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Moscow ML implements Standard ML (SML), as defined in the 1997 Definition of Standard ML, includ-
ing the SML Modules language and some extensions. Moreover, Moscow ML supports most required
parts of the SML Basis Library. It supports separate compilation and the generation of stand-alone exe-
cutables.

This document explains how to use the Moscow ML system. A companion document, the Moscow
ML Language Overview, summarizes Moscow ML syntax and the most common built-in functions [9].
Another companion document, the Moscow ML Library Documentation, describes in detail all Moscow
ML library modules [10].
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1 Getting started

1.1 Installation

Get a copy of the Moscow ML system executables (see Section 20 for instructions) and unpack them in
your home directory (under Unix) or in directory C:\ (under MS Windows and DOS). This creates a
directory mosml. Read the file mosml/install.txt. This manual, as well as the Moscow ML Language
Overview and the Moscow ML Library Documentation, are in directory mosml/doc.

1.2 The interactive system

The interactive system is invoked by typing mosml at the shell prompt. It allows you to enter declarations
and evaluate expressions:

$ mosml

Moscow ML version 2.10 (August 2013)

Enter ‘quit();’ to quit.

- fun fac n = if n = 0 then 1 else n * fac (n-1);

> val fac = fn : int -> int
- fac 10;
> val it = 3628800 : int

You can quit the interactive session by typing ‘quit () ; * or control-D (under Unix) or control-Z followed
by newline (under MS Windows and DOS). Type help "lib"; for an overview of built-in function
libraries, and e.g. help "Array" for help on Array operations. See Section 3 for further information on
mosml.

1.3 The batch compiler and linker

The batch compiler and linker is invoked by typing mosmlc at the shell prompt. It can compile ML source
files separately (mosmlc -c) and link them to obtain executables (mosmlc -o0), in a manner similar to C
compilers. See Section 10 for further information on mosmlc.

1.4 The Moscow ML Modules language

The Moscow ML Modules language is a conservative extension of the Standard ML Modules language, so
that any Standard ML program can be compiled with Moscow ML 2.10, using toplevel-mode compilation;
see Section 7.

Moreover, the Moscow ML Modules language is backwards compatible with Moscow ML versions
1.44 and before, so that any existing Moscow ML program can be compiled with Moscow ML 2.10, using
structure-mode compilation; see Section 6.

1.5 What is new in release 2.00

e The Moscow ML Modules language (designed and implemented by Claudio Russo) includes the
full Standard ML Modules language (structures, signatures, and functors):
e The Moscow ML Modules language extends the Standard ML Modules language in three ways:

— higher-order functors: a functor may be defined within a structure, passed as an argument to
another functor, or returned as the result of a functor; see Sections 11.1, 11.2 and 11.3

— first-class modules: structures and functors may be packed and then handled as Core language
values, which may then be unpacked as structures or functors again; see Section 11.4



— recursive modules: structures and signatures may be recursively defined; see Section 11.5

e Value polymorphism has become friendlier: non-generalizable free type variables are left free, and
become instantiated (once only) when the bound variable is used; see Section 12.

e Added facilities for creating and communicating with subprocesses (structure Unix and Signal
from SML Basis Library).

e Added facilities for efficient functional generation of HTML code (structure Msp); also supports
the writing of ML Server Page scripts.

e Added facilities setting and accessing ‘cookies’ in CGI scripts Mosmlcookie, thanks to Hans
Molin.

e The Gdimage structure now produces PNG images (using Thomas Boutell’s gd library).

e Internal changes: restrictions on datatype constructor ordering have been removed; the runtime
system and bytecode format now accommodate much larger programs; the representation of ex-
ceptions has been simplified; literals are now shared inside topdecs; etc.

2 Additional documentation

Moscow ML implements Standard ML (SML) as revised in 1997, also known as SML’97 [7, &], and
some extensions to the SML Modules language. Moscow ML implements much of the Standard ML
Basis Library [3], the most important omission being the functional stream input-output operations. The
Standard ML Basis Library is a joint effort of the Standard ML of New Jersey, MLWorks, and Moscow
ML developers' to enhance the portability of Standard ML programs.

The Moscow ML Language Overview [9] describes the Moscow ML source syntax, which is SML'97
with some extensions, and the most common built-in functions.

The Moscow ML Library Documentation [10] describes in detail all Moscow ML library modules and
has a comprehensive index to exceptions, functions, structures, types, and values. The same information
is available also from mosml’s built-in help function (Section 3.1) and as hypertext from Moscow ML’s
homepage and in the file
mosml/doc/mosmllib/index.html.

The Moscow ML for the Apple Macintosh [2] is a detailed user guide to the Apple Macintosh version
of Moscow ML.

I'The Basis Library authors are Andrew Appel (Princeton, USA); Emden Gansner (AT&T Research, USA); John Reppy, Lal
George, Lorenz Huelsbergen, Dave MacQueen (Lucent Bell Laboratories, USA); Matthew Arcus, Dave Berry, Richard Brooksby,
Nick Barnes, Brian Monahan, Jon Thackray (Harlequin Ltd., Cambridge, England); Carsten Miiller (Berlin, Germany); and Peter
Sestoft (Royal Veterinary and Agricultural University, Denmark).



3 The interactive system: mosml

The interactive system mosml is invoked simply by typing mosml at the command line:

$ mosml
Moscow ML version 2.10 (August 2013)
Enter ‘quit();’ to quit.

The interactive system can be terminated by typing quit () ; and newline, or control-D (under Unix) or
control-Z and newline (under MS Windows and DOS). Type ‘help "";’ for help on built-in functions.
Invoking the interactive system with command line arguments

mosml file; ... file,

is equivalent to invoking mosml and, when Moscow ML has started, entering

(use "file1"; ...; use "filey");

3.1 On-line help

In amosml session, you may type help "1ib"; for an overview of built-in function libraries. To get help
on a particular identifier, such as fromString, type

help "fromstring";

This will produce a menu of all library structures which contain the identifier fromstring (disregarding
the lowercase/uppercase distinction):

| 1 | val Bool.fromString |
| 2 | val Char.fromString

| 3 | val Date.fromString |
| 4 | val Int.fromString |
| 5 | val Path.fromString

| 6 | val Real.fromString |
| 7 | val String.fromString |
| 8 | val Time.fromString

| 9 | val TWord.fromString |
| 10 | val Word8.fromString |

Choosing a number from this menu will invoke the help browser on the desired structure, e.g. Int. The
help browser is primitive but easy to use. It works best with a window size of 24 lines.

3.2 [Editing and running ML programs

Unix and Emacs You may run mosml as a subshell under Emacs. You should use the mosml-version
of the SML mode for Emacs; see file mosml/utility/emacs for instructions. In case of errors,
Emacs can interpret mosml’s error messages and jump to the offending piece of source code. This
is very convenient.

Window systems In a window-oriented system, such as MacOS, MS Windows, or the X window system,
you may run mosml in one window and edit source code in another. After (re-)editing the source
file, you must issue a use command in the mosml window.



MS DOS and MS Windows You may use the simple edit script to invoke an editor from inside a mosml
session; see file mosml\utility\dosedit for instructions. You will not need to quit the mosml
session to edit a source file, and the script will automatically reload the newly edited file.

3.3 Command-line options of mosml

—conservative
Sets conservative mode for compilation of subsequent units: accept all extensions to the SML
Modules language, but issue a warning for each use; see Section 11. This is the default.

-1 directory
Specifies directories to be searched for interface files, bytecode files, and source files. A call to use,
load or loadOne will first search the current directory, then all directories specified by option ‘~I’
in order of appearance from left to right, and finally the standard library directory. (This option
affects the variable Meta.loadPath; see Section 3.4).

-imptypes
Specifies that the type checker should distinguish between imperative and applicative type vari-
ables, generalize all applicative type variables, and generalize imperative type variables only in
non-expansive expressions. See Section 12.

-liberal
Sets liberal mode for compilation of subsequent units: accept without warnings all extensions to
the SML Modules language; see Section 11.

—-orthodox
Sets orthodox mode for the compilation of subsequent units: reject all uses of the extensions to the
SML Modules language. That is, accept only SML Modules syntax; see Section 11.

-P unit-set
Determines which library units will be included and open at compile-time. Any library unit in the
load path can be used by the compile function for type checking purposes. Thus regardless of the
-P option, the compile function knows the type of library functions such as Array.foldl.

-P default The initial environment for the SML Basis Library: modules Array, Char, List,
String, and Vector will be loaded, and Char, List, and String will be partially opened.

-P sm190 This provides an initial environment which is upwards compatible with that of the 1990
Definition of Standard ML and with pre-1.30 releases of Moscow ML. In particular, the
functions chr, explode, implode, and ord work on strings, not characters. The new ver-
sions of these functions are still available as Char.chr, Char.ord, String.explode, and
String.implode. The math functions and input-output facilities required by the 1990 Def-
inition [7, Appendix C and D] are available at top-level. In addition the same libraries are
loaded as with -P default.

-P n3j93 This provides a top-level environment which is mostly compatible with that of SML/NJ
0.93. The functions app, ceiling, chr, dec, explode, fold, hd, implode, inc, max, min,
nth, nthtail, ord, ordof, revapp, revfold, substring, t1, and truncate have the same
type and meaning as in SML/NJ 0.93. Note that this is incompatible with SML/NJ version
110. The math functions and input-output facilities required by the 1990 Definition [7, Ap-
pendix C and D] are available at top-level. In addition the same (new) libraries are loaded as
with -P default. This option does not imply -imptypes.

-P full This loads all the libraries marked F in the library list (see [9]), and partially opens the
Char, List, and String units.

-P none No library units are loaded or opened initially.



Additional library units can loaded into the interactive system by using the load function; see
Section 3.4 below.

-quietdec
Turns off the interactive system’s prompt and responses, except for warnings and error messages.
Useful for writing scripts in SML. Sets Meta.quietdec to true; see Section 3.4.

-stdlib stdlib-directory
Specify the standard library directory to be stdlib-directory. The default standard library is usually
mosml/1ib under Unix and c:\mosml\1lib under MS Windows and DOS.

-valuepoly
Specifies that the type checker should use ‘value polymorphism’; see Section 12. Default.

3.4 Non-standard primitives in the interactive system

The following non-standard primitives are defined in unit Meta, loaded (and open by default) only in
the interactive system. Hence these primitives cannot be used from source files which are compiled
separately. The functions compile, compileStructure, compileToplevel and load deal with Moscow
ML compilation units; see Section 5.

compile : string -> unit
Evaluating compile "U.sig" will compile and elaborate the specifications in file U.sig in structure
mode, producing a compiled signature U in file U.ui. This function is backwards compatible with
Moscow ML 1.44 and earlier. Equivalent to compileStructure [] "U.sig".
Evaluating compile "U.sml" will elaborate and compile the declarations in file U.sml in structure
mode, producing a compiled structure U in bytecode file U.uo. If there is an explicit signature
U.sig, then file U.ui must exist, and the structure must match the signature. If there is no U.sig,
then an inferred signature will be produced in file U.ui. No evaluation takes place. This function is
backwards compatible with Moscow ML 1.44 and earlier. Equivalent to compileStructure []
"U.sml".
The declared identifiers will be reported if verbose is true (see below); otherwise compilation
will be silent. In any case, compilation warnings are reported, and compilation errors abort the
compilation and raise the exception Fail with a string argument.

compileStructure : string list -> string -> unit
Evaluating compileStructure opnunits "U.sig" will elaborate and compile the specifications
in file U.sig in structure mode, producing a compiled signature U in file U.ui. The units listed in
opnunits are added to the compilation context in which the specifications in U.sig are compiled.
Evaluating compileStructure opnunits "U.sml" will elaborate and compile the declarations in
file U.sig in structure mode, producing a compiled structure U in bytecode file U.uo. The contents
of the units listed in opnunits are added to the compilation context in which the declarations in
U.sml are compiled. If there is an explicit signature U.sig, then file U.ui must exist, and the structure
must match the signature. If there is no U.sig, then an inferred signature will be produced in file
UL.ui. No evaluation takes place.

compileToplevel : string list -> string -> unit
Evaluating compileToplevel opnunits "U.sig" will elaborate and compile the specifications in
file U.sig in toplevel mode, producing a compiled interface file U.ui. The units listed in opnunits
are added to the compilation context in which the specifications in U.sig are compiled.
Evaluating compileToplevel opnunits "U.sml" will elaborate and compile the declarations in
file U.sig in toplevel mode, producing a bytecode file U.uo. The contents of the units listed in
opnunits are added to the compilation context in which the declarations in U.sml are compiled.
If there is an explicit signature U.sig, then file U.ui must exist, and declarations must match the



interface. If there is no U.sig, then an inferred signature will be produced in file U.ui. No evaluation
takes place.

conservative : unit -> unit
Evaluating conservative () sets conservative mode for the compilation functions: accept all
extensions to the SML Modules language, but issue a warning for each use; see Section 11. The
conservative mode may be set also by the mosml option —conservative. Conservative mode is the
default.

installPP : (ppstream -> ’"a -> unit) -> unit
Evaluating installPP pp installs the prettyprinter pp at type ty, provided pp has type ppstream
-> ty -> unit. The type ty must be a nullary (parameter-less) type constructor, either built-in
(such as int or bool) or user-defined. Whenever a value of type ty is about to be printed by the
interactive system, and whenever function printVal is invoked on an argument of type ty, the
prettyprinter pp will be invoked to print it. See the example in mosml/examples/pretty.

liberal : unit -> unit
Evaluating 1iberal () sets liberal mode for the compilation functions: accept (without warnings)
all extensions to the SML Modules language; see Section 11. The liberal mode may be set also by
the mosml option -liberal.

load : string -> unit
Evaluating 1oad "U" will load and evaluate the compiled unit implementation from file U.uo. The
resulting values are not reported, but exceptions are reported, and cause evaluation and loading to
stop. If U is already loaded, then load "U" has no effect. If any other unit is mentioned by U
but not yet loaded, then it will be loaded automatically before U. The loaded unit(s) must be in the
current directory or in a directory on the loadPath list (see below).
After loading a unit, it can be opened with open U. Opening it at top-level will list the identifiers
declared in the unit.
When loading U, it is checked that the interfaces of units mentioned by U agree with the interfaces
used when compiling U, and it is checked that the interface of U has not been modified since U was
compiled; these checks are necessary for type safety. The exception Fail is raised if the interface
checks fail, or if the file containing U or a unit mentioned by U is not found.

loaded : unit -> string list
Evaluating loaded () will return a list of the names of loaded units in some order (not including
the preloaded units Meta and General).

loadOne : string -> unit
Evaluating 1oadOne "U" is similar to 1oad "U", but raises exception Fail if U is already loaded
or if some unit mentioned by U is not yet loaded. That is, it does not automatically load any units
mentioned by U. It performs the same interface checks as load.

loadPath : string list ref
This variable determines the load path: which directories will be searched for interface files (.ui
files), bytecode files (.uo files), and source files (.sml files). This variable affects the 1oad, 1oadOne,
and use functions. The current directory is always searched first, followed by the directories in
loadPath, in order. By default, only the standard library directory is in the list, but if additional
directories are specified using option -I, then these directories are prepended to Meta.loadPath.

orthodox : unit -> unit
Evaluating orthodox () sets orthodox mode for the compilation functions: reject all uses of the
extensions to the SML Modules language; see Section 11. That is, accept only SML Modules
syntax. The orthodox mode may be set also by the mosml option ~orthodox.

printval : 'a -> 'a
This is a polymorphic function provided as a quick debugging aid. It is an identity function,
which as a side-effect prints its argument to standard output exactly as it would be printed at top-



level. Output is flushed immediately. For printing strings, the function print is more useful than
printval.

printDepth : int ref
This variable determines the depth (in terms of nested constructors, records, tuples, lists, and vec-
tors) to which values are printed by the top-level value printer and the function printval. The
components of the value whose depth is greater than printDepth are printed as ‘#’. The initial
value of printDepth is 20.

printLength : int ref
This variable determines the depth to which list values are printed by the top-level value printer
and the function printVal. Only the first printLength elements of a list are printed, and the
remaining elements are printed as ‘... . The initial value of printLength is 200.

quietdec : bool ref
This variable, when true, turns off the interactive system’s prompt and responses, except warnings
and error messages. Useful for writing scripts in SML. The default value is false; it can be set to
true with the -quietdec command line option; see Section 3.3.

quit : unit -> unit
Evaluating quit () quits Moscow ML immediately.

quotation : bool ref
Determines whether quotations and antiquotations are permitted in declarations entered at top-level
and in files compiled with compile; see Section 16. When quotation is false (the default), the
backquote character is an ordinary symbol which can be used in ML symbolic identifiers. When
quotation is true, the backquote character is illegal in symbolic identifiers, and a quotation ‘a b
¢ ' will be evaluated to an object of type a frag list.

use : string -> unit
Evaluating use "f" causes ML declarations to be read from file f as if they were entered from
the console. The file must be in the current directory or in a directory on the loadPath list. A file
loaded by use may, in turn, evaluate calls to use. For best results, use use only at top level, or at
top level within a use’d file.

valuepoly : bool ref
Determines whether the type checker should use ‘value polymorphism’; see Section 12. Command-
line option -valuepoly sets valuepoly to true (the default), whereas option -imptypes sets
valuepoly to false; see Sections 3.3 and 10.2.

verbose : bool ref
Determines whether the signature inferred by a call to compile will be printed. The printed sig-
nature follows the syntax of Moscow ML signatures, so the output of compile "U.sml" can be
edited to subsequently create file U.sig. The default value is false.
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4 Understanding inferred types and signatures

When you enter a declaration in the interactive toplevel, mosml responds with a type or signature. The
response provides much information about the declaration. It is worth learning how to interpret this
information.

In the type reported for a value binding, the generalized type variables are listed between the val
keyword and the identifier bound by the declaration:

- val £ = length;
>val 'a £ = fn : ’a list -> int — polymorphic function;  a has been generalized

When value polymorphism (see Section 12) prevents the generalization of a type variable, it remains free
and ungeneralized. Hence ’a will appear in the type 'a l1ist -> int, but will not be listed between
val and f.

For a datatype declaration, which is generative, the response describes the new internal type names
(here u), the datatype’s type structure (consisting of the internal type name and the constructors), and the
constructors:

- datatype u = A;
> New type names: =u
datatype u = (u,{con A : u})
con A=A :u
The notation =u means that the internal type name u admits equality. Since the datatype declaration is
generative, repeated declaration of datatype u will produce distinct new internal type names u/1, u/2,
etc. If the datatype is polymorphic, the internal type name will be a type function, taking as parameter a
type variable ' a:

- datatype 'a u = A of "a;
> New type names: =u
datatype "a u = ("a u,{con "a A : "a -> "a u})
con'aA=1fn:"'a->"au
For a signature specifying an unknown type, the response is a type function /\t.{...} mapping any
internal type name t to a record { . . .}, which is the internal representation of the signature:

- signature SIG = sig type t val x : t end;
> signature SIG = /\t.{type t = t, val x : t}

For a structure declaration, the response describes any new internal type names, and then the internal
signature of the structure. Here it has three components (datatype t, constructor A, and value identifier
x):

- structure S = struct datatype t = A; val x = A end;

> New type names: =t
structure S : {datatype t = (t,{con A : t}), con A : t, val x : t}

For a functor, the response describes a signature function {...}->{...}, mapping the signature of the
functor argument to the signature of the functor body:

- functor F(X : sig val x : int end) = struct val y = X.x end;
> functor F : {val x : int}->{val y : int}

When the functor argument signature specifies an unknown type, the signature function will have the
form
't.{...}->{...} in which the internal type name t has been generalized:

11



- functor F(X : sig type t; val x : t end) = struct val y = X.x end;
> functor F : !'t.{type t =t, val x : t}->{val y : t}

When the body of a (standard) generative functor G contains a datatype declaration, the response de-
scribes what new internal type names will be generated at every application of the functor. The notation
{}->... means that the functor argument signature is empty, and the notation ?=t . { ...} says that there
is some internal type name t, admitting equality, such that the functor body has the signature {. .. }:

- functor F() = struct datatype t = A end;
> functor F : {}->?=t.{datatype t = (t,{con A : t}), con A : t}

When the functor is applicative (see Section 11.2) then no new internal type names are generated at
functor application.

12



S Compilation units

Moscow ML programs can be split into several source files, so-called compilation units, or units for
short. A compilation unit consists of an implementation file unitid.sml and an optional interface file
unitid.sig. A unit must be compiled in one of two modes:

e Structure mode: File . sml declares a single SML structure 2, and file A. sig, if present, declares
an explicit SML signature A that is used as an opaque constraint for structure A.

Structure-mode units are backwards compatible with the simple structures used in Moscow ML
version 1.20 through 1.44. Hence old Moscow ML programs can be compiled (in structure mode)
with no changes.

To compile a unit in structure mode, use the function compileStructure (see Section 3.4), or
invoke the batch compiler mosmlc, preceding the unit file name with option -structure (see
Section 10.2).

o Toplevel mode: File A.sml contains a Moscow ML declaration (which may itself be a sequence
of declarations), and file A.sig, if present, must be a Moscow ML specification (which may itself
be a sequence of specifications).

Toplevel-mode units can contain arbitrary Moscow ML code, and hence arbitrary Standard ML
code.

To compile a unit in toplevel mode, use the function compileToplevel (see Section 3.4), or invoke
the batch compiler mosmlc, preceding the unit file name with option ~toplevel (see Section 10.2).

The implementation file and the interface file (if any) of a unit must be compiled in the same mode. The
precise syntax of structure-mode units and toplevel-mode units is given in the Moscow ML Language
Overview [9].

A programming project may consist of a mixture of structure-mode and toplevel-mode compilation
units. See the example in Section 8.

5.1 Compiling, linking and loading units

Compiling a unit interface A.sig produces a compiled unit interface in file A.ui. Compiling a unit
implementation A.sml produces a compiled unit implementation in file A.uo, containing bytecode. In
addition, if there is no correspond interface A. sig, then a file A.ui, containing an inferred unit interface,
is produced.
Only the compiled unit interface 2. ui is needed when compiling other units that depend on A. sml.
Thus the following file name extensions have a special meaning:

Extension | Contents
.sig unit interface
.sml unit implementation
.ui compiled (or inferred) unit interface
.uo compiled unit implementation (bytecode)
Compiled unit implementations can be linked together using mosmlc -o mosmlout A.uo ... to pro-

duce a linked executable bytecode file mosmlout. The linker will automatically link in any required
bytecode files into mosmlout. See Section 10.2 for more options.

Compiled units can be loaded into the interactive system mosml using the primitives 1oad and loadOne;
see Section 3.4. Loading a unit makes the entities declared by the unit accessible to subsequent declara-
tions in the interactive system.

13



5.2 Compiling existing SML programs that involve .sig files

The special meaning of .sig files may cause conflicts when compiling existing SML programs (written
for other compilers), in which .sig files are often used rather informally to contain signature declarations.
For instance, file A. sig may declare the signatures of structures declared in file A. sm1 (but might contain
other arbitrary SML declarations besides).

By contrast, in Moscow ML, .sig files play a formal role. More precisely, Moscow ML expects file
A.sig to contain a unit interface. Thus it may be necessary to rename A.sig to A-sig.sml, compile it
before A.sml, and make its contents available to A . sml (see also Section 7):

mosmlc -c -toplevel A-sig.sml
mosmlc -c -toplevel A-sig.ui A.sml

5.3 Unit names and MS DOS/Windows/OS2 file names

In MS DOS, Windows, and OS/2, the file system may change the case of unit file names, and even truncate
them (in MS DOS). Under MS Windows, file names are not truly case sensitive. Since file names are
used as unit names, this may cause problems. We attempt to circumvent these problems as follows:

o Unit names used inside ML programs under MS DOS and MS Windows are ‘normalized’: the first
character is made upper case (if it is a letter), all other characters are made lower case, and (under
MS DOS only) the unit name is truncated to eight characters. Hence a unit which resides in file
commands. sml can be referred to as unit Commands inside an ML program.

e The following names are exceptions to this rule: BasicIO, BinIO, CharArray, CharVector,
CommandLine,FileSys, ListPair, 0S, StringCvt, Substring, TextI0, Word8Array, Word8Vector;
they are normalized precisely as shown above for compatibility with the SML Basis Library.

e Under MS DOS (only), a unit name given as argument to e.g. load or compile, or to the batch
compiler, is truncated and made lower case, so evaluating 1load "VeryLongName" will load byte-
code file verylong.uo.
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6 Structure-mode compilation units

This section describes the use of structure-mode compilation units, which are backwards compatible with
Moscow ML versions 1.20 through 1.44.

6.1 Basic concepts

A structure-mode compilation unit consists of a unit implementation, in file unitid. sml, and an optional
unit interface, in file unitid.sig.

The file unitid.sml must contain a declaration of a single Moscow ML structure unitid, and file
unitid.sig, if present, must contain a declaration of a single Moscow ML signature unitid. When
the unit interface is present, it is called the explicit signature to distinguish it from the signature inferred
when elaborating the unit implementation. When present, the explicit signature must be matched by the
implementation, and only those identifiers specified in the signature are visible outside the unit.

For a structure-mode unit it is immaterial whether a compilation unit’s interface and implementation
are compiled and directly executed in the interactive toplevel system:

mosml
> use "unitid.sig";
> use "unitid.sml";

or whether they are first compiled in structure-mode, and then loaded into the interactive toplevel system:

mosmlc -c -structure unitid.sig unitid.sml
mosml
> load "unitid";

where unitid. sig, if present, must be compiled before unitid.sml.
More generally, when a compilation unit depends on a number of other compilation units "unitidy",...,"unitid,",
then compilation inside the interactive system:

mosml

> app load ["unitidi",...,"unitid,"];
> use "unitid.sig";

> use "unitid.sml";

is equivalent to structure-mode compilation followed by loading into the interactive system:

mosmlc -c -structure unitidj.ui ... unitid,.ui unitid.sig unitid.sml
mosml
> app load ["unitid{",...,"unitid,"];

> load "unitid";

6.2 Structure-mode units without explicit signature

A unit U without an explicit signature consists of a file U.sml containing

structure U = modexp

This is the same as a simple SML structure declaration. There must be no corresponding explicit signature
file U.sig.

6.3 Structure-mode units with explicit signature

A unit U with an explicit signature consists of a signature file U.sig containing
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signature U = sigexp

and a file U.sml, containing

structure U :> U = modexp
This is similar to an SML structure declaration with an opaque signature constraint. Note that the file
name, signature name, and structure name must be the same. The notation ‘U :> U’ is an opaque signa-

ture constraint, meaning that other units have no access to the internals of U.sml, only to the signature
U.sig.
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7 Toplevel-mode compilation units

A toplevel-mode compilation unit may contain arbitrary Moscow ML toplevel declarations, and conse-
quently, arbitrary Standard ML toplevel declarations (including functor, signature and fixity declarations).

7.1 Basic concepts

A toplevel-mode compilation unit consists of a unit implementation, in file unitid. sml, and an optional
unit interface, in a file called unitid.sig.

The file unitid. sml may contain arbitrary Moscow ML declarations, and file unitid. sig, if present,
may contain arbitrary Moscow ML specifications. When the unit interface is present, the unit implemen-
tation must implement everything specified in the unit interface, and only those identifiers specified in the
interface are visible outside the unit. It is considered a mistake for the implementation to declare more
identifiers than specified in the interface or for the implementation to declare an identifier as a constructor
or exception, but the interface to specify that identifier as an ordinary value: a warning is issued in these
cases.

Provided the interface and implementation agree on which identifiers are declared, then it is immate-
rial whether a compilation unit is compiled and directly executed in the interactive toplevel system:

mosml
> use "unitid.sml";

or whether it is first compiled in toplevel-mode, and then loaded into the interactive system:

mosmlc -c -toplevel unitid.sig unitid.sml
mosml
> load "unitid";

In contrast to a structure-mode unit, the unit interface unitid. sig should not be loaded in the interactive
system, as it declares nothing. If there is no unitid. sig, then leave it out in the mosmlc command above.

More generally, when a toplevel compilation unit depends on a number of other compilation units
"unitid;", ..., "unitid," (compiled in structure mode or toplevel mode), then compilation inside the
interactive system:

mosml
> app load ["unitidi",...,"unitid,"];
> use "unitid.sml";

is equivalent to toplevel-mode compilation followed by loading into the interactive system:

mosmlc -c -toplevel unitidj.ui ... unitid,.ui unitid.sig unitid.sml
mosml
> app load ["unitidy",...,"unitid,"];

> load "unitid";

Again, if there is no unitid.sig, then leave it out in the mosmlc command above.
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8 An example program consisting of four mixed-mode units

To illustrate units, we present a tiny program working with arithmetic expressions. It consists of two
structure-mode units, Expr and Reduce and two toplevel-mode units, Evaluate and Test. This example
is in mosml/examples/units.

File Expr.sml below is a structure-mode unit implementation that contains structure Expr which
defines a datatype expr for representing expressions and a function show to display them. It has no
signature constraint and therefore exports both the datatype and the function:

structure Expr = struct
datatype expr = Cst of int | Neg of expr | Plus of expr * expr

fun show (Cst n) makestring n
| show (Neg e) ="(-" "~ showe ~™")"
| show (Plus (el, e2)) = "(" »~ show el ~ "+" » show e2 ~ ")"
end

File Reduce. sig below is a structure-mode unit interface that contains the signature Reduce:

signature Reduce = sig
val reduce : Expr.expr -> Expr.expr
end

File Reduce. sml below is a structure-mode unit implementation that declares the structure Reduce, with
the explicit signature shown above, and therefore exports only the function reduce specified in that
signature:

structure Reduce :> Reduce = struct
local open Expr

in
fun negate (Neg e) = e
| negate e = Neg e
fun reduce (Neg (Neg e)) = e
| reduce (Neg e) = negate (reduce e)
| reduce (Plus (Cst 0, e2)) = reduce e2
| reduce (Plus (el, Cst 0)) = reduce el
| reduce (Plus (el, e2)) = Plus (reduce el, reduce e2)
| reduce e = e
end
end

File Evaluate.sig below is a toplevel-mode unit interface that contains the specification of a functor
Eval, which maps any structure R matching the signature Reduce to a structure with a function eval for
evaluating expressions, and a function test for testing R:

functor Eval : functor (R:Reduce) —>
sig val eval: Expr.expr -> int
val test: Expr.expr -> bool
end

File Evaluate.sml below is a toplevel-mode unit implementation that contains the actual functor Eval,
which mentions the unit Expr as well as well as the unit interface Reduce:
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functor Eval (R:Reduce) =

struct
local open Expr in
fun eval (Cst n) =n
| eval (Neg e) = ~ (eval e)
| eval (Plus (el, e2)) = eval el + eval e2;
fun test e = (eval e = eval (R.reduce e))
end
end

File Test.sml is a toplevel-mode unit implementation which mentions the unit Expr, the unit Reduce,
and the functor Eval defined in the unit Evaluate, applies the functor to Reduce and carries out two
tests:

structure T = Eval (Reduce)

open Expr

val tl = T.test (Plus (Cst 244, Cst 0))

val t2 = T.test (Neg (Plus (Neg (Cst 140), Cst 0)))

The simplest way to compile this example is to enter:

mosmlc -c -structure Expr.sml Reduce.sig Reduce.sml -toplevel Evaluate.sig
Evaluate.sml Test.sml

which is equivalent to issuing the following individual commands:

mosmlc -c -structure Expr.sml

mosmlc -c -structure Expr.ui Reduce.sig

mosmlc -c -structure Expr.ui Reduce.sml

mosmlc -c -toplevel Expr.ui Reduce.ui Evaluate.sig

mosmlc -c -toplevel Expr.ui Reduce.ui Evaluate.sml

mosmlc -c -toplevel Expr.ui Reduce.ui Evaluate.ui Test.sml

The above command (re)compiles all files unconditionally. However, when modifying a program con-
sisting of several units, it suffices to recompile just those units that have changed, and those units that
depend on units that have changed. Moreover, compilation uses only the interfaces of other units, so it
suffices to recompile just those units that depend on unit interfaces that have changed.

Thus if Expr.sml but not Expr.sig changes, it suffices to recompile just Expr.sml, not the units
Reduce, Evaluate, or Test. Similarly, if Reduce.sml but not Reduce.sig changes, it suffices to re-
compile just Reduce. sml, not the units Evaluate or Test.

The next section explains recompilation management using mosmldep and make.
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9 Recompilation management using mosmldep and make

Recompilation management helps the programmer recompile only what is necessary after a change to a
unit interface or unit implementation.

Consider the example program in Section 8 consisting of the four units Expr, Reduce, Evaluate and
Test. Assume their source files *.sig and *.sml reside in a particular directory (you may copy them
from mosml/examples/units). Copy the Makefile stub from mosml/tools/Makefile.stub to that
directory, and change to that directory.

1. Edit the Makefile so that the names of the units Expr, Reduce, Evaluate, and Test appear on the
line beginning with ‘UNITS=’, with each unit preceded by the option -structure (the default) or
-toplevel toindicate its mode (see the example makefile in mosml/examples/units/Makefile):

UNITS= -structure Expr Reduce -toplevel Evaluate Test
2. Edit the Makefile so that the names of the compiled unit implementation files Expr . uo, Evaluate.uo,
Reduce.uo and Test.uo appear on the line beginning with ‘all:’:

all: Expr.uo Reduce.uo Evaluate.uo Test.uo

3. Compute the dependencies among the files by executing:
make depend
4. Recompile all those files which have not yet been compiled, or which have been modified but not
yet recompiled, or which depend on modified files, by executing:
make
Step (4) must be repeated whenever you have modified a component of the program system. Step (3)
need only be repeated if the inter-dependencies of some components change, or if you add or remove an
explicit signature file. Steps (2 and 1) need only be repeated when you add, delete or change the mode of

an entire unit in the program system.
The compiled *.ui and *.uo files can be removed by executing:

make clean

The unit dependencies are computed by the ML program mosmldep, called with

mosmldep $(UNITS)

When you explicitly list the units (together with the indication of their compilation mode):

UNITS= -structure Expr Reduce -toplevel Evaluate Test

then mosmldep merely constructs a dependency file on the assumption that a unit may depend on all
preceding units (to the left), taking into account the presence of explicit interfaces (.sig files). Unfor-
tunately, this means that mosmldep will generally create an inefficient Makefile, containing more depen-
dencies than are actually in your source files. However, it still saves some recompilation (which is cheap
in Moscow ML anyway) and is more convenient than hand-crafting the Makefile. We hope to improve on
this situation in the future, but computing dependencies for full Standard ML programs is known to be
difficult.
If you omit step (1) and leave $ (UNITS) undefined:

UNITS=
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then mosmldep will accurately infer the dependencies between all the .sig and .sml source files in the
directory by inspecting their contents and looking for occurrences of unit names. Unfortunately, this
process only works for programs containing just structure-mode units, that themselves contain only flat
structures, but no functors or sub-structures. This is the behaviour of mosmldep in releases of Moscow
ML prior to 2.00, and is provided for backwards compatibility.
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10 The batch compiler and linker: mosmlc

Moscow ML includes a batch compiler and linker mosmlc in addition to the interactive system mosml.
It compiles units and links programs, and can turn them into standalone executable bytecode files. The
batch compiler can be invoked from a Makefile (see Section 9), which simplifies the (re)compilation of
large programs considerably.

10.1 Overview

The mosmlc command has a command-line interface similar to that of most C compilers. It accepts several
types of arguments: source files for unit interfaces, source files for unit implementations, compiled unit
interfaces (which are added to the compilation context), and compiled unit implementations (which are
added to the linked executable).

e An argument ending in .sig is taken to be the name of a source file containing a unit interface.
Given a file U.sig, the compiler produces a compiled interface in the file U.ui.

e An argument ending in .sml is taken to be the name of a source file containing a unit implemen-
tation. Given a file U.sml, the compiler produces compiled object code in the file U.uo. It also
produces an inferred interface file U.ui if there is no explicit interface U.sig.

e An argument ending in .ui is taken to be the name of a compilation unit interface. The contents of
that compilation unit are added to the compilation context of the remaining source files.

e An argument ending in .uo is taken to be the name of a compiled unit implementation. Such
files are linked together, along with the compiled unit implementations obtained by compiling .sml
arguments (if any), and the necessary Moscow ML library files, to produce a standalone executable
program.

The linker automatically includes any additional bytecode files required by the files specified on the
command line; option -i makes it report all the files that were linked. The linker issues a warning
if a file B is required by a file A that precedes B in the command line. At run-time, the top-level
declarations of the files are evaluated in the order in which the files were linked; in the absence of
any warning, this is the order of the .uo and .sml files on the command line.

The linker (and the load function in the interactive toplevel) ensure probabilistically type-safe
linking, so it is virtually impossible to cause the system to create a type-unsafe program.

The output of the linking phase is a file containing compiled code that can be executed by the runtime
system camlrunm. If mosmlout is the name of the file produced by the linking phase (with option -o
mosmlout), the command

mosmlout argy; argy ... arg,

executes the compiled code contained in mosmlout. Executing the code means executing the toplevel dec-
larations of all the bytecode files involved, in the order in which they were linked. The list of command-

line arguments arg; ... arg, can be obtained in a program by CommandLine.arguments ().

There is no distinguished function which is automatically invoked when the program is executed, but
it is common to define a main function and invoke it using the toplevel declaration val _ = main(), like
this:

fun main () =
case CommandLine.arguments () of

[arg] => print ("The argument is " " arg * "\n")
=> print "Usage: mosmlout arg\n\n"

val _ = main ();
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MS Windows and DOS: If the output file produced by the linking phase has extension .exe, and op-
tion -noheader is not used, then the file is directly executable. Hence, an output file named
mosmlout .exe can be executed with the command

mosmlout argl arg2 ... argn

The output file mosmlout .exe consists of a tiny executable file prepended to a linked bytecode
file. The executable invokes the camlrunm runtime system to interpret the bytecode. As a conse-
quence, this is not a standalone executable: it still requires camlrt.dll to be present in directory
C:\mosml\bin.

Unix: The output file produced by the linking phase is directly executable (unless the -noheader option
is used). It automatically invokes the camlrunm runtime system, either using a tiny executable
prepended to the linked bytecode file, or using the Unix incantation #! /usr/local/bin/camlrunm
or similar. In the former case, camlrunm must be in one of the directories in the path; in the latter
case it must be in /usr/local/bin. To create a true stand-alone executable, use mosmlc option
-standalone.

10.2 Command-line options of mosmlc

The following command-line options are recognized by mosmlc.

Compile only. Suppresses the linking phase of the compilation. Source code files are turned into
compiled files (.ui and .uo), but no executable file is produced. This option is useful for compiling
separate units.

—-conservative
Sets conservative mode for compilation of subsequent units: accept all extensions to the SML
Modules language, but issue a warning for each use; see Section 11. This is the default.

-files response-file
Pass the names of files listed in file response-file to the linking phase just as if these names appeared
on the command line. File names in response-file are separated by blanks (spaces, tabs, newlines)
and must end either in .sml or .uo. A name U.sml appearing in the response file is equivalent to
U.uo. Use this option to overcome silly limitations on the length of the command line (as in MS
DOS).

This option causes some information about exception names to be written at the end of the exe-
cutable bytecode file.

Causes the compiler to print the inferred interface(s) of the unit implementation(s) being compiled.
Also causes the linker to list all object files linked. A U.sig file corresponding to a given U.sml
file can be produced semi-automatically by piping the output of the compiler to a file U.out, and
subsequently editing this file to obtain a file U.sig.
-1 directory

Add the given directory to the list of directories searched for compiled interface files (.ui) and
compiled implementation files (.uo). By default, the current directory is searched first, then the
standard library directory. Directories added with -I are searched after the current directory, but
before the standard library directory. When several directories are added with several -I options
on the command line, these directories are searched from left to right.
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-imptypes

Specify that the type checker should distinguish imperative and applicative type variables, gener-
alize all applicative type variables, and generalize imperative type variables only in non-expansive
expressions. See Section 12.

-liberal

Sets liberal mode for compilation of subsequent units: accept without warnings all extensions to
the SML Modules language; see Section 11.

-msgstyle style

By specifying -msgstyle msdev, one can make the compiler generate error messages understand-
able by Microsoft Developer Studio. The default behaviour is to generate error messages under-
standable the Emacs editor in SML mode.

-noautolink

The linker automatically links in any additional object files required by the files explicitly speci-
fied on the command line. With option -noautolink all required object files must be explicitly
specified in the appropriate order.

-noheader

Causes the output file produced by the linker to contain only the bytecode, not preceded by any
executable code. A file mosmlout thus obtained can be executed only by explicitly invoking the
runtime system as follows: camlrunm mosmlout.

-0 exec-file

Specify the name of the output file produced by the linker. In the absence of this option, a default
name is used. In MS Windows and DOS, the default name is mosmlout.exe; in Unix it is a.out.

-orthodox

Sets orthodox mode for the compilation of subsequent units: reject all uses of the extensions to the
SML Modules language. That is, accept only SML Modules syntax; see Section 11.

-P unit-set

Determines which library units will be open at compile-time. Any library unit in the load path can
be used by the compiler for type checking purposes. Thus regardless of the —P option, the compiler
knows the type of library functions such as Array.foldl.

-P default The units Char, List, and String will be partially opened. This is the default,
permitting e.g. String.concat to be referred to just as concat.

-P sml190 Provides an initial environment which is upwards compatible with that of the 1990 Def-
inition of Standard ML and with pre-1.30 releases of Moscow ML. In particular, the functions
chr, explode, implode, and ord work on strings, not characters. The math functions and
input-output facilities required by the 1990 Definition [7, Appendix C and D] are available at
top-level. In addition the same (new) libraries are opened as with -P default.

-P nj93 Provides a top-level environment which is mostly compatible with that of SML/NJ 0.93.
The functions app, ceiling, chr, dec, explode, fold, hd, implode, inc, max, min, nth,
nthtail, ord, ordof, revapp, revfold, substring, t1, and truncate have the same type
and meaning as in SML/NJ 0.93. The math functions and input-output facilities required by
the 1990 Definition [7, Appendix C and D] are available at top-level. In addition the same
(new) libraries are opened as with -P default. This option does not imply -imptypes.

-P full Same as -P default.

-P none No library units are initially opened.

Additional directories to be searched for library units can be specified with the -I directory option.

Enables the quotation/antiquotation mechanism; see Section 16.
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-standalone
Unix: Specifies that the runtime system should be prepended to the linked bytecode, thus creating
a stand-alone executable. This adds 75-100 KB to the size of the linked file. MS Windows:
This option cannot be used. Under MS Windows, all mosmlc-generated executables require the
dynamically linked library camlrt.dll to be present in the directory C: \mosml\bin.

-stdlib stdlib-directory
Specifies the standard library directory, which will be searched by the compiler and linker for the
.ui and .uo files corresponding to units mentioned in the files being linked. The default standard
library is set when the system is created, and is usually ${HOME}/mosml/1ib under Unix and
c:\mosml\1lib under MS Windows and DOS.

-structure
Specifies that subsequent .sml and .sig source files must be compiled in structure mode; see Sec-
tion 6. Default.

-toplevel
Specifies that subsequent .sml and .sig source files must be compiled in toplevel mode; see Sec-
tion 7.

-V

Prints the version number of the various passes of the compiler.
-valuepoly
Specify that the type checker should use ‘value polymorphism’; see Section 12. Default.
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11 Extensions to the Standard ML Modules language

The Moscow ML Modules language extends the Standard ML Modules language in several ways:

e higher-order functors: a functor may be defined within a structure, passed as an argument to another
functor, or returned as the result of a functor; see Section 11.1

e applicative as well as (the usual) generative functors; see Section 11.2

e transparent as well as opaque functor signatures; see Section 11.3

e first-class modules: structures and functors may be packed and then handled as Core language
values, which may then be unpacked as structures or functors again; see Section 11.4

e recursive modules: structures and signatures may be recursively defined; see Section 11.5

e relaxation of miscellaneous Standard ML restrictions; see Section 11.6.

The Moscow ML Language Overview defines the precise syntax of the extensions. For some additional
examples of their use, see the directory mosml/examples/modules and its README file.

By default, Moscow ML accepts all non-Standard ML extensions, but issues a warning at every use.
This is the behaviour of Moscow ML’s conservative compilation mode. Two other compilation modes
are available: liberal, in which all extensions are silently accepted, and orthodox, in which all extensions
are rejected as errors.

The compilation mode can be set by the command-line options -conservative, -liberal, and
-orthodox; see Sections 3.3 and 10.2. In the interactive system mosml, the compilation mode affects ML
code entered interactively, as well as the functions compile, compileStructure, compileToplevel,
and use. The compilation mode can be set by the functions conservative, liberal, and orthodox.

The extensions described here are based in part on [11, 12]; a formal definition of the extensions,
derived from [7, 8], is available on request.

11.1 Higher-order modules

In Standard ML Modules, structures and functor bodies cannot declare functors. In Moscow ML Modules,
they can:

functor F1(S : sig type t; val x : t end) = struct
functor G(T : sig type u; val y : u end) = struct val pair = (S.x, T.y) end
end
structure R11 = Fl(struct type t=int val x=177 end)
structure R12 = R11.G(struct type u=string val y="abc" end)
val (a, b) = Rl2.pair

A functor that returns a functor can be curried, avoiding the intermediate structure:

functor F2(S : sig type t; val x : t end) (T : sig type u; val y : u end) =
struct val pair = (S.x, T.y) end
structure R2 =
F2 (struct type t=int val x=177 end) (struct type u=string val y="abc" end)
val (a, b) = R2.pair

A functor may be declared to take another functor as an argument, whose type is specified using a functor
signature:
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(* G is a functor signature *)
signature G = functor (X:sig type t=int val x: t end)->sig type u val y : u end

(* F3 takes the functor F as an argument, and applies it *)
functor F3(F:G) = F(struct type t=int val x=177 end)

(* R3 is the result of F3 applied to an anonymous functor *)
structure R3 = F3(functor(X:sig type t=int val x:t end)=>
struct type u = X.t * X.t val y= (X.x,X.x) end)

In the definition of R3, the argument to F3 happens to be an anonymous functor.

Wherever a functor of a certain type is expected, one may supply instead a functor that has more a general
type, that is, one which is more polymorphic, expects a less general argument, or produces a more general
result:

(* F3 is applied to a more general functor than it specifically requires *)
structure R4 = F3(functor(X:sig type t end)=>
struct type u = X.t val y = 1 val z = [] end)

As in Standard ML, functors and structures reside in separate name spaces, so it is perfectly legal to re-use
the same name for both a structure and a functor, without one hiding the other:

structure M = struct end
functor M() = struct end

structure N1 = M (* structure N1 bound to structure M *)
functor N2 = M (* functor N1 bound to functor M *)
structure N3 = M(M) (* functor M applied to structure M *)

However, when another functor, say P, simply returns the identifier M, as in:

functor P () = M
it is not clear whether M refers to the structure M or the functor M. In this ambiguous case, Moscow ML
always interprets M, on its own, as a structure, but you can write op M to refer to the functor M instead:

functor P () = M (* P returns the structure M *)
functor Q () = op M (* Q returns the functor M *)

The files mosml/examples/modules/{poly.sml,bootstrap.sml} contain examples that use higher-
order functors.

11.2 Applicative functors

In the Standard ML Modules language, all functors are generative. If the body of generative functor FG
declares a datatype or opaque type t, then two applications of FG will create two structures SG1 and SG2
with distinct types SG1.t and SG2.t:

functor FG (S : sig end) = struct datatype t = C end (* generative *)
structure SG1 = FG() and SG2 = FG()
val res = if true then SG1.C else SG2.C; (* i1l-typed *)

Recall that a conditional expression requires both branches to have equivalent types, so the last declaration
above is well-typed only if the type SG1.t is equivalent to SG2.t.

If functors had an applicative, not generative, semantics, the two types would be equivalent. Moscow
ML Modules allows the declaration of applicative functors” as well as generative functors. An applicative

2Similar to Objective Caml.
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version FA of the above functor is declared the same way, except that the formal functor argument S
sig end is not enclosed in parentheses:

functor FA S : sig end = struct datatype t = C end (* applicative *)
structure SAl = FA() and SA2 = FA()
val res = if true then SAl.C else SA2.C; (* well-typed *)

More generally, if a type in an applicative functor’s body depends on a datatype or opaque type of the
functor’s formal argument, then the types returned by separate applications of the applicative functor will
be equivalent, provided the functor is applied to equivalent type arguments:

functor GA S : sig type t end = struct datatype u = C of S.t end (*
applicative, *)

(* but u
depends on S.t *)
structure TAl = GA(type t = int) and TA2 = GA(type t = bool) and TA3 = GA(type t

= int)
val res = if true then TAl1.C 1 else TA3.C 1; (* well-typed *)
val res = if true then TAl1.C 1 else TA2.C true; (* ill-typed *)

Moscow ML supports type projections X.u (the dot notation for types) with local structure bindings.
This makes it possible to refer directly to a type returned by an applicative functor within another type
expression, which is useful for expressing sharing constraints:

signature S = sig functor F: functor X:sig type t end -> sig type u end
type v = X.u where X = F(type t = int) (* X is local
to X.u *)
end

The local binding has no run-time effect and is only elaborated at compile-time for its type information.
For more examples of applicative functors, see the files mosml/examples/modules/{collect.sml,bootstrap.sml}.

11.3 Opaque and transparent functor signatures

The types of functors are specified using functor signatures. Similar to the distinction between generative
and applicative functor expressions, functor signatures may be opaque or transparent. Whether a functor
signature is opaque or transparent affects the interpretation of any datatype or opaque type specifications
in its body signature:

The opaque functor signature

signature GO = functor(X:sig type t val x:t end)->sig type u val y:u end (*
opaque *)
specifies the type of those functors that, when applied to an actual argument matching the argument
signature sig type t val x:t end,return aresult matching the body signature sig type u val y:u
end, for some unknown implementation of the type u (possibly depending on X. t).
A transparent version GT of the above functor signature is written the same way, except that the formal
functor argument X:sig type t val x:t end is not enclosed in parentheses:

signature GT = functor X:sig type t val x:t end -> sig type u val y:u end (*
transparent ¥*)

This functor signature specifies the family of functor types that, for a given implementation of the result
type u (possibly depending on X.t), map structures matching the argument signature sig type t val
x:t end to structures matching the body signature sig type u val y:u end.
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In practice, when writing a functor H that takes a functor F as an argument, the choice between spec-
ifying that argument using an opaque or transparent signature will affect the amount of type information
that is propagated whenever H is applied to an actual functor. For instance, consider the four functors:

functor F1 (X:sig type t val x:t end) = struct type u = X.t val y = X.x end
functor F2 (X:sig type t val x:t end) = struct type u = int val y = 1 end

functor HO(F:G0O) = F(struct type t = string val x "abc" end)
functor HT (F:GT) = F(struct type t = string val x = "abc" end)

Functor F1 returns a renamed version of its argument, and functor F2 just ignores its argument and returns
the same structure regardless. The two higher-order functors HO and HT apply the supplied F to the same
argument (in which x is a string), but assume, respectively, an opaque and a transparent signature for F.

Since functor HO uses the opaque signature GO, its formal argument F is assumed to return some new
unknown type u whenever it is applied, so that the two applications of HO return new abstract types RO1.u
and RO2 . u:

structure ROl = HO(F1l) and RO2 = HO(F2)
val resOl = if true then ROl.y else "def"; (* ill-typed *)
val res02 = if true then RO2.y else 1; (* ill-typed *)

Functor HT, on the other hand, uses the transparent signature GT. This ensures that, no matter what
the actual dependency of result type u on argument type t, HT may be applied to any functor F whose
argument signature and result signature match GT, with the actual definition of u reflected in the result. In
particular, the two applications of HT return the same definitions for type u as would the substitution of
F1 and F2 directly into the body of HT. That is, the types RT1.u and RT2.u are equivalent to string and
int:

structure RT1 = HT(F1l) and RT2 = HT(F2)

val resTl = if true then RTl.y else "def"; (* well-typed *)

val resT2 = if true then RT2.y else 1; (* well-typed *)

Another way to look at this is that HO’s formal argument has a generative specification, so that its applica-
tion in HO’s body returns a new type, while HT’s formal argument has an applicative specification, so that
its application in HT’s body returns the same type as HT’s actual argument.

11.4 First-class modules

In the Moscow ML Modules language, a structure or functor can be wrapped up as a package, which is a
first-class Core language value just like any other value, and then subsequently unpacked to re-create the
structure or functor:
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signature NAT = sig type nat val Z:nat wval S:nat -> nat wval plus: nat -> nat

-> nat end
structure SafeNat = (* unlimited range but slow *)
struct datatype nat = Z | S of nat fun plus Zm=m | plus (S n) m=S (plus
n m) end
structure FastNat = (* limited range but fast *

)
struct type nat = int val 2 =0 fun Sn=n+1 fun plus nm=n + m end

type natpack = [ NAT ] (* package type *)

val safeNat = [ structure SafeNat as NAT ]; (* packing *)

val fastNat = [ structure FastNat as NAT ];

structure Nat as NAT = (* unpacking *)
if (913 mod 7 = 5) then safeNat else fastNat

val natlist = [safeNat, fastNat] : [ NAT ] list;

A functor may be packed using the similar Core expression [ functor modexp as sigexp ] and un-
packed using the functor binding functor funid as sigexp = exp.

Package type equivalence is determined by structure, not name, so the following package types are
equivalent:

[sig type t val x: t type u = t val y: u end]
[sig type u val x: u type t = u val y: t end]
because the signatures are equivalent (every structure that matches one also matches the other).

For type soundness reasons, a package may not be unpacked in the body of a functor (although it may
be unpacked within a Core expression occurring in that body):

functor Fail (val nat : [ NAT ]) =
struct structure Nat as NAT = nat end (* illegal *)
functor Ok (val nat : [ NAT ]) =

struct val x = let structure Nat as NAT = nat in nat end end (* legal *)

The files mosml/examples/modules/{sieve.sml,array.sml,choice.sml, matrix.sml} contain more
examples.

11.5 Recursive structures and signatures

The Standard ML Modules language does not permit recursively defined modules. For instance, two
structures Even and 0dd may not depend on each other. In the Moscow ML Modules language, a structure
may be defined recursively:

structure S = rec (X:sig structure 0dd : sig val test : int -> bool end end)

struct structure Even = struct fun test 0 = true
| test n = X.0dd.test (n-1)
end
structure 0dd = struct fun test 0 = false
| test n = Even.test (n-1)
end

end;

Here, X is a forward declaration of the structure’s body that allows Even.test to refer to X.0dd.test
before it has been defined. The body of a recursive structure must match the signature of the forward
declaration; any opaque type or datatype specified in the signature must be implemented in the body by
copying it using a forward reference:
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structure Ok = (* well-typed *)

rec (X:sig datatype t = C type u type v = int end)

struct datatype t = datatype X.t type u = X.u type v = int end
structure Fail = (* ill-typed *)

rec (X:sig datatype t = C type u type v = int end)

struct datatype t = C type u = int type v = int end

At run-time, attempting to evaluate the forward reference of a recursive structure before its body has been
been fully evaluated raises the exception Bind:

structure Fail = rec (X:sig end) X; (* raises Bind

*)

structure Fail = rec (X:sig val x: int end)

struct val x = X.x end; (* raises Bind
*)
structure Ok = rec (X:sig val f: int -> int end)
struct fun £ n = X.f n end; (* ok

*)

val res = Ok.f n (* infinite loop

*)
On their own, recursive structures cannot be used to declare mutually recursive datatypes that span module
boundaries. For this purpose, Moscow ML also supports recursive signatures:

signature REC = rec(X: sig structure 0dd: sig type t end end)
sig structure Even: sig datatype t = Zero | Succ of X.0dd.t end
structure 0dd: sig datatype t = One | Succ of Even.t end
end;

Here, X is a forward declaration of a structure implementing the body of the signature that allows the
specification of Even.t to refer to the type X.0dd.t before it has been fully specified. In a recursive
signature, the body of the signature must match the forward declaration and specify an implementation
for any opaque types or datatypes declared within the forward specification.

Once a recursive signature has been defined, it can be used to implement the recursive structure T with
datatypes that span module boundaries:

structure T = rec(X:REC)
struct structure Even = struct datatype t = datatype X.Even.t
fun succ Zero = X.0dd.One
| succ E = X.0dd.Succ E
end
structure 0dd = struct datatype t = datatype X.0dd.t
fun succ 0 = Even.Succ O

end
end

The files mosml/examples/modules/{recursion.sml,bootstrap.sml} contain examples of using
recursive structures and signatures.

11.6 Miscellaneous relaxations of Standard ML restrictions

In Standard ML, functors and signatures may only be declared at top-level, and structures may only be
declared at top-level and within structures. None of these may be declared within Core let expressions.
Moscow ML removes these restrictions so that functors, signatures and structures may be declared any-
where, which is particularly useful when programming with first-class modules.
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In Standard ML, every parameterised type definition, and every type scheme occurring within a signa-
ture, must be closed and must not mention any type variables that are not explicitly listed as parameters.
Moscow ML does not impose this restriction, and allows free type variables, provided they are bound in
an enclosing scope. Again, this is useful when programming with first-class modules.

type t = 'a -> 'a (* illegal, since 'a not in
scope *)
fun £ (x:'a) = let type t = "'a * 'a (* legal Mosml, illegal SML

*)

in (x,x):t

end;
type ’"a stackpack = (* legal Mosml
*)
[ sig

type stack = "a list; (* "a occurs free in this type
binding *)

val push : ’a -> stack -> stack (* "a occurs free in this type
scheme *)

end ]
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12 Value polymorphism

The 1997 revision of Standard ML [8] adopts value polymorphism, discarding the distinction between im-
perative (' _a) and applicative (' a) type variables, and generalizing type variables only in non-expansive
expressions. In Moscow ML 2.00, non-generalized type variables are left free, to be instantiated later.
Consider a val-binding

val x = e;
With value polymorphism, the free type variables in the type of x are generalized only if the right-hand

side e is non-expansive. This is a purely syntactic criterion: an expression is non-expansive if it has the
form nexp, defined by the grammar below:

nexp = scon special constant
longvid (possibly qualified) value identifier
{ (nexprow) } record of non-expansive expressions
( nexp ) parenthesized non-expansive expression
con nexp constructor application, where con is not ref
excon nexp exception constructor application
nexp : ty typed non-expansive expression
fn match function abstraction
[ structure nmodexp as sigexp ] structure package
[ functor nmmodexp as sigexp | functor package
nmodexp = {(op ) longmodid module identifier
( nmodexp )
nmodexp :(:>) sigexp transparent (opaque) constraint
functor arg => modexp functor
rec ( strid : sigexp ) nmodexp recursive structure
nexprow = lab = nexp (, nexprow)

Roughly, a non-expansive expression is just a value, that is, an expression in normal form. For example,
the right-hand side length below is an identifier, and so is non-expansive. Hence the free type variable
"ain the type 'a list -> int of x becomes generalized, as shown by the occurrence of ' a between
val and x:

- val x = length;

>val "a x = fn : "a list -> int
On the other hand, the right-hand side (fn f => f) length below, although it evaluates to the same
value as the previous one, is expansive: it is not derivable from the above grammar. Hence the type
variable ’ a will not be generalized, and a warning will be issued:

- val x = (fn £ => f) length;

! Warning: Value polymorphism:

! Free type variable(s) at top level in value identifier x
>val x = fn : "a list -> int

Note that the type variable ’ a has not been generalized. Thus type variable ’ a is free and may become
instantiated when x is used. If so, the type of x becomes more specific:
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- x ["abc", "def"];

! Warning: the free type variable 'a has been instantiated to string
> val it = 2 : int

- x;

> val it = fn : string list -> int

To make sure that a type variable gets generalized, one may eta-expand the right-hand side expression.

Eta-expansion replaces an expression e with fn y => (e y) thus making it non-expansive:

-val x1 = fny => (fn f => £f) length y;
>val 'b x1 = fn : 'b list -> int

Compatibility: All programs compiled with Moscow ML 1.44 will compile also with Moscow ML 2.00.
To compile old programs that use imperative type variables as in the 1990 Definition, you may invoke
mosml or mosmlc with the option -imptypes.
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13 Weak pointers

Moscow ML supports weak pointers and arrays of weak pointers, using library structure Weak. A weak
pointer is a pointer that cannot itself keep an object alive. Hence the object pointed to by a weak pointer
may be deallocated by the garbage collector if the object is reachable only by weak pointers.

The interface to arrays of weak pointers is the same as that of standard arrays (structure Array), but
the subscript function sub may raise exception Fail if the accessed object is dead. On the other hand, if
sub returns a value, it is guaranteed not to die unexpectedly: it will be kept alive by the returned pointer.
Also, the weak array iteration functions iterate only over the live elements of the arrays.

One application of weak pointers is to implement hash consing without space leaks. The idea in hash
consing is to re-use pairs: whenever a new pair (a, b) is to be built, an auxiliary table is checked to see
whether such a pair exists already. If so, the old pair is reused. In some applications, this may conserve
much space and time. However, there is a danger of running out of memory because of a space leak: the
pair (a, b) cannot be deallocated by the garbage collector because it remains forever reachable from the
auxiliary table. To circumvent this problem, one creates a weak pointer from the auxiliary table to the
pair, so that the auxiliary table in itself cannot keep the pair alive.

For an example, see mosml/examples/weak. See also the description of Weak in the Moscow ML
Library Documentation, or try ‘help "Weak";’.

14 Dynamic linking of foreign functions

Moscow ML supports dynamic linking of foreign (C) functions, using library structure Dynlib’. A
library of functions may be written in C and compiled into a dynamically loadable library, using appro-
priate compiler options. With the Dynlib structure one can load this library and call the C functions from
Moscow ML, without recompiling the runtime system.

It is the responsibility of the C functions to access and construct SML values properly, using the
macroes defined in mosml/include/mlvalues.h. For this reason, the foreign function interface is in-
cluded only with the source distribution. As usual, type or storage mistakes in C programs may crash
your programs.

The ML garbage collector may run at any time an ML memory allocation is made. This may cause
ML values to be moved (from the young generation to the old one). To make sure that ML heap point-
ers needed by your C function are adjusted correctly by the garbage collector, register them using the
Push_roots and Pop_roots macroes from mosml/include/memory.h.

To modify a value in the ML heap, you must use the Modify macro from mosml/include/memory.h;
otherwise you may confuse the incremental garbage collector and crash your program.

When loading the compiled library one must specify the absolute path unless it has been installed as a
system library. This may require putting it in a particular directory, such as /1ib or /usr/1ib, or editing
/etc/1d.so.conf and running ldconfig.

To compile Moscow ML* with support for dynamic linking, edit file mosml/src/Makefile.inc as
indicated there.

For more information, see the examples in directory mosml/src/dynlibs, in particular
mosml/src/dynlibs/interface. See also the Dynlib section in the Moscow ML Library Documenta-
tion [10]; or try ‘help "Dynlib";’.

3Thanks to Ken Larsen.
4Supported under Linux, FreeBSD, NetBSD, Solaris, Digital Unix, HP-UX, MacOS, and MS Windows’95/98/NT.
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15 Guide to selected dynamically loaded libraries
15.1 Using GNU gdbm persistent hash tables

Moscow ML provides an interface to GNU gdbm persistent hashtables, via structures Gdbm and Polygdbm;
see the appropriate sections in [10]. GNU gdbm provides fast access even to very large hashtables stored
on disk, ensuring mutual exclusion, and are handy for creating simple databases for use by CGI scripts
etc.

Using Gdbm or Polygdbm requires Dynlib (see Section 14 above): GNU gdbm (not included with
Moscow ML) must be installed, and the interface to GNU gdbm defined in mosml/src/dynlibs/mgdbm
must be compiled and installed. For instructions, see the README file there.

15.2 Using POSIX regular expressions

Moscow ML provides an interface to the GNU regex implementation of POSIX 1003.2 regular expres-
sions, with additional support for replacing matching substrings etc., via structure Regex; see the appro-
priate section in [10].

Using Regex requires Dynlib (see Section 14 above): The GNU regex library (which is included with
Moscow ML) and the interface defined in mosml/src/dynlibs/mregex must be compiled and installed.
For instructions, see the README file there.

15.3 Using the PostgreSQL relational database server

Moscow ML provides an interface to the PostgreSQL relational database server, via structure Postgres;
see the appropriate section in [10].

Using Postgres requires Dynlib (see Section 14 above): the PostgreSQL database server (not in-
cluded) must be installed, and the interface to PostgreSQL defined in mosml/src/dynlibs/mpg must be
compiled and installed. For instructions, see the READVME file there.

15.4 Using the MySQL relational database server

Moscow ML provides an interface’ to the MySQL relational database server, via structure Mysql; see the
appropriate section in [10].

Using Mysql requires Dynlib (see Section 14 above): the MySQL database server (not included)
must be installed, and the interface to Mysql defined in mosml/src/dynlibs/mmysql must be compiled
and installed. For instructions, see the README file there.

15.5 Using the PNG image library

Moscow ML provides an interface to Thomas Boutell’s gd graphics package for creating PNG images,
via structure Gdimage; see the appropriate section in [10].

Using Gdimage requires Dynlib (see Section 14 above): the gd image package (not included) must
be installed, and the interface defined in mosml/src/dynlibs/mgd must be compiled and installed. For
instructions, see the README file there.

5Thanks to Thomas S. Iversen.
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15.6 Using the Socket interface

Moscow ML provides an interface® to Internet and file sockets, via structure Socket, which adheres fairly
closely to the SML Basis Library structure of the same name; see the appropriate section in [10].

Using structure Socket requires Dynlib (see Section 14 above): the sockets interface defined in
mosml/src/dynlibs/msocket must be compiled and installed. For instructions, see the README file

there.

Thanks to Ken Larsen; initial development financed by the PROSPER project.
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16 Quotations and antiquotations

Moscow ML implements guotations, a non-standard language feature useful for embedding object lan-
guage phrases in ML programs. Quotations are disabled by default. This feature originates in the Stan-
dard ML of New Jersey implementation. To enable quotations in the interactive system (mosml), execute
quotation := true. This allows quotations to appear in declarations entered at top-level and in files
compiled by the primitive compile. To enable quotations in files compiled with the batch compiler
mosmlc, invoke it with option —q as in mosmlc -q.

A quotation is a particular kind of expression and consists of a non-empty sequence of (possibly
empty) fragments surrounded by backquotes:

exp n= ‘frags® quotation

frags = charseq character sequence
charseq "id frags antiquotation variable
charseq *~ (exp) frags antiquotation expression

The charseq is a possibly empty sequence of printable characters or spaces or tabs or newlines. A quo-
tation evaluates to a value of type ty frag list where ty is the type of the antiquotation variables and
antiquotation expressions, and the type ' a frag is defined as follows:

datatype ’"a frag = QUOTE of string | ANTIQUOTE of ’'a

A charseq fragment evaluates to QUOTE "charseq". An antiquotation fragment “id or " (exp) evaluates to
ANTIQUOTE value where value is the value of the variable id resp. the expression exp. All antiquotations
in a quotation must have the same type ty.

An antiquotation fragment is always surrounded by (possibly empty) quotation fragments; and no two
quotation fragments can be adjacent. The entire quotation is parsed before any antiquotation inside it is
evaluated. Hence changing the value of Meta.quotation in an antiquotation inside a quotation has no
effect on the parsing of the containing quotation.

For an example, say we have written an ML program to analyse C program phrases, and that we want
to enter the C declaration char s[6] = "abcde". We could simply define it as a string:

val phrase = "char s[6] = \"abcde\"";
but then we need to escape the quotes (") in the C declaration, which is tiresome. If instead we use a
quotation, these escapes are not needed:

val phrase = ‘char s[6] = "abcde"';
It evaluates to [QUOTE "char s[6] = \"abcde\""] : ’a frag list. Moreover, suppose we want to

generate such declarations for other strings than just "abcde", and that we have an abstract syntax for C
phrases:

datatype cprog =
IntCst of int
| StrCst of string
\

Then we may replace the string "abcde" by an antiquotation " (StrCst str), and the array dimension
6 by an antiquotation ® (IntCst (size str + 1)), and make the string str a function parameter:

fun mkphrase str = ‘char s[”(IntCst (size str + 1))] = ~(StrCst str)?';
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Evaluating mkphrase "longer" produces the following representation of a C phrase:

[QUOTE "char s[", ANTIQUOTE (IntCst 7), QUOTE "] =",
ANTIQUOTE (StrCst "longer"), QUOTE ""] : cprog frag list
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17 A lexer generator: mosmllex

This section describes mosmllex, a lexer generator which is closely based on camllex from the Caml
Light implementation by Xavier Leroy. This documentation is based on that of camllex also.

17.1 Overview

Given a set of regular expressions with attached semantic actions, mosmllex produces a lexical analyser
in the style of lex. If file lexer. lex contains a specification of a lexical analyser, then executing

mosmllex lexer.lex

produces a file lexer.sml containing Moscow ML code for the lexical analyser. This file defines one
lexing function per entry point in the lexer definition. These functions have the same names as the
entry points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the
corresponding entry point.

Lexer buffers are an abstract data type implemented in the library unit Lexing. The functions
createlexerString and createLexer from unit Lexing create lexer buffers that read from a character
string, or any reading function, respectively.

When used in conjunction with a parser generated by mosmlyac (see Section 18), the semantic actions
compute a value belonging to the datatype token defined by the generated parsing unit.

Example uses of mosmllex can be found in directories calc and lexyacc under mosml/examples.

17.2 Hints on using mosmllex

A lexer definition must have a rule to recognize the special symbol eof, meaning end-of-file. In general,
a lexer must be able to handle all characters that can appear in the input. This is usually achieved by
putting the wildcard case _ at the very end of the lexer definition. If the lexer is to be used with e.g. MS
Windows, MS DOS or MacOS files, remember to provide a rule for the carriage-return symbol \r. Most
often \r will be treated the same as \n, e.g. as whitespace.

Do not use string constants to define many keywords; this may produce large lexer programs. It is bet-
ter to let the lexer scan keywords the same way as identifiers and then use an auxiliary function to distin-
guish between them. For an example, see the keyword function inmosml/examples/lexyacc/Lexer. lex.

17.3 Syntax of lexer definitions

The format of a lexer definition is as follows:

{ header }
let abbrev = regexp

let abbrev = regexp
rule entrypoint =
parse regexp { action }
\
| regexp { action }
and entrypoint =
parse ...
and ...

4
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Comments are delimited by (* and *), as in SML. An abbreviation (abbrev) for a regular expression may
refer only to abbreviations that strictly precede it in the list of abbreviations; in particular, abbreviations
cannot be recursive.

17.3.1 Header section and entry points

The header section is arbitrary Moscow ML text enclosed in curly braces { and }. It can be omitted. If it
is present, the enclosed text is copied as is at the beginning of the output file lexer.sml. Typically, the
header section contains the open directives required by the actions, and possibly some auxiliary functions
used in the actions.

The names of the entry points must be valid ML identifiers.

17.3.2 Regular expressions

The regular expressions regexp are in the style of lex, but with a more ML-like syntax.

‘char®
A character constant, with a syntax similar to that of Moscow ML character constants; see Sec-
tion 17.3.4. Match the denoted character.

Match any character.

eof
Match the end of the lexer input.

"string"
A string constant, with a syntax similar to that of Moscow ML string constants; see Section 17.3.4.
Match the denoted string.

[ character-set ]
Match any single character belonging to the given character set. Valid character sets are: sin-
gle character constants ‘c‘; ranges of characters ‘c; ' - ‘cp' (all characters between ¢ and ¢,
inclusive); and the union of two or more character sets, denoted by concatenation.

[ ~ character-set ]

Match any single character not belonging to the given character set.

regexp *
Match the concatenation of zero or more strings that match regexp. (Repetition).

regexp +
Match the concatenation of one or more strings that match regexp. (Positive repetition).

regexp ?
Match either the empty string, or a string matching regexp. (Option).

regexp; | regexpz
Match any string that matches either regexp; or regexp;. (Alternative).

regexp; regexps
Match the concatenation of two strings, the first matching regexp;, the second matching regexp;.
(Concatenation).

abbrev
Match the same strings as the regexp in the most recent let-binding of abbrev.

( regexp )
Match the same strings as regexp.

The operators * and + have highest precedence, followed by ?, then concatenation, then | (alternative).
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17.3.3 Actions

An action is an arbitrary Moscow ML expression. An action is evaluated in a context where the iden-
tifier lexbuf is bound to the current lexer buffer. Some typical uses of lexbuf in conjunction with the
operations on lexer buffers (provided by the Lexing library unit) are listed below.

Lexing.getLexeme lexbuf
Return the matched string.
Lexing.getLexemeChar lexbuf n
Return the n’th character in the matched string. The first character has number 0.
Lexing.getLexemeStart lexbuf
Return the absolute position in the input text of the beginning of the matched string. The first
character read from the input text has position 0.
Lexing.getLexemeEnd lexbuf
Return the absolute position in the input text of the end of the matched string. The first character
read from the input text has position 0.
entrypoint lexbuf
Here entrypoint is the name of another entry point in the same lexer definition. Recursively call
the lexer on the given entry point. Useful for lexing nested comments, for example.

17.3.4 Character constants and string constants

A character constant in the lexer definition is delimited by * (backquote) characters. The two backquotes
enclose either a space or a printable character c, different from * and \, or an escape sequence:

Sequence | Character denoted

‘e the character ¢

ALY backslash (\)

W backquote ()

“\n* newline (LF)

\rt return (CR)

“\t horizontal tabulation (TAB)

“\b* backspace (BS)

“\ e the ASCII character control-c¢

‘“\ddd* the character with ASCII code ddd in decimal

A string constant is a (possibly empty) sequence of characters delimited by " (double quote) characters.

string-literal ~ ::=  "strcharseq" non-empty string
" empty string

strcharseq = strchar (strcharseq)  character sequence

A string character strchar is a space, or a printable character ¢ (except " and \), or an escape sequence:
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Sequence

Character denoted

c
\\
\ll
\n
\r
\t
\b
\"c
\ddd

the character ¢

backslash (\)

double quote (")

newline (LF)

return (CR)

horizontal tabulation (TAB)

backspace (BS)

the ASCII character control-c

the character with ASCII code ddd in decimal
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18 A parser generator: mosmlyac

This section describes mosmlyac, a simple parser generator which is closely based on camlyacc from the
Caml Light implementation by Xavier Leroy; camlyacc in turn is based on Bob Corbett’s public domain
Berkeley yacc. This documentation is based on that in the Caml Light reference manual.

18.1 Overview

Given a context-free grammar specification with attached semantic actions, mosmlyac produces a parser,
in the style of yacc. If file grammar . grm contains a grammar specification, then executing

mosmlyac grammar.grm

produces a file grammar . sml containing a Moscow ML unit with code for a parser and a file grammar.sig
containing its interface.

The generated unit defines a parsing function S for each start symbol S declared in the grammar. Each
parsing function takes as arguments a lexical analyser (a function from lexer buffers to tokens) and a lexer
buffer, and returns the semantic attribute of the corresponding entry point. Lexical analyser functions are
usually generated from a lexer specification by the mosmllex program. Lexer buffers are an abstract data
type implemented in the library unit Lexing. Tokens are values from the datatype token, defined in the
signature file grammar. sig produced by running mosmlyac.

Example uses of mosmlyac can be found in directories calc and lexyacc under mosml/examples.

18.2 The format of grammar definitions

o\

{
header

}

declarations

o\

o\
o\

rules

o\
o\

trailer

Comments in the declarations and rules sections are enclosed in C comment delimiters /* and */, whereas
comments in the header and trailer sections are enclosed in ML comment delimiters (* and *).

18.2.1 Header and trailer

Any SML code in the header is copied to the beginning of file grammar.sml, after the token datatype
declaration; it usually contains open declarations required by the semantic actions of the rules. Any SML
code in the trailer is copied to the end of file grammar. sml. Both sections are optional.

18.2.2 Declarations
Declarations are given one per line. They all start with a % sign.
$token symbol ... symbol

Declare the given symbols as tokens (terminal symbols). These symbols become constructors
(without arguments) in the token datatype.
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$token < type > symbol ... symbol
Declare the given symbols as tokens with an attached attribute of the given type. These symbols
become constructors (with arguments of the given type) in the token datatype. The type part is
an arbitrary Moscow ML type expression, but all type constructor names must be fully qualified
(e.g. Unitname.typename) for all types except standard built-in types, even if the proper open
declarations (e.g. open Unitname) were given in the header section.

$start symbol
Declare the given symbol as entry point for the grammar. For each entry point, a parsing function
with the same name is defined in the output file grammar. sml. Non-terminals that are not declared
as entry points have no such parsing function.

$type < type > symbol ... symbol
Specify the type of the semantic attributes for the given symbols. Every non-terminal symbol,
including the start symbols, must have the type of its semantic attribute declared this way. This
ensures that the generated parser is type-safe. The type part may be an arbitrary Moscow ML type
expression, but all type constructor names must be fully qualified (e.g. Unitname.typename) for
all types except standard built-in types, even if the proper open declaration (e.g. open Unitname)
were given in the header section.

$left symbol... symbol

$right symbol ... symbol

$nonassoc symbol ... symbol
Declare the precedence and associativity of the given symbols. All symbols on the same line are
given the same precedence. They have higher precedence than symbols declared in previous $left,
$right or $nonassoc lines. They have lower precedence than symbols declared in subsequent
$left, $right or $nonassoc lines. The symbols are declared to associate to the left ($1eft), to
the right ($right), or to be non-associative ($nonassoc). The symbols are usually tokens, but can
also be dummy nonterminals, for use with the $prec directive inside the rules.

18.2.3 The format of grammar rules

nonterminal :
symbol ... symbol { semantic-action }

I ...
| symbol... symbol { semantic-action }

Each right-hand side consists of a (possibly empty) sequence of symbols, followed by a semantic action.

The directive ‘$prec symbol’ may occur among the symbols in a rule right-hand side, to specify that
the rule has the same precedence and associativity as the given symbol.

Semantic actions are arbitrary Moscow ML expressions, which are evaluated to produce the semantic
attribute attached to the defined nonterminal. The semantic actions can access the semantic attributes of
the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute of the first (leftmost)
symbol, $2 is the attribute of the second symbol, etc. An empty semantic action evaluates to () : unit.

Actions occurring in the middle of rules are not supported. Error recovery is not implemented.

18.3 Command-line options of mosmlyac

-V
Generate a description of the parsing tables and a report on conflicts resulting from ambiguities in
the grammar. The description is put in file grammar. output.
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-bprefix
Name the output files prefix.sml, prefix.sig, prefix.output, instead of using the default
naming convention.

18.4 Reporting lexer and parser errors

Lexical errors (e.g. illegal symbols) and syntax errors can be reported in an intelligible way by using the
Location module from the Moscow ML library. It provides functions to print out fragments of a source
text, using location information from the lexer and parser. Try help "Location" for more information.
See file mosml/examples/lexyacc/Main.sml for an example.
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19 Copyright and credits

Copyright notice Moscow ML - a lightweight implementation of Standard ML. Copyright (C) 1994,
1995, 1996, 1997, 1998, 1999, 2000. Sergei Romanenko, Moscow, Russia and Peter Sestoft,
Copenhagen, Denmark.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version. This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License (in file mosml/copyrght/gpl2) for more details.

Note that a number of source files are derived from the Caml Light distribution, copyright (C) 1993
INRIA, Rocquencourt, France. Thus charging money for redistributing Moscow ML may require
prior permission from INRIA; see the INRIA copyright notice in file copyrght/copyrght.cl.

Main Moscow ML contributors

Doug Currie (e @flavors.com), Flavors Technology, USA.

Sergei Romanenko (roman@keldysh.ru), Keldysh Institute of Applied Mathematics, Russian
Academy of Sciences, Russia.

Claudio V. Russo (Claudio.Russo@cl.cam.ac.uk), University of Cambridge. Thanks to Don
Sannella at LFCS, Division of Informatics, University of Edinburgh for funding under EPSRC
grant GR/K63795.

Peter Sestoft (sestoft@dina.kvl.dk), Department of Mathematics and Physics, Royal Veteri-
nary and Agricultural University, Denmark and The IT University of Copenhagen, Denmark.
Part of the work was done while at the Department of Computer Science at the Technical
University of Denmark, and while visiting AT&T Bell Laboratories, Murray Hill, New Jer-
sey, USA.

Moscow ML owes much to

The Caml Light implementation by Xavier Leroy and Damien Doligez (INRIA, Rocquen-
court, France). It was instrumental in creating Moscow ML, which uses its runtime system,
essentially the same bytecode generator, and many other aspects of its design [4, 5].

e The Definition of Standard ML, unbeatably precise and concise.
e The ML Kit by Lars Birkedal, Martin Elsman, Niels Hallenberg, Nick Rothwell, Mads Tofte

and David Turner (University of Copenhagen, Denmark, and University of Edinburgh, Scot-
land), which helped solving problems of parsing, infix resolution, and type inference [1].
Inspiration from the SML/NJ compiler developed at Princeton University and AT&T/Lucent
Bell Laboratories, New Jersey, USA.

Feedback, contributions, and useful suggestions, in particular from Ken Friis Larsen, but also
from Jonas Barklund, Mike Gordon, Michael Norrish, Konrad Slind, Jakob Lichtenberg, Hans
Molin, and numerous other people.

20 How to get Moscow ML

e The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html
e The Linux executables are in ftp://ftp.dina.kvl.dk/pub/mosml/linux-mos20bin.tar.qgz
e The MS Windows executables are in ftp://ftp.dina.kvl.dk/pub/mosml/win32-mos20bin.

zip
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ftp://ftp.dina.kvl.dk/pub/mosml/linux-mos20bin.tar.gz
ftp://ftp.dina.kvl.dk/pub/mosml/win32-mos20bin.zip
ftp://ftp.dina.kvl.dk/pub/mosml/win32-mos20bin.zip

e The Macintosh/MacOS (68k and PPC) executables are in
ftp://ftp.dina.kvl.dk/pub/mosml/mac-mos20bin.sea.hgx

e The Unix and MS Windows source files are in ftp://ftp.dina.kvl.dk/pub/mosml/mos20src.
tar.gz

e The MacOS modified source files (relative to Unix) are in
ftp://ftp.dina.kvl.dk/pub/mosml/mac-mos20src.sea.hgx
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Books and other materials on Standard ML

The 1997 Definition [8] is the authoritative description of Standard ML, revised from the 1990 Definition
[7]. The Commentary [0] explains many finer points in the 1990 Definition.

Textbooks available from publishers

Richard Bosworth, A Practical Course in Functional Programming Using Standard ML, McGraw-
Hill 1995, ISBN 0-07-707625-7.

Michael R. Hansen and Hans Rischel, Introduction to Programming using SML, Addison-Wesley
1999, ISBN 0-201-39820-6.

Greg Michaelson, Elementary Standard ML, UCL Press 1995, ISBN 1-85728-398-8. At ftp:
//ftp.macs.hw.ac.uk/pub/funcprog/gjm.book95.ps.z

Colin Myers, Chris Clack, and Ellen Poon, Programming with Standard ML, Prentice Hall 1993,
ISBN 0-13-722075-8.

Lawrence C. Paulson, ML for the Working Programmer, Second edition. Cambridge University
Press 1996, ISBN 0-521-56543-X.

Chris Reade, Elements of Functional Programming, Addison-Wesley 1989, ISBN 0-201-12915-9.
Ryan Stansifer, ML Primer, Prentice Hall 1992, ISBN 0-13-561721-9.

Jeffrey D. Ullman, Elements of ML Programming, Prentice Hall 1994, ISBN 0-13-184854-2.

Ake Wikstrom, Functional Programming Using Standard ML, Prentice Hall 1987, ISBN 0-13-
331661-0.

Texts available on the net

Andrew Cumming, A Gentle Introduction to ML, Napier University. At
http://www.dcs.napier.ac.uk/course-notes/sml/manual.html

Emden Gansner and John Reppy (editors): Standard ML Basis Library, hypertext version:
http://www.cs.bell-labs.com/~jhr/sml/basis/index.html

and http://www.dina.kvl.dk/~sestoft/sml/sml-std-basis.html (mirror site)

Stephen Gilmore, Programming in Standard ML’97, report ECS-LFCS-97-364, University of Ed-
inburgh. Athttp://www.dcs.ed.ac.uk/1lfcsreps/EXPORT/97/ECS-LFCS-97-364

Robert Harper, Introduction to Standard ML, report ECS-LFCS-86-14, University of Edinburgh,
November 1986 (revised 1989). At ftp://ftp.cs.cmu.edu/afs/cs/project/fox/mosaic/
intro-notes.ps

Robert Harper, Programming in Standard ML, Carnegie Mellon University. At http://www.cs.
cmu.edu/~rwh/introsml

Mads Tofte, Tutorial on Standard ML, Technical Report 91/18, DIKU, University of Copenhagen,
December 1991. At ftp://ftp.diku.dk/pub/diku/users/tofte/FPCA-Tutorial
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