
Formalizing and Implementing
Multi-Result Supercompilation⋆

Ilya G. Klyuchnikov, Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Abstract. The paper explains the principles of multi-result supercom-
pilation. We introduce a formalism for representing supercompilation al-
gorithms as rewriting rules for graphs of configurations. Some low-level
technical details related to the implementation of multi-result supercom-
pilation in MRSC are discussed. In particular, we consider the advantages
of using spaghetti stacks for representing graphs of configurations.

1 Introduction

1.1 Growing variety in the field of supercompilation

Supercompilation is a program manipulation technique that was originally intro-
duced by V. Turchin in terms of the programming language Refal (a first-order
applicative functional language) [36], for which reason the first supercompilers
were designed and developed for the language Refal [34,38,25].

It might create the impression that supercompilation is a specific technique
only applicable to Refal (and Refal-like languages).

Further development of supercompilation lead to a more abstract reformula-
tion of supercompilation and to a better understanding of which details of the
original formulation were Refal-specific and which ones were universal and appli-
cable to other programming languages [28,32,6]. It particular, it was shown that
supercompilation is as well applicable to non-functional programming languages
(imperative and object-oriented ones) [9].

As a result, the distinction between “supercompilation” and a “supercom-
piler” was realized. Supercompilation is a general method, while a supercompiler
is a program transformer (based on the principles of supercompilation). Thus the
transition from the idea of supercompilation to a specific supercompiler involves
making a number of decisions. Namely, we have to:

– Select an input language: programs in this language will be dealt with by
the supercompiler. (Note that the supercompiler may produce programs in
another language, in which case we have as well to select an output language.)

⋆ Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

2

– Choose, for the selected input language, some kind of its operational se-
mantics. This step is necessary because driving is a “generalized” form of
program execution using partially known input data, which degenerates into
ordinary program execution in the case of the completely known input data,
and whose correctness is defined with respect to the underlying operational
semantics.

– Develop (or select) a language of configurations (for representing sets of
execution states). Implement operations over configurations (such as testing
two configurations for equivalence or subclass relation).

– Develop a driving algorithm (based on the previously selected kind of oper-
ational semantics).

– Develop (or choose) an algorithm of recognizing “dangerous” (potentially
infinite) branches in the trees of configurations produced by driving. In the
field of supercompilation such algorithms are traditionally referred to as
whistles.

– Develop (or choose) an algorithm of generalization that replaces a configu-
ration with a more general one (which represents a larger set of states).

– Develop an algorithm for generating an output (residual) program from a
finite graph of configurations.

Recently, in addition to “traditional” supercompilation, there have emerged
new kinds of supercompilation, such as distillation [4,5], two-level supercompila-
tion [20,16] and multi-result supercompilation [21,10]. Thus, while initially the
topic of research was believed to be the supercompiler, it became apparent later
that the true interest is in investigating the ways of constructing supercompilers.

Hence, there is an obvious increase in diversity among the various forms of
supercompilation (both in terms of object languages and different supercom-
pilation algorithms). It can be seen as a manifestation of the general law of
“branching growth of the penultimate level” [33].

Also, despite the fact that from the very beginning supercompilation was
regarded as a tool for both program optimization and program analysis [35],
the research in supercompilation, for a long time, was primarily focused only on
program optimization. Recently, however, we have seen a revival of interest in the
application of supercompilation to inferring and proving properties of programs
[22,19,11].

So there are some reasons to believe that we are witnessing the emergence
of such research directions as language-specific supercompilation (LSSC) and
domain-specific supercompilation (DSSC), technical details of the implementa-
tion of the general idea of supercompilation being dependent on both the object
language and the intended usage of a supercompiler.

As a consequence, the paradigm of research in supercompilation changes.
Until recently, the goal of the research was to find “the best” combination of
various components in order to produce “the best” supercompiler. However, it
has become apparent that “the best” supercompiler just does not exist, because
what is good for a particular programming language and/or a domain may not
be appropriate for other languages and/or domains.

3

Thus there arises a new field of research: the systematic study of various
forms and techniques of supercompilation, as well as of their applicability (in
various combinations) in different areas.

For example, there is a paper comparing 64 (!) variations of a supercompiler
in order to investigate how changes in different parts of the supercompiler affect
its ability to prove the equivalence of higher-order expressions [14].

1.2 The goal of MRSC

Obviously, to carry out such experiments one needs some tools for producing a
large number of supercompilers or, at least, a large number of variations of a
supercompiler. However, it often takes several years for a supercompiler to be
constructed by traditional techniques as they are based on “manual labor”. This
is hardly adequate for research purposes!

Thus the goal of the MRSC project is to provide a set of “prefabricated
components” or, in other words, a toolkit that could facilitate rapid
design and prototyping of supercompilers.

1.3 The approach of MRSC

The term “multi-result supercompilation” (section 3) implies that, given an input
program, a supercompiler may produce a (non-empty) set of residual programs,
rather than just a single residual program.

During the development of MRSC it was found that, although it was possi-
ble to provide separate implementations for both multi-result and single-result
supercompilation, a simpler solution is to regard single-result supercompilation
as a special case of the multi-result one (by throwing away all residual programs,
except for the first one). This approach is acceptable in terms of efficiency, pro-
vided that the set of residual program is generated incrementally, in a lazy way.

In the context of MRSC, the arguments for considering multi-result super-
compilation to be “the main case” are the following.

– Traditional supercompilation can be regarded as a special case of multi-result
supercompilation. This allows us to treat various kinds of supercompilation
in a uniform way. In particular, by describing them by sets of rewriting rules
(see sections 2 and 3).

– As will be shown later, multi-result supercompilation enables the compo-
nents of a supercompiler to be, to a large extent, decoupled from each other.
In the first place, this is true of the whistle and the generalization algorithm.
So, in the case of multi-result supercompilation, it is easy to perform com-
parative study of the relative “power” of whistles by considering all possible
generalization. This is not possible in the case of traditional supercompila-
tion, because modifications in the whistle bring about modifications in the
generalization algorithm, so that the effects produced by changes in different
parts of the supercompiler cannot be separated from each other. Thus multi-
result supercompilation provides new opportunities for comparative studies
in the field of supercompilation.

4

– Finally, during the development, it became clear that building MRSC on the
basis of multi-result supercompilation leads to a more modular, flexible and
declarative design of the whole toolkit.

That is why the paper focuses on multi-result supercompilation. Accordingly,
MRSC stands for Multi-Result SuperCompilation toolkit.

1.4 The structure of MRSC

Most existing supercompilers have common parts, which do not depend on the
object language of a supercompiler, or on the domain of a supercompiler. For
example, the overall structure of the graph of configurations and the implemen-
tation of operations to work with this graph do not depend on the representation
of configurations. Or, for example, different types of whistles and algorithms of
generalization can be formulated in abstract form, without the use of information
about the details of the language of configurations.

One of the goals of MRSC is to provide some generic data structures and op-
erations that can be used as ready-to-use building blocks for rapid development
and prototyping of supercompilers: that is, to provide some basic set of com-
ponents. On the other hand, a client should have some possibilities of creating
additional components and modifying the logic of prefabricated components.

To meet these requirements, we chose Scala [26] as an implementation lan-
guage of MRSC (although it would be interesting to try to implement a similar
toolkit using other programming languages).

Technically, the building blocks provided by MRSC are structured as traits.
So a class implementing the main logic of a supercompiler – the construction of
graphs of configurations – is assembled from a number of traits.

This paper describes MRSC 1.0. The source code is available at https:
//github.com/ilya-klyuchnikov/mrsc.

1.5 What is in this paper

Due to size limitations we are not able to include all the stuff we would like
to present: this paper is only a start of a series of publications on MRSC and
multi-result supercompilation.

It should be noted that the work on a toolkit implementing the principles of
multi-result supercompilation resulted in a revision of some traditional design
decisions related to the most low-level part of a supercompiler – the representa-
tion of graphs of configurations and the implementation of some operations over
them. It has affected the low-level components of MRSC.

This paper considers in detail only the core components of MRSC and the
“theoretical foundations” of MRSC. In particular:

– Formal definitions of several kinds of supercompilation in terms of rewriting
rules for graphs of configurations. Namely, traditional (single-result, deter-
ministic) supercompilation, non-deterministic supercompilation (as a trans-
formation relation) and multi-result supercompilation.

https://github.com/ilya-klyuchnikov/mrsc
https://github.com/ilya-klyuchnikov/mrsc

5

– Sufficient conditions ensuring the finiteness of any set of completed graphs.
– Internal representation of graphs of configurations based on spaghetti-stacks.
– A method of generating (possibly huge, yet finite) sets of completed graphs

of configurations.

Other components of MRSC will be discussed in detail in upcoming papers.

1.6 The structure of the paper

The paper is structured as follows:

– Section 2 introduces a formalism for presenting supercompilation in terms of
rewriting rules for graphs of configurations. There are then given two sets of
rewriting rules that provide generic specifications for a traditional supercom-
pilation algorithm (corresponding to deterministic supercompilation) and for
a transformation relation (corresponding to non-deterministic supercompi-
lation). By comparing these sets of rules one may get some insights about
the key differences between the two kinds of supercompilation. In the case of
traditional supercompilation, the rewriting rules ensure the generation of a
single completed graph of configurations, while the rewriting rules specifying
a transformation relation allow the generation of a (possibly infinite) set of
completed graphs of configurations.

– Section 3 gives a set of rewriting rules that provide a generic specification for
multi-result supercompilation. These rules ensure the generation of a finite
set of completed graphs of configurations. By inspecting the sets of rules, one
can see that multi-result supercompilation can be regarded as a crossbreed
between deterministic (traditional) supercompilation and non-deterministic
supercompilation (specified by a transformation relation).

– Section 4 describes the core of MRSC. The base level of MRSC imple-
ments a few low-level operations over graphs of configurations. MRSC pro-
vides two data-structures meant for representing graphs of configurations:
TGraph (based on trees) and SGraph (based on spaghetti-stacks). An ex-
planation is given as to why SGraph is more appropriate in the case of
multi-result supercompilation. MRSC provides a very simple set of 5 ba-
sic “rewriting steps” for transforming graphs of configurations and an ab-
straction GraphRewriteRules for encoding the logic of supercompilation in
terms of rewriting rules. The component GraphGenerator, when given a set
of rewrite rules, incrementally produces all possible graphs of configurations.

– Section 5 gives an overview of related works and concludes the paper.

We assume that the reader is familiar with the basics of supercompilation –
driving, whistle, generalization and residuation (the paper [32] provides a good
introduction into supercompilation).

2 Schemes of traditional supercompilation

In the supercompilation community, there are two well-established approaches
to describing and implementing supercompilers.

6

The first approach formulates supercompilation in terms of the construction
of a graph of configurations that is then transformed (residuated) into an output
(residual) program [34,28,32,18,13,5]. The origin of this approach goes back to
V. Turchin [36].

The second approach [24,23,2,7] considers a supercompiler as an expression
transformer that produces output programs “directly”, avoiding the construction
of intermediate data structures (graphs of configurations)1. This “direct-style”
approach works especially well if a supercompiler is written in a lazy language
(like Haskell) and is required to meet strong performance requirements. A draw-
back of this approach, however, is that the components of the supercompiler
tend to become more strongly coupled: an effect that is hardly desirable in the
case of MRSC.

For this reason, our presentation of supercompilation, as well as the design
of MRSC, follow the first tradition (based on the explicit construction of graphs
of configurations2).

The following sections give (generic) specifications of 3 kinds of supercom-
pilation. Namely: traditional (deterministic, single-result) supercompilation, su-
percompilation transformation relation (or, in other words, non-deterministic
supercompilation) and multi-result supercompilation.

These generic specifications describe the construction of graphs of configu-
rations in a language-agnostic way, being parameterized with respect to a set of
abstract basic operations: driving, folding, rebuilding and whistle (close to that
used by Sørensen [30,31,29]).

2.1 Rewrite rules for graphs of configurations

In the following, it will be assumed that the main result produced by a supercom-
piler is a completed graph of configurations, which is constructed with respect
to a program 𝑝 and an initial configuration 𝑐. The process starts by constructing
a graph whose single node contains the initial configuration 𝑐.

Then the construction of the graph proceeds, step-by-step, by applying graph
rewrite rules written in the following form:

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑔 → 𝑔′

Let 𝑔 denote a current graph and 𝑔′ a graph produced by a single step of
rewriting. The rewriting step 𝑔 → 𝑔′ is written under the horizontal bar. Above
the horizontal bar there is a 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 that should be satisfied in order for
this step to be applicable. We assume that there is a predicate 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑔) for
checking whether a graph 𝑔 is completed.

1 At least in an explicit way.
2 Creating a toolkit similar to MRSC on the basis of the “direct-style” approach is an
interesting, yet open problem for further research.

7

Transforming operations
𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼) : 𝐺𝑟𝑎𝑝ℎ Folding: looping back from the current node 𝛽

to a node 𝛼 in a graph of configurations.
𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠) : 𝐺𝑟𝑎𝑝ℎ Adding new nodes: a node is created for each

configuration from the list 𝑐𝑠, created nodes be-
come children of the current node 𝛽.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′) : 𝐺𝑟𝑎𝑝ℎ Rebuilding of a graph: a configuration in an ac-
tive node 𝛽 is replaced with a configuration 𝑐′.

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘(𝑔, 𝛼, 𝑐′) : 𝐺𝑟𝑎𝑝ℎ Another type of rebuilding of a graph: a con-
figuration in a node 𝛼 (which is not a current
node) is replaced with a configuration 𝑐′, the
whole subgraph for which 𝛼 is a root node is
deleted.

Inspecting operations
𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) : 𝐵𝑜𝑜𝑙 Predicate, recognizing the possibility for folding

of a node 𝛽 to a node 𝛼.
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) : 𝐵𝑜𝑜𝑙 (Whistle) Predicate, recognizing a potentially

dangerous situation (potentially infinite branch
in a graph of configurations).

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑔) : 𝐵𝑜𝑜𝑙 Predicate, determining whether a graph of con-
figurations 𝑔 is completed or not.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) : 𝐶 Rebuilding of a configuration 𝑐 (that is in the
current node 𝛽) with respect to the whole graph
𝑔.

𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐) : 𝐿𝑖𝑠𝑡[𝐶] Driving step. Next configurations for a given
configuration 𝑐.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) : 𝐿𝑖𝑠𝑡[𝐶] The set of rebuildings of a configuration 𝑐.

Fig. 1: Operations on graphs of configurations

Some rules in a set may be overlapping. It means that, given a graph, there
may be zero, one or more rules that are applicable. For this reason, the ini-
tial graph of configurations may, in principle, be rewritten into any number of
completed graphs: from zero to infinity.

It turns out that traditional, non-deterministic and multi-result supercom-
pilation can be specified by means of a set consisting of 3 (generic) rules: 𝐹𝑜𝑙𝑑,
𝐷𝑟𝑖𝑣𝑒 and 𝑅𝑒𝑏𝑢𝑖𝑙𝑑. Note that the rules corresponding to different kinds of su-
percompilation are similar, but differ in some important details, which facilitates
the comparison of the 3 kinds of supercompilation.

2.2 Basic operations

Figure 1 presents a set of basic operations that allow supercompilers to be speci-
fied in a generic way. The concrete definitions of the operations may vary for dif-
ferent supercompilers. (As an example, see the description of the internals of the
supercompiler HOSC [13].) These operations can be naturally divided into two
groups: operations that transform a graph of configurations (𝑓𝑜𝑙𝑑, 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

8

𝑟𝑒𝑏𝑢𝑖𝑙𝑑) and operations that only inspect a graph of configurations (𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒,
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠).

In fact, generic formulations of supercompilation do not depend on the exact
meaning of “inspecting” operations: it is enough to know the types of their results
and how the results are used. Also note that the names of some operations we
use in the paper differ from those used by Sørensen: 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 corresponds
to 𝑑𝑟𝑖𝑣𝑒 and 𝑟𝑒𝑏𝑢𝑖𝑙𝑑 corresponds to 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 [30,31,29].

The operations 𝑟𝑒𝑏𝑢𝑖𝑙𝑑, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 deserve a special com-
ment. Unfortunately, in supercompilation the term generalization is “overloaded”,
which can be illustrated by the following two quotations.

From [31]:

Note that we now use the term generalization in two distinct senses: to
denote certain operations on trees performed by supercompilation, and
to denote the above operation on expressions. The two senses are related:
generalization in the former sense will make use of generalization in the
latter sense.

From [37]:

A reduction from node 𝑁1 to 𝑁2 is an assignment of such values to
𝑣𝑎𝑟(𝑁2) in terms of 𝑣𝑎𝑟(𝑁1) that after their substitution the configura-
tion in 𝑁2 becomes identical to that in 𝑁1. The node 𝑁2 may be either
(1) a generalization of 𝑁1 [. . .]. Transition by a reduction edge includes
no computational steps of the machine: the exact state of the computing
machine remains the same; only its representation gets changed.

On the one hand, a configuration 𝑐′ is said to be a generalization of a config-
uration 𝑐 if 𝑐 @ 𝑐′ (which means that the set represented by 𝑐′ contains the set
represented by 𝑐). On the other hand, let us consider three configurations in the
language SLL [18]:

𝑓(𝑁𝑖𝑙, 𝑔(𝑦)) (𝑐1)
𝑓(𝑥, 𝑔(𝑦)) (𝑐2)
𝑙𝑒𝑡 𝑥 = 𝑁𝑖𝑙 𝑖𝑛 𝑓(𝑥, 𝑔(𝑦)) (𝑐3)
Here 𝑐1 @ 𝑐2, i.e. 𝑐2 is a generalization of 𝑐1. Note that 𝑐2 does not contain

enough information for the initial configuration 𝑐1 to be restored. Now suppose
that 𝑐1 and 𝑐2 appear in a graph of configurations, and 𝑐1 is the current node.
Then we cannot perform generalization just by replacing 𝑐1 with 𝑐2! Actually,
during supercompilation, 𝑐1 is replaced with 𝑐3 (which contains 𝑐2 as a subex-
pression). For this reason it is 𝑐3, rather than 𝑐2 that is sometimes referred to
as a generalization of 𝑐1.

This ambiguity in terminology is no good, as it may be a source of confusion.
For this reason, we will use a more technical term rebuilding (quite popular in
supercompilation folklore), giving it a precise meaning.

A rebuilding of a configuration is an alternative representation of the con-
figuration (in accordance with the above quotation from Turchin). The original

9

configuration can be uniquely restored from a rebuilding. For example, 𝑐3 is a
rebuilding of 𝑐1. For a given language of configurations, the set of all possible
rebuildings of a given configuration is usually finite.

A lower rebuilding of a graph of configurations is the replacement of a con-
figuration 𝑐 in the current node with a configuration 𝑐′.

The upper rebuilding of a graph of configurations (a rollback to 𝛼) is the dele-
tion of all successors of the node 𝛼, followed by the replacement of a configuration
𝑐 in 𝛼 with a configuration 𝑐′.

It will be assumed that 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐).

2.3 Scheme of supercompilation algorithm

The generic scheme of traditional supercompilation is specified by the SC-rules
shown in Figure 2a. The determinacy follows from the fact that, given a graph
that is not completed, there is exactly one rule that can be applied (in an un-
ambiguous way).

These rules can be interpreted as a step-by-step algorithm:

– While a graph of configurations is not completed:
∙ If there is a node for looping back, then make the corresponding folding

(𝐹𝑜𝑙𝑑),
∙ else if the current state of the graph is considered to be dangerous (“the

whistle blows”), then deterministically find a rebuilding of the current
configuration with respect to the current graph and then perform the
lower rebuilding of the graph (𝑅𝑒𝑏𝑢𝑖𝑙𝑑),

∙ otherwise, make a step of driving (𝐷𝑟𝑖𝑣𝑒).

2.4 Scheme of transformation relation

A supercompilation transformation relation does not use whistle and allows any
possible rebuilding to be performed, provided that the 𝐹𝑜𝑙𝑑 rule is not applicable.

The generic scheme of non-deterministic supercompilation is specified as a
transformation relation by the NDSC-rules shown in Figure 2b. Technically, there
are two differences from the case of traditional (deterministic) supercompilation:

1. If there is no possibility for folding, then both a driving step and a rebuilding
are allowed.

2. A rebuilding of the current configuration can be done non-deterministically,
by using any configuration from 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐).

Since we assume that 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐), it can be easily seen
that, given a set of operations over graphs of configurations, the transformation
supercompilation relation is an extension with respect to traditional supercom-
pilation. In other words, if the deterministic supercompiler produces a residual
program for a given input program, then the non-deterministic supercompiler is
also able to produce this residual program.

10

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐′ = 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(a) SC: Deterministic (traditional) supercompilation

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(b) NDSC: Non-deterministic supercompilation (transformation relation)

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(c) MRSC: Multi-result supercompilation

Notation:
𝑔 – a current graph of configurations
𝛽 – a current node in a graph of configurations
𝑐 – a configuration in a current node 𝛽

Fig. 2: Schemes of different types of supercompilation

In general, for a given input program, a transformation relation defines a
(possibly) infinite set of completed graphs of configurations and a (possibly)
infinite set of incomplete graphs of configurations.

Transformation relations are useful for proving the correctness of supercom-
pilation algorithm and for formulating some abstract properties of supercompi-
lation [12,15,27].

11

3 Multi-result supercompilation

Essentially, multi-result supercompilation can be regarded as a crossbreed be-
tween deterministic (traditional) supercompilation and non-deterministic super-
compilation (specified by a transformation relation)

3.1 Scheme of multi-result supercompilation

The scheme of multi-result supercompilation is specified by the MRSC-rules
shown in Fig. 2c.

It can be seen that the MRSC-rules can be regarded as a combination of the
SC-rules and the NDSC-rules. The rule 𝐹𝑜𝑙𝑑 is the same for all sets of rules. The
rule 𝐷𝑟𝑖𝑣𝑒 is taken from the SC-rules and the rule 𝑅𝑒𝑏𝑢𝑖𝑙𝑑 from the NDSC-rules.

Note that in the case of the SC-rules, the whistle and rebuilding are strongly
coupled: if the whistle blows, there has to be done a rebuilding, but if the whistle
does not blow, rebuilding is prohibited and a driving step has to be done.

However, this is not true of the MRSC-rules, because a rebuilding may be
performed even if the whistle does not blow. But the subtle point is that there
may arise a situation when the rule 𝐹𝑜𝑙𝑑 is not applicable, the whistle blows,
thereby making the 𝐷𝑟𝑖𝑣𝑒 inapplicable, and the set 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is empty, for
which reason no rebuilding is possible. It means that the process of supercompi-
lation has come to an impasse, and the graph of configurations is “unworkable”
and has to be discarded.

Let us recall that applying the SC-rules results in producing a single com-
pleted graph, the NDSC-rules a (possibly) infinite set of completed graphs, and
the MRSC-rules a finite set of completed graphs.

Theorem 1 (Finiteness of sets of completed graphs). If

1. any infinite branch in a graph of configurations is detected by the predicate
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠,

2. for any configuration 𝑐 the set 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is finite,
3. the number of successive rebuildings cannot be infinite (i.e. the chain 𝑐1, 𝑐2, 𝑐3, . . .,

where 𝑐𝑘+1 ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐𝑘) is always finite),

then the application of the MRSC-rules produces a finite set of completed graphs
of configurations.

Proof. Collapse all successive rebuildings into one rebuilding. Everything else
follows from König lemma [8] (using arguments similar to those in the Sørensen’s
proof [29]).

In the same way one can show that the MRSC-rules always produce a finite
set of dead-end graphs (to which no rule is applicable).

The third condition in the assertion of the theorem may seem to be super-
fluous. However, this is not true. Let us consider a supercompiler, such that (1)

12

numbers are allowed as variable values in its input language, and (2) configura-
tions may impose restrictions on variable values having the form 𝑥 < 𝑁 , where
𝑥 is a variable and 𝑁 is a natural number.

Suppose that the finiteness of 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is ensured by the following
requirement: if all number constants in 𝑐 do not exceed 𝑁 , then all number
constants appearing in any 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) do not exceed 𝑁 + 1. Then the
number of rebuildings for any configuration will be finite, but the number of
successive rebuildings can be infinite. For example:

𝑓(𝑥)|{𝑥<5} → 𝑙𝑒𝑡 𝑦 = 𝑥|{𝑥<5} 𝑖𝑛 𝑓(𝑦)|{𝑦<6} → 𝑙𝑒𝑡 𝑧 = 𝑦|{𝑦<6} 𝑖𝑛 𝑓(𝑧)|{𝑧<7} → . . .

If 𝑓(𝑥)|{𝑥<5} is the initial configuration, then an infinite number of completed
graphs of configurations can be generated.3

3.2 Tree of graphs

-

. . .

. . .

-

F

R

D

(a)

-

. . .

. . .

. . .

D

D

. . .

-

F

R

D

. . .

. . .

. . .

D

D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

(b)

-

. . .

!

D

. . .

-

F

R

D

. . .

!

D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

(c)

Fig. 3: Trees of graphs. (a) Deterministic algorithm, (b) Transformation relation,
(c) Multi-result supercompilation.

Suppose, we are given an initial configuration. Then the rules shown in Fig. 2
specify the process of supercompilation as a sequence of rewriting steps. A se-
quence of rewritings will be called “successful” if it leads to a completed graph
of configuration, and “unsuccessful” if it leads to a dead end (i.e. to a graph such
that no rule is applicable).

Note that (1) the SC-rules define a single successful finite sequence of rewrit-
ings, (2) the NDSC-rules define an infinite tree of rewriting steps containing finite

3 It may happen that this infinite number of graphs is residuated into a finite set of
really different output programs.

13

successful branches, finite unsuccessful branches and infinite branches, and (3)
MRSC-rules define a finite tree of rewriting steps with finite successful branches
and finite unsuccessful branches (see Fig. 3).

Thus, Theorem 1 can be reformulated as follows: multi-result supercompila-
tion defines a finite tree of graph rewriting.

3.3 Decoupling whistle and generalization

Let us take a closer look at the differences between deterministic (traditional)
supercompilation and multi-result supercompilation.

Comparing the SC-rules and the MRSC-rules in Fig. 2 reveals that these
two kinds of supercompilation only differ in the rule 𝑅𝑒𝑏𝑢𝑖𝑙𝑑. In the case of the
SC-rules, driving and generalization (rebuilding) are mutually exclusive, and the
decision whether to drive or generalize is taken by the whistle, while in the case
of the MRSC-rules a configuration can be rebuilt even if the whistle is silent.
The consequence is that the MRSC-rules completely decouple the whistle from
the generalization algorithm: the whistle does not have to bother about whether
a configuration declared to be “dangerous” can be rebuilt, or not?

Hence, as regards the whistle and generalization, multi-result supercompi-
lation provides a better separation of concerns, than traditional supercompila-
tion, and this is especially important when doing research work in the field of
supercompilation. Since a whistle does not have to take into account generaliza-
tion/rebuilding, it becomes easier to give a try to a variety of unusual whistles.
On the other hand, an algorithm of generalization is no longer required to guess
“the best” generalization: it is sufficient for it to produce 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐), a finite
set of rebuildings.

Certainly, even if 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is finite for any configuration 𝑐, it may be
still too large, so that a huge number of residual programs may be produced.
However, this is acceptable if we need to understand, first of all, whether a whistle
is in principle able to produce good results, or not. After that we may proceed
to the next task: how to reduce the size of 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) by only selecting
“reasonable” rebuildings.

3.4 Multi-result supercompilation as branching growth of the
penultimate level

The idea of multi-result supercompilation is quite simple. The fact that, until
recently, it has not been explicitly formulated can be due to two reasons.

First, for a long time, supercompilation has been primarily considered as a
program optimization technique, for which reason it was believed to be “natural”
for a supercompiler to produce a single result (the “best possible” one). However,
in the case of program analysis, it is not clear, what is the “best” residual
program? Thus we come to the idea of a supercompiler producing a set of residual
programs.

14

Second, multi-result supercompilation reveals its true potential only in com-
bination with higher-level supercompilation (in particular, two-level supercom-
pilation). While, in the case of traditional supercompilation, the transition from
single-result supercompilation to multi-result supercompilation gives only quan-
titative change. Combining two-level supercompilation with multi-result super-
compilation produces fundamentally new results [21].

4 The core of MRSC

Now let us consider which technical issues arise when developing a multi-result
supercompiler and how these issues are addressed in MRSC.

The most sophisticated technical task of a supercompiler is the construction
of a graph of configurations. A supercompiler constructs this graph in a top-
down manner, starting from an initial configuration. In the case of traditional,
single-result supercompilation, when a single graph of configurations is to be
constructed, the internal representation of this graph is not of importance. One
may choose to use a mutable data structure for graph representation and modify
it step-by-step as it was done in [37] (imperative style). Another option is to use
an immutable data structure: if the implementation language of a supercompiler
is a call-by-value one, a new structure will be generated at each step [18]. Or we
can use a lazy implementation language, in which case graphs of configurations
can be constructed in a lazy manner [17].

In any case, as can be seen from the literature, most supercompilers based on
the explicit construction of graphs of configurations, have represented graphs by
top-down trees. This representation is convenient for the generation of residual
programs, since, traditionally, a residual program is constructed by traversing a
graph in a top-down manner4.

But, as will be shown in the next subsection, the tree-based representation
of graphs of configurations is inconvenient for multi-result supercompilation.
Therefore, MRSC uses another representation for graphs, based on spaghetti-
stacks [1].

4.1 Two data structures for a graph of configurations

MRSC uses two representations for graphs of configurations: T-representation
(tree-based) and S-representation (based on spaghetti-stacks [1]). The Scala en-
coding of these representation is shown in Fig. 4.

T-representation is used when transforming a graph into a residual program.
S-representation is used during the step-by-step construction of a graph of con-
figurations. When a graph is completed, it can be either used as it is (in S-
representation), or it may be transformed from S-representation into T-represen-
tation (to be then residuated).

4 It is interesting to find an elegant way to construct a residual program using bottom-
up traversal.

15

type TPath = List[Int]
type SPath = List[Int]

case class TNode[C, D](
conf: C, outs: List[TEdge[C, D]],

base: Option[TPath], tPath: TPath)

case class TEdge[C, D](
node: TNode[C, D], driveInfo: D)

case class TGraph[C, D](
root: TNode[C, D], leaves: List[TNode[C, D]])

case class SNode[C, D](
conf: C, in: SEdge[C, D],

base: Option[SPath], sPath: SPath)

case class SEdge[C, D](
node: SNode[C, D], driveInfo: D)

case class SGraph[C, D](
incompleteLeaves: List[SNode[C, D]],

completeLeaves: List[SNode[C, D]],

completeNodes: List[SNode[C, D]]) {

val isComplete = incompleteLeaves.isEmpty
val current = if (isComplete) null else incompleteLeaves.head

}

Fig. 4: Graphs

Graphs in T-representations are objects of the class TGraph[C, D] holding
information of the following kinds:

1. C (configuration) – configurations labeling nodes of a graph.
2. D (driving info) – information labeling graph edges. This information de-

scribes the “evolution” of configurations (a transient step of driving, a branch-
ing, a decomposition, etc). This information is useful for producing residual
programs.

Every node in a T-graph is represented by an object of class TNode[C, D]
which holds information about its configuration and its output edges. We also
store a path from the root node to this node: it facilitates some manipulations
with the graph and can be used as a unique identifier of the node inside its
graph. The information about folding is stored as an (optional) path to the base
node. So, in a sense, TGraph is a tree with additional information about cycles
(foldings) in some leaves of this tree.

16

leaves

root

(a) TGraph

leaves

root

(b) SGraph

Fig. 5: MRSC data structures

The edges of a graph are coded as TEdge[C, D], which are unidirectional,
an edge only storing the information about its destination.

The “entry point” of TGraph[C, D] is its root node. Also there is additional
information about leaves, which may be useful for residuation.

As was mentioned above, T-representation is convenient for top-down traver-
sal of graphs. However, if we need to make additions to a T-graph in two different
ways, we have to do some copying. But, in the case of multi-result supercompi-
lation, we have to do divergent additions to the current graph nearly at every
step. So, T-graphs seem to be impractical for multi-result supercompilation.
It is easier to turn T-graphs upside down, to obtain S-graphs represented by
SGraph[C, D].

Thus TGraph[C, D] is totally dual to SGraph[C, D]. The two data structures
are schematically shown in Fig. 5.

𝑥 𝑦

leaves

root

(a)

𝑥 𝑦

leaves

root

(b)

Fig. 6: Reuse of nodes in S-graphs

Both data structures are immutable. Let us go into details of how S-graphs
allow different additions to graphs to be made in a functional way.

Suppose there are two rewriting steps applicable for the graph shown in
Fig. 5: adding a child node with a configuration 𝑥 to the leftmost leaf or adding

17

a child node with a configuration 𝑦 to the leftmost leaf. In the case of S-graphs,
it is sufficient to create two nodes and to reuse some parts of the previous graph
to make two new graphs! This sharing of nodes is shown schematically in Fig. 6.

It should be noted that S-representation is more convenient for the imple-
mentation of whistles, than T-representation: the majority of whistles traverses
a branch of a graph in the bottom-up way starting from the current node.

Despite these differences, many supercompilers (for historical reasons?) use
T-representation when building graphs of configurations.

So a graph of configurations being constructed is represented by the class
SGraph[C, D]: the field current represent the current node, incompleteLeaves
represent leaves that are not yet processed, completeLeaves represent completed
leaves. Also there is an additional list completeNodes representing a completed
part of a graph.

4.2 Basis of operations on S-graphs

One of the main goals of MRSC is to allow a programmer to concentrate on
writing the logic of a (multi-result) supercompiler saving him the trouble of
coding routine operations. In a sense, the lowest level of a supercompiler’s logic
is the definition of rewriting rules for graphs of configurations. MRSC allows
these rules to be encoded in a semi-declarative way.

MRSC provides a basis consisting of five “build steps”, denoting rewriting
operations over graphs of configurations in S-representation. This basis is shown
schematically in Fig. 7.

Each step is represented as a Scala value of type GraphStep[C, D] and is
assumed to be executed over the current graph of configurations (Fig. 8):

1. CompleteCurrentNodeStep – marks the current leaf as a completed one.
Used in driving.

2. FoldStep – performs a folding.
3. AddChildNodesStep – adds child nodes to the current node. Used in driving.
4. RebuildStep – performs a lower rebuilding of the graph (by replacing the

configuration in the current node).
5. RollbackStep – performs an upper rebuilding of the graph (deleting the

corresponding sub-graph).

The process of constructing any graph of configurations that is producible by
supercompilation can be represented by a sequence of the above build steps. The
build steps are executed by an interpreter that is provided by MRSC as part of
the graph generator (see below). The supercompilers implemented by means of
MRSC never transform graphs of configurations directly: they instead generate
build steps that are interpreted by the graph generator. This, to some extents,
ensures the correctness of transformations over graphs of configurations.

Note that the use of S-graphs allows rollback operation to be performed in
an elegant functional way (see the MRSC source code)5.

5 In [3] rollbacks are implemented by means of the mechanism of exceptions.

18

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒−−−−−−→

𝐹𝑜𝑙𝑑−−−→

𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒𝑠−−−−−−−−−−→

𝑐1

𝑅𝑒𝑏𝑢𝑖𝑙𝑑−−−−−→

𝑐2

𝑐1 𝑅𝑜𝑙𝑙𝑏𝑎𝑐𝑘−−−−−→ 𝑐2

Fig. 7: Basis of operations on graphs schematically

Another useful feature of encoding build steps as first-order values is that they
can be easily serialized and stored for future use. Then they can be submitted
to another software tool, such as a validator of sequences of build steps. Given
a start graph (with a single node) and a sequence of graph rewriting steps, the
validator will be asked to check whether this sequence of steps may be generated
by a certain supercompiler (or even by a transformation relation), or not.

19

sealed trait GraphRewriteStep[C, D]

case class CompleteCurrentNodeStep[C, D]
extends GraphRewriteStep[C, D]

case class AddChildNodesStep[C, D](ns: List[(C, D)])
extends GraphRewriteStep[C, D]

case class FoldStep[C, D](to: SPath)
extends GraphRewriteStep[C, D]

case class RebuildStep[C, D](c: C)
extends GraphRewriteStep[C, D]

case class RollbackStep[C, D](to: SPath, c: C)
extends GraphRewriteStep[C, D]

Fig. 8: Rewrite steps for S-graphs

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

Fig. 9: MRSC “middleware” for supercompiler construction

4.3 Generating graphs of configurations

Technically, a supercompiler written using MRSC is based upon two components
shown in Fig. 9: GraphRewriteRules and GraphGenerator.

The trait GraphRewriteRules describes the logic of a multi-result supercom-
piler in a form similar to that in Fig. 2c. This trait only declares the method
steps. A concrete supercompiler is required to provide an implementation for
this method. So the trait GraphRewriteRules only provides an interface for
using the rules.

The class GraphGenerator, by contrast, is a ready-to-use component: it is a
constituent part of any supercompiler built on top of MRSC.

GraphGenerator for a given initial configuration conf and rewriting rules
rules, generates all completed graphs of configurations defined by these rules.

20

If rules represent the logic of a traditional single-result supercompiler, then (of
course) the generator will produce a single graph.

In general, the number of graphs may be huge. Thus, to keep memory con-
sumption within reasonable limits, the graph generator is implemented as an
iterator and produces graphs on demand.

The internals of the graph generator are extremely simple (see the source
code). It maintains a set of incomplete S-graphs and a queue of completed graphs.
If a client requests the next graph and the queue is not empty, then the first graph
from this queue is returned. Otherwise, a graph g from the set of incomplete
graphs is chosen, and steps(g) is called, to produce a set of graph build steps
(which may be empty). Then each of the steps is applied to g, to obtain a set
of new graphs. Some of the new graphs are completed and some are incomplete.
The completed graphs are added to the queue of completed graphs, while the
incomplete ones are added to the current set of incomplete graphs.

(There may be implemented other strategies, producing the completed graphs
in other orders. The current implementation is straightforward, and makes the
depth-first traversal of the “tree of graphs”.)

What should a client do with the graphs generated by GraphGenerator? In
the case of a traditional supercompiler, a client may transform them into T-
graphs and then residuate these T-graphs into output programs. However, other
variants are possible. For example, a client may filter out completed graphs in
order to find graphs with specific properties. In some cases the fact of existence
or absence of graphs with specific properties may be of a special interest (when
supercompilation is used for program analysis).

Note, that the interface to the definition of graph rewriting rules shown in
Fig. 9 is quite abstract and does not depend on the input languages of supercom-
pilers. This enables the graph generator to be completely language-agnostic.

5 Conclusion

This paper describes only the internal structure and technical design of the
MRSC core. Further papers will present concrete examples of rapid prototyping
of supercompilers by means of MRSC and the use of MRSC for implementing
domain-specific supercompilers.

The first work addressing the problem of developing a general “abstract”
framework for specifying and implementing supercompilers was [37], which in-
troduced a domain-specific language SCPL for describing graph transformations.
Unfortunately, later there has been no active development in this field.

To some extent, the core of MRSC follows the spirit of SCPL, but there are
some significant differences.

First, MRSC is focused on multi-result supercompilation, which is a superset
of traditional supercompilation. The main idea of multi-result supercompilation
is the multiplicity of possible results. This idea is extended naturally into the
thesis about the variety and multiplicity of (multi-result) supercompilers that
can be used for a variety of purposes.

21

The second difference is that MRSC is designed and implemented in func-
tional style: the core data-structures (S-graph) of MRSC are immutable, which
makes it possible to generate thousands of graphs, while still keeping memory
consumption within reasonable limits. In addition, it allows, in principle, to de-
velop a parallelized version of MRSC, so that the divergent versions of a graph
of configuration can be processed simultaneously.

Of course, the first version of the MRSC toolkit is far from ideal. But we hope
that further improvements in MRSC will be driven by experience gained by using
it for implementing language- and domain-specific multi-result supercompilers.

Acknoledgements

The authors express their gratitude to all participants of Refal seminar at Keldysh
Institute for useful comments and fruitful discussions of this work and to Natasha
and Lena for their love and patience.

References

1. D. G. Bobrow and B. Wegbreit. A model and stack implementation of multiple
environments. Commun. ACM, 16:591–603, October 1973.

2. M. Bolingbroke and S. L. Peyton Jones. Supercompilation by evaluation. In Haskell
2010 Symposium, 2010.

3. M. Bolingbroke and S. L. Peyton Jones. Improving supercompilation: tag-bags,
rollback, speculation, normalisation, and generalisation, 2011. Rejected by ICFP
2011.

4. G. W. Hamilton. Distillation: extracting the essence of programs. In Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 61–70. ACM Press New York, NY, USA, 2007.

5. G. W. Hamilton. A graph-based definition of distillation. In Second International
Workshop on Metacomputation in Russia, 2010.

6. N. D. Jones. The essence of program transformation by partial evaluation and
driving. In Proceedings of the Third International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics, PSI ’99, pages 62–79, London, UK,
UK, 2000. Springer-Verlag.

7. P. Jonsson and J. Nordlander. Taming code explosion in supercompilation. In
PEPM’11, 2011.

8. S. Kleene. Mathematical logic. Dover books on mathematics. Dover Publications,
2002.

9. A. Klimov. An approach to supercompilation for object-oriented languages: the
Java supercompiler case study. In First International Workshop on Metacomputa-
tion in Russia, 2008.

10. A. Klimov. Multi-result supercompilation in action: Solving coverability problem
for monotonic counter systems by gradual specialization. In International Work-
shop on Program Understanding (PU 2011), 2011.

11. A. Klimov. Solving coverability problem for monotonic counter systems by super-
compilation. In PSI 11, 2011.

22

12. A. V. Klimov. A program specialization relation based on supercompilation and
its properties. In First International Workshop on Metacomputation in Russia,
pages 54–77, 2008.

13. I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63, Keldysh
Institute of Applied Mathematics, Moscow, 2009.

14. I. Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic embedding and gen-
eralization in a higher-order setting. Preprint 62, Keldysh Institute of Applied
Mathematics, 2010.

15. I. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31, Keldysh
Institute of Applied Mathematics, Moscow, 2010.

16. I. Klyuchnikov. Towards effective two-level supercompilation. Preprint 81, Keldysh
Institute of Applied Mathematics, 2010.

17. I. Klyuchnikov. The ideas and methods of supercompilation. Practice of Functional
Programming, (7), 2011. In Russian.

18. I. Klyuchnikov and S. Romanenko. SPSC: a simple supercompiler in Scala. In
PU’09 (International Workshop on Program Understanding), 2009.

19. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms
by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

20. I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation. In
Second International Workshop on Metacomputation in Russia, 2010.

21. I. Klyuchnikov and S. Romanenko. Multi-result supercompilation as branching
growth of the penultimate level in metasystem transitions. In PSI 2011, 2011.

22. A. Lisitsa and A. Nemytykh. Verification as a parameterized testing (experiments
with the SCP4 supercompiler). Programming and Computer Software, 33(1):14–23,
2007.

23. N. Mitchell. Rethinking supercompilation. In ICFP 2010, 2010.
24. N. Mitchell and C. Runciman. A supercompiler for core haskell. In Implemen-

tation and Application of Functional Languages, volume 5083 of Lecture Notes In
Computer Science, pages 147–164, Berlin, Heidelberg, 2008. Springer-Verlag.

25. A. P. Nemytykh and V. A. Pinchuk. Program transformation with metasystem
transitions: Experiments with a supercompiler. In Perspectives of System Infor-
matics, volume 1181 of LNCS, pages 249–260. Springer, 1996.

26. M. Odersky et al. Programming in Scala. Artima, 2nd edition, 2010.
27. D. Sands. Proving the correctness of recursion-based automatic program transfor-

mations. Theoretical Computer Science, 167(1-2):193–233, 1996.
28. M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of positive

information propagation. Master’s thesis, Dept. of Computer Science, University
of Copenhagen, 1994.

29. M. H. Sørensen. Convergence of program transformers in the metric space of trees.
In Mathematics of Program Construction, volume 1422 of LNCS, pages 315–337,
1998.

30. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-
compilation. In J. W. Lloyd, editor, Logic Programming: The 1995 International
Symposium, pages 465–479, 1995.

31. M. H. Sørensen and R. Glück. Introduction to supercompilation. In Partial Eval-
uation. Practice and Theory, volume 1706 of LNCS, pages 246–270, 1998.

32. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

33. V. F. Turchin. The phenomenon of science. A cybernetic approach to human evo-
lution. Columbia University Press, New York, 1977.

23

34. V. F. Turchin. A supercompiler system based on the language refal. SIGPLAN
Not., 14(2):46–54, 1979.

35. V. F. Turchin. The Language Refal: The Theory of Compilation and Metasystem
Analysis. Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University, 1980.

36. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

37. V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of System
Informatics, volume 1181 of LNCS. Springer, 1996.

38. V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a super-
compiler. In LFP ’82: Proceedings of the 1982 ACM symposium on LISP and
functional programming, pages 47–55, New York, NY, USA, 1982. ACM.

	Formalizing and Implementing Multi-Result Supercompilation

