remains
unchanged.

VectorReplace replaces the contents of the vector referred to by s.Vector with the
new contents formed from e.Source in the same way as it is done by the function
Vector.

Subvector creates a new vector, and returns a reference to the new vector, the
contents of which is formed in the following way. Let the contents of the vector referred to
by s.Vector be (Ge0)(Ge1) ... (GeN). Then the contents of the new vector is
obtained by removing the first s.Index terms from this sequence, and selecting the first
s.Len terms of the remaining sequence.

The contents of the source vector remains unchanged.

SubvectorFill replaces s.Len consecutive components in the vector referred to by
s.Vector with e.Exp, starting from the component in the position s.Index. The length
of the vector remains unchanged.

If the length of the vector is not sufficient for one of the above operations to be
performed, the vector remains unchanged, and the value returned by the functions is
$error(Fname "Index out of range") , where Fname is the function's name.

If one of the above operations has to create a vector contents whose length exceeds the
size limit imposed by the Refal Plus implementation, the vector remains unchanged, and
the value returned by the functions is $error(Fname "Size limit exceeded") ,
where Fname is the function's name.

Refal Plus Reference Manual

101

Bibliography
[AbR1988] S.M.Abramov and S.A.Romanenko. How to Represent Ground Expressions
by Vectors in Implementations of the Language Refal. Preprint.(In Russian). Inst. Appl.
Mathem., the USSR Academy of Sciences. Preprint #186. 1988.

[AHU1974] A.V.Aho, J.E.Hopcroft, and J.D.Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley. Reading, Mass.. 1974.

[Apt1983] K.R.Apt. Formal Justification of a Proof System for Communicating Sequential
Processes. 197--216. Journal of the ACM (JACM). 30. 1. 1983.

[BjJ1982] D.Bjørner and C.B.Jones. Formal Specification and Software Development.
Prentice-Hall International. London. 1982.

[BsR1977] Basic Refal and its Implementation on Computers (In Russian). The authors
are not indicated in the book. They are: V.F.Khoroshevski, And.V.Klimov, Ark.V.Klimov,
A.G.Krasovski, S.A.Romanenko, I.B.Shchenkov, and V.F.Turchin. GOSSTROJ SSSR,
TsNIPIASS. Moscow. 1977.

[Hen1980] P.Henderson. Functional Programming: Application and Implementation.
Prentice-Hall. 1980.

[Plotkin1983] G.D.Plotkin. An Operational Semantics for CSP. 199--223. Formal
Description of Programming Concepts II. . D. Bjørner. North-Holland. Amsterdam. 1983.

[Rom1987a] S.A.Romanenko. Refal-2 Implementation (In Russian). Inst. Appl. Mathem.,
the USSR Academy of Sciences. 1987.

[Rom1987b] S.A.Romanenko. Refal-4, an Extension of Refal-2 Enabling the Results of
Driving to be Represented (In Russian). Inst. Appl. Mathem., the USSR Academy of
Sciences. Preprint #147. 1987.

[Rom1988] S.A.Romanenko. A Compiler Generator Produced by a Self-Applicable
Specializer Can Have a Surprisingly Natural and Understandable Structure. 445--463.
Partial Evaluation and Mixed Computation. D. Bjørner. A. P. Ershov. N. D. Jones.
North-Holland. 1988.

[Sch1986] D.A.Schmidt. Denotational Semantics. Allyn and Bacon. Boston. 1986.

[Tur1986] V.F.Turchin. The concept of a supercompiler. 292--325. ACM Transactions on
Programming Languages and Systems. 8. 3. July 1986.

[Tur1989] V.F.Turchin. Refal-5, Programming Guide and Reference Manual. New
England Publishing Co.. Holyoke. 1989.

[War1980] D.H.D. Warren. Logic Programming and Compiler Writing. 97--125. Software -
Practice and Experience. 10. 1980.

[Wir1973] N.Wirth. Systematic Programming. An Introduction.. Prentice-Hall, Inc..
Englewood Cliffs, New Jersey. 1973.

[Wir1976] N.Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, Inc..
Englewood Cliffs, New Jersey. 1976.

Refal Plus Reference Manual

102

	Programming in Refal Plus
	Your First Refal Plus Program
	Data Structures
	Objects vs. Values
	Ground Expressions
	Representing Tree Structures
	Types of Objects
	Garbage Collection

	Evaluation and Analysis of Ground Expressions
	Variables
	Result Expressions
	Patterns

	Functions Defined in the Program
	Formats of Functions
	Function Definitions
	One-Sentence Function Definitions
	Local Variables
	A Syntax-Related Subtlety: Paths, Rests, and Sources
	Local Variables (Continuation)
	Recursion

	Logical conditions
	Conditions and Predicates
	Conditionals
	Logical Connectives
	Example: Formal Differentiation
	Example: Comparison of Sets

	Direct access selectors
	Functions returning several results
	Traversing Ground Expressions
	Quicksort

	Iteration
	Search and backtracking
	The Queens Problem
	The Sequence Problem

	Example: a compiler for a small imperative language
	The Source Language
	The Target Language
	The General Structure of the Compiler
	The Modules of the Compiler and their Interfaces
	The Main Module
	The Scanner
	The Parser
	The Code Generator
	The Dictionary Module

	Syntax and Semantics of Refal Plus
	Syntax Notation
	Natural Semantics Specifications
	Lexical Structure of Programs
	Comments
	Identifiers
	Tokens
	Keywords
	Character Symbols
	Word Symbols
	Numeric Symbols
	Variables

	Normalization of the Token Stream

	Objects and Values
	Static and Dynamic Symbols
	Ground Expressions
	Symbolic Names
	Expression Names
	Function Names
	Reference Names
	Module Names

	Named Ground Expressions
	Variable Values and Environments
	Result Expressions
	Patterns
	Hard Expressions
	Paths
	Conditions
	Bindings
	Searches
	Matches
	Rests
	Delimited Paths
	Negative Conditions
	Fences
	Cuts
	Failures
	Right Hand Sides
	Error Generators
	Error Traps

	Sources
	Alternatives
	Alternative Matches
	Result Expressions as Sources

	Sentences
	Pattern Alternatives
	Function Definitions
	Declarations
	Constant Declarations
	Object Declarations
	Function Declarations

	Context Dependent Restrictions
	Elimination of Redundant Constructs
	Restrictions Imposed by Function Declarations
	Restrictions on the Use of References to Functions
	Restrictions on the Use of Variables
	Restrictions on the Use of Cuts

	Trace Directives
	Modules
	Program Execution

	Refal Plus Library Functions
	Access: Direct Access to Ground Expressions
	Apply: Application of Functions Passed as Arguments
	Arithm: Arithmetic Operations on Integers
	Bit: Bitwise Operations
	Box: Box Operations
	Class: Predicates for Determining Classes of Symbols
	Compare: Comparison Operations
	Convert: Data Convertions
	Dos: Calls to the Operating System
	StdIO: Standard Input/Output
	String: String Operations
	Table: Table Operations
	Vector: Vector Operations

	Bibliography

