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INTRODUCTION

This book presents a formal system based on the language
"Refal" (i.e. REcursive Functions Algorithmic Language). Besides
the language itself, and the techniques of programming in it,
the system includes a theory of equivalence transformation of
algorithms defined in Refal, and an approach to foundations of
logic called metasystem analystis.

The origins of Refal are in computer science. It was
designed as a universal metalanguage for formal definition of
algorithmic languages — oriented towards classes of problems,
or invented ad hoc for specific problems. At the same time
Refal can be regarded as a regular algorithmic language
oriented towards symbol manipulation. It is implemented on
computers and has been used in this capacity. However, a
programming system using Refal as a metalanguage proper, and
including a "supercompiler" is still in the project stage.

The aim of this project is to facilitate the creation
and implementation of specialized algorithmic languages at low
expense, and also to allow computers to perform a great deal of
work on optimization of algorithms and even on algorithmiza-
tion itself, which is now performed manually. We hope to create
a programming system, in which the ad hoe introduction of a
new special language, or a hierarchy of languages, for each
large-scale programming problem is just as natural and practic-
able as is the introduction of an ad hoc hierarchy of proce-
dures when we are programming, say, in ALGOL-60. We hope to
create a system, in which the programmer will have to formulate
only the definition of his problem, its mathematical model,
without bothering about the details of algorithmic efficiency
and data structures in the real computer.

To build an extensible hierarchical system of language,

a metalanguage must be specified which would allow the system's

user to define each new language L in terms of the languages



of the lower levels: Ln-l R Ln—2 , etc. Also, a ground--level
language L0 must be defined, and must be such that all the
languages of the hierarchy could ultimately be expressed in it.
There are two ways to formally define a new language Ln in
terms of a lower-level language Lk: in a translation mode, in
which one specifies the manner in which a text in Ln is trans-
formed into a text in Ly: and in an interpretation mode, i.e.
specifying the process of execution of a text in L, in terms

of the language L Accordingly, we can distinguish between

k.
two kinds of expansible systems. Systems of the first, trans-
lation mode, kind have machine (assembler) language as the

ground-level language L such systems may be called macrocode

systems, and are widespgead now. The metalanguage in this case
is the language of macrodefinitions. Although very useful,
these systems do not unburden the programmer, but only put him
in a bettern environment. The system we are designing is of
the second kind. Here, new languages are defined in interpre-
tation mode, and LO is then a very elementary language which
includes only basic operations on symbolic expressions. The
description of a language and of an algorithm in that language
takes the shape of a "description of the meaning" rather than
a final definition of the program to be executed on a computer.
But then one needs an algorithm — which we call supercompiler
— which would translate this multilevel interpretative semantic
definition of a problem into an efficient program for a real
computer.

An important feature of our project is that the metalanguage
M in which new languages are defined, the ground-level language
LO , and the language inwhich the supercompiler is written, are
all the same language, Refal. As shown in [1], this has the
crucial advantage that only one supercompiler Cp from the meta-
language M into the language of an object machine M, is needed
for all languages L, of all levels. To attain this surprising
economy, we use a method, whose essence is self-application of Cp.
The result: by writing a simple "metasystem-transition formula"

vi



and pushing a button one can obtain a program for MO which can

be either

(1) an efficient, compiled program P, which is the transla-
tion of a program P written in L, (if P is given); or
(2) an interpreter for the language Ln , which takes a

program P in L, and input data D and executes P on Mg

in accordance with the interpretive definition of L,; or

(3) a compiler for the language L, » which takes a program P
in L, and translates it into an efficient program Py for
MO; or

(4) a compiler compiler (if the definition of L, is not given),

which takes the definition of a new language in M and

produces a compiler for it.

For the approach we have sketched to be feasible, the
following three requirements must be met by the metalanguage M:
(1) It must be universal — not only in the sense that any
algorithmic transformation can he described in it, but also in
the sense that it must not be aimed at any special system of
concepts tied to a particular object language; this makes it
possible for one and the same metalanguage to be used with equal
success in describing whatever language we may invent, and at
all levels of the conceptual hierarchy. In programming terms, the
metalanguage must have a broad svmbol manipulation orientation.
(2) The metalanguage must be convenient to use; in particular,
a text in it must look not like an intricate program, which in
some mysterious way performs algorithms written in the language
to be described, but rather must be a semantic description of
this language, consisting of a set of sentences which define the
meaning of its concepts. Thus, the metalanguage must be essenti-
ally a production language, rather than an instruction/
statement language of more familiar form.

(3) The language must be minimal in the sense that the
defining machine which executes algorithms written in this
language must be simple enough for the rules of dealing with
algorithms to be formulated effectively. Otherwise there
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will be little hope of creating a supercompiler which could
perform really deep optimizing transformations of algorithms.
However, this requirement may come into conflict with the
requirement of convenience. A simple Turing machine or Markov
algorithms languages are simple enough to be used for purposes
of theory, but certainly impractical for writing complicated
algorithms. A language which deals with itself must be
neither too sophisticated nor too elementary, a situation
reminiscent of maximizing the product of two factors with a
given sum. We can summarize the third requirement of our meta-
language in these words: it must rest upon a minimum of
facilities, but still remain convenient enough to be used in
practice.

The language Refal was born in response to these require-
ments.

Independently of our work, one of the ideas of the Refal
project became quite widespread during the last two or three
vears, although expressed in somewhat different terms. It is
the idea that one should distinguish between programming in a
programming language, and specifying your algorithm in a
specification language; and that a good programming system
should allow you to specifv your problem only, without actually
programming it. The concept of a specification language
appeared originally in the context of proving correctness of
programs, where a specification was intended to give some infor-
mation in addition to a program; later people started to speak
of a specification instead of a program. Should we use these
terms, we could say that Refal is a specification language. But
we shall stick to our terms referring to Refal as a universal
algorithmic metalanguage, and not only because our project was
initiated long before the current trend in terminology. The term
"specification language" is not very meaningful. The fact that
we are "specifying" something in Refal is not essential; after
all, writing a program is also specifying it. It is essential
how we do it. It is essential that we allow an extensible

system of ad hoc languages, leaving only the metalanguage fixed.

viii



In the algorithmic aspect, the term "specification language"

is again unfortunate, not to say misleading. Any specification
of a problem to which the solution is an algorithm is, in the
last analysis, a definition of an algorithm, even if disguised
by mathematical notation of the precomputer era. The important
difference, as discussed above, is whether you define your
algorithm in interpretation mode, without thinking of efficiency
of the process, or in translation mode, aiming at an efficient
program for a machine. We use the term compilation to designate
transformation of an interpretation-mode algorithm into a
translation-mode (efficient) algorithm. The relation between
these fundamental concepts and their formalization is one of

the main themes of the present book.

The philosophical background which initiated the work on
the Refal project is developed in [2]. 1In that book the concept
of metasystem transition is introduced and taken as the basis
for an analysis of the evolutionary process. By a metasvstem
transition we mean a transition from a system S to a metasystem
S*, containing a set of S-type subsystems unified as a whole
and somehow controlled, produced, modified, etc. Seen in the
functional aspect, this transition is a transition from the
activity A typical for system S to a metaactivity A* exhibited
by S*, which is directed in some way onto the activity A: analyz-
ing it, modifying it, etc. In [2], the metasystem transition
is shown to be a sort of "quantum of evolution". Accumulation
of these quanta produces more and more sophisticated structures,
organized as multi-level hierarchies of control. For a system
to be self-developing, consecutive metasystem transitions must
become possible ("the stairway effect" in the terminology of
[2]). It is the author's belief that to make essential
progress in programming systems and artificial intelligence,
one rmust formalize and harness the concept of metasystem
transition. In the present book we are making first steps in

this direction.
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A few comments on the contents of the book, together with
some historical and bibliographical references follows.

In the first chapter the language Refal is introduced.
The second chapter presents the techniques of using Refal
as an algorithmic language expecting the program in Refal to
be executed in the interpretation mode. We do not say much
about implementation of Refal, outlining only the general prin-
ciples. A detailed description of the interpretative
implementation of Refal may be found in [1].

Initially Refal was called the metaalgorithmic language
[3,4] and had some features which made its efficient imple-
mentation difficult. Subsequently it became clear that the
decisive role in this language is played by the notion of
recursive function, and the methods of programming in it had
been worked out [5,6]. The language was simplified and
received its present name.

In the creation of Refal the ideas embodied in LISP [7]
and COMIT [8] were used; A. A. Markov's work on normal algo-
rithms [9] was an important source of ideas. We must also
mention papers by E. Dijkstra [10,11] and A. Van Wijngaarden
[12]. Refal shares some ideas with SNOBOL ([13], and a striking
resemblance to CONVERT [14] can be seen, though in 1965-66,
when Refal was designed, the author was not acquainted with
either of these languages.

Save for the initial period, there has been no influence
of other approaches on the Refal approach which we could
mention as appreciable. To be sure, one could find parallels
between our work and work done by other authors, but it would
have required a special effort which the author did not
undertake when preparing this book.

The first Refal interpreter efficient enough for practical
purposes was put into operation in 1968, in Moscow, on the
computer BESM-6 [15,16]. An interpreter with automatic access
to external memory was developed in Leningrad [17], In 1969
a new method of implementation of Refal was worked ou [18,19],

which allowed, in particular, a greater part of the implementation



work to be accomplished in a machine-independent form. At that
time this method was called compilation, but in fact it should
be more precisely called semicompilation. There now exist
Refal semicompilers for the most popular Soviet computers
(ES EVM, BESM-6, M-220, Minsk-32). An extensive exposition

of programming techniques in Refal was published in 1971

as a series of preprints of the Institute for Applied Mathe-
matics of the Academy of Sciences of the USSR [20]. As a
programming language Refal has been used for writing trans-
lators, algebraic maniuulation and theorem proving (see, e.g.
[21-23]). The efficiency of the use of Refal in semi-
interpretive implementation is comparable to that of LISP or
SNOBOL. Debugging in Refal is, in the view of the author,
easier than in any of the languages he knows.

In Chapter 3 we introduce basic equivalence transforma-
tions of Refal programs. The most important transformation,
called driving is the "conecretization" (evaluation) of a
function call with only a partially defined argument, i.e. an
argument containing free variables or not vet evaluated func-
tion calls. The notion of driving appeared first in [20];
more systematically the rules of equivalence transformations
were formulated in [24] and [25].

Chapter 4 presents the theory of compilation. Its main
idea is to consider the graph of generalized states
(configurations) of the Refal-machine, and to reduce the graph
to a certain normal form, using driving. In programming terms
this procedure can be defined as executing at compile time all
the evaluations which can be done, and compiling a new graph
out of those operations which have been left for the run time,
as strongly dependent on input data. The normal form depends
on the set of configurations which are declared basic. This
gives us a means to formalize the intuitive notion of the
interpretation-compilation axis, and to control the process
of compilation. Besides driving we use empirical generaliza-

tion with subsequent proof by mathematical induction. The
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notion of a perfect graph of states is introduced, which also
serves to direct the compilation process.

The first examples of using driving for optimization
were published in 1971 (see [20]). The main ideas and results
of the theory of compilation were formulated in 1973.
Unfortunately, in the years 1974-1977 the author could not
publish his work in the USSR because of political circumstances.
(In 1974 I was expelled from my job and blacklisted as an
active participant in the Human Rights Movement in the USSR.

The book [1l] was published anonymously after my emigration in
1977, and it was only possible to smuggle into it several pages
on the theory of compilation. But it was not allowed to use
the term "the theory of compilation”, nor to mention that the
piece was a vart of a larger work.)

In Chapter 5 we introduce metasystem transition into our
formal system. This is done through metaderivative and
metaintegral functions, which are used in MST-formulas.
Basically, this is a self-application of the algorithm of
equivalenceé transformation. By this we model a feature of
human thinking, which is crucial for creativity: the ability
to transfer attention from the use of an instrument (e.g., an
equivalence transformation) to the analysis of its use and making
a new instrument to improve the existing instrument. In our
system this transfer can be repeated indefinitely, Jjust by
writing an MST-formula. We show that by including the meta-
system transition into our formal system we do expand the range
of possible equivalence transformation algorithms; e.g., writing
an MST-formula for an algorithm which cannot prove the commuta-
tivity of addition in formal arithmetic, we receive an algorithm
which proves it. Our approach is not based on traditional
axiomatic logic, but on direct modeling of the three main aspects
of human thinking:

(1) concretization (computation), including driving;

(2) generalization (empirical induction) with subsequent
proof by mathematical induction;

(3) metasystem transition.
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We call this approach the metasystem analysis (see Sec. 5.7).

Application of the principle of metasystem transition
to practical needs of the supercompiler system leads to the
result which has already been mentioned above: having one
supercompiler for an object machine (computer), we are able
to produce automatically compilers and other system programs
for all languages defined in Refal in interpretation mode.
This is the only result of Chpater 5 which was published
before (in [l1]). It is also mentioned in A. P. Ershov's paper
[26].

A brief account in English of the project of the super-
compiler system based on the language Refal was recently
published in the SIGPLAN Notices [27].
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CHAPTER 1. DESCRIPTION OF THE LANGUAGE

1.1 Informal Description

To sum up the requirements set forth in the Introduction,
the language which we intend to design must be: (1) universal,
(2) convenient for semantic description of different
languages, and (3) minimal. Our purpose now is to present the
main features of Refal as derived from these reguirements.
Since it is not at all evident that recursive functions have
something to do with the language we design, we shall start
with calling the language we seek the language M (Metalanguage).
The concept of recursive function will appear in due course
as a result of reasoning, and this will once more demonstrate
its profundity and importance.

Problem oriented languages are convenient when they
reflect concepts specific for a specific field. To be conven-
ient our language must model some very general features of
human thinking — or, to be more precise — its manifestation
in linguistic activity. This activity consists in manipulating
linguistic objects to which certain "meanings" are prescribed.
Linguistic objects are composed of signs, but not in an entirely
arbitrary fashion because they have an inner structure which
reflects the syntax of the language. In fact, linguistic
objects are produced from parsing, and this feature being
common to all languages, must be taken into account in
the language M. Acting on the principle of minimality we shall
assume the simplest scheme modeling the syntax of natural
and artificial languages. The elementary syntactic unit of
the language M will be called the sign. The complete set
of signs is supposed to be finite, though in accordance with
the metasystem nature of the language it is not exactly
specified. The next.syntactical level is formed by symbols.



While signs are analogous to letters in natural language,
symbols model elementary semantic units — morphs: word roots,
prefixes, etc. A symbol may be simple or compound; the former
is expressed by a sign, the latter — by a sequence of signs
bounded by slashes, e.g., /BEGIN/. When an algorithm is
executed, each symbol is treated as a whole and cannot be
subdivided; neither can a new symbol be formed. The purpose

of this syntactical level is to provide a potentially infinite
set of indivisible units.

To build symbol structures we introduce the most common
means — parentheses. We call an expression any string of
symbols and parentheses, obeving the usual rules of the
parenthesis (bracket) syntax. Strings unbalanced in parentheses
are not expressions and are notallowed. The expression is the
most general object of manipulation in the language M. It can
be paralleled with a word or a group of words in a natural
language.

Having specified the object, we proceed to specify the
actions on them. An inherent feature of all developed languages
is the presence of a hierarchy of concepts. Consider a language
object, which has some meaning. What does it mean to understand
its meaning? It is to know how in any given circumstances to
concretize the object — that is to express the meaning through
concepts which take lower places in the hierarchy, and thus
to replace it by the language objects which fix these lower
rank concepts. With a natural language, this process comes to
an end when the relations are established between a language
object and the sensual world; in the case of a formal language
we come to the concepts, defined as primitive. We shall take
conceretization as the unit of action in the language M. From
a formal point of view it is, of course, no more than substi-
tution of one expression for another, and it is up to the user
to ensure that these actions ‘have in fact the quality of concre-
tization.



A pair of signs is used to delimit an expression to be
concretized: the concretization sign k, which precedes the
expression, and the concretization point l , which follows it.
They obey the rules of bracket pairing, so they are also called
the concretization brackets. In contrast, parentheses (round
brackets), which give a structure to the object, are called
the structure brackets. A pair of concretization brackets may
enclose other concretization brackets; as the language M is
algorithmic, we must specify which concretization is to be
performed first. Before an expression gets to be concretized
it must contain no inner signs of concretization; parallel
concretizations will be performed from left to right. In the
following example:

3 1 2
kA (BC)kD]|]EKFI()GH] |

the figures show the order in which the concretization must
proceed.

In accordance with one of the requirements, all informa-
tion that we want to convey in our language must be expressed
in sentences, which are essentially the rules of concretization.
They constitute an analogue of sentences in natural language.
Each sentence contains a left side and a right side. The left
side begins with the concretization sign k and ends with
the substitution sign =, which simultaneously stands for the
concretization point paired with the initial k and separates
the left side from the right. The sentences are separated by
the sign # placed in the beginning of each. Between the
# sign and the initial k there may be a comment. This is an

example of a sentence, which describes a simple abbreviation:
# 1 k ACM = Association for Computing Machinery

Whenever a combination k ACM | may enter, it will ulti-
mately be replaced through the avplication of this sentence by

Association for Computing Machinery



A sequence of sentences describes an algorithm. It is
performed as follows. At each step we try to find an applic-
able sentence, beginning the search from the first; when
such a sentence is found, it is applied, and the next step is
executed. This procedure is reminiscent of Markov's normal
algorithms, the essential difference is that symbol strings
in Markov's language are unstructured, for this language,
like other "theoretical" algorithmic languages, models only
the very fact of man's formal actions, whereas our language
uses structured strings (expressions), and models man's formal
actions in the framework of a hierarchy of concepts.

Yet the structurization of language objects alone is not
sufficient to get a language powerful enough for practical
purposes. We need free variables to make our sentences really
expressive. In accordance with the syntax of the language M,
we introduce three types of variable: those which may take
as a value a symbol, a term or an expression. A free variable
can be represented by a pair of signs, of which the first is
s, t or e, and shows its type, and the second serves as an
identifier. For convenience, we will write the identifier

in the index position: sl v Sy 4 S, t, , e, v etc. These

variables may take as a value any oijectlof the corresponding
type. * Additionally, we introduce a vpossibility of speci-
fying a class of allowed values of a symbol variable; details
will be seen from the formal description.

As an example of the use of free variables we define the
concept of the first syvmbol of an expression. To define a
concept means to make the corresponding concretization possible
and produce the needed result. We may wish, for example, that
the concr=tization of

k FIRST SYMBOL OF PROGRAM |
should produce the letter P. To ensure it we write a sentence:

# k FIRST SYMBOL OF S; €, = S

*
We shall call them s-, t-, and e-variables for short.



It will be used in the following way. First we must find out
whether the sentence is applicable for the above concretization.
For this purpose we try to syntactically recognize the expres-
sion under concretization as the left side of the sentence.

The recognition is possible if the free variables in the left
side can be replaced by such values that the left side becomes
identical with the expression under concretization. In our case
this can be achieved in a unique way by assigning the value P
to S and the value ROGRAM to e, . So, recognition is possible,
and we apply the sentence, that is substitute its right side

(in which the variables are replaced by their values) for the
expression under concretization.

Now we come to recursive functions. Theoretically, at
each step of concretization we look through the set of sentences
from its beginning, analyzing the applicability of each sentence.
When the number of sentences grows, this becomes cumbersome.

We clearly need a way to break down all the concretization
rules into separate parts pertaining to different .concepts.
Such a way is suggested by the above example. If the left side
of a sentence begins with a concrete symbol or a string of
symbols, but not with a variable, it will be applicable only
to such expressions which begin with the same string. As we
can use compound symbols, one symbol is quite enough to classify
sentences, so we shall agree that every sentence will have the
left side beginning with at least one symbol, which will be
called the determiner of the sentence. Now in an expression
to be concretized we can single out the first symbol and
ignore all sentences with determiners different from this
symbol. Sentences break down into groups with the same
determiner, groups with different determiners being commutable
with each other. 1In the spirit of this agreement it is prefer-
able to rewrite the last sentence in this way:

# 2.1 k /FIRSYM/ s

and to use it accordingly.
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What we have in fact introduced by our agreement is the
concept of a function. Functions are identified by determiners
and defined by groups of sentences with the same determiner.

A usual function designation F(E) turns into k F E |, where
the concretization sign explicitly shows that the function
must be evaluated and its value substituted. As we do not
restrict in any way the right sides of sentences, functions are
generally recursive. The description of an algorithm takes
the form of a recursive function definition.

We can illustrate recursion by extending the definition
of the function /FIRSYM/. Indeed, this function is underdefined:
if a machine, executing algorithms written in Refal (we call it
the Refal-machine) happens to concretize an expression which
begins with a bracket, it will not find any applicable sentence
(a parenthesis is not a symbol!) and will come to an abnormal
stop. The empty expression will bring about the same result.
A natural way to extend the definition is to add two sentences:

# 2.2 k /FIRSYM/ (e;)e, = k/FIRSYM/e e, 1

# 2.3 k /FIRSYM/ =

The language Refal is known in three versions: strict,
basie, and extended. We have already exhausted the facilities
present in the strict version; in fact, we have exceeded them,
for it incorporates certain restrictions on the left side of a
sentence as we shall see in Sec. 3.1. Basic Refal will be
formally described in the next section. It includes a feature,
which allows assignment of expression values to names. When
an expression of the form k/BR/(N)E l is concretized (where
N and E are expressions *) it disappears, but E gets "buried"
under the name N. It can be "dug out" by writing the expres-
sion k /DG/ N l , the concretization of which turns it into E.

* We shall generally use capital script
(ABCDEFGHIJKLMNOPQRSTUVWXY 2)
for metasymbols which denote Refal objects.



You cannot dig out an expression twice, which you have buried
only once. The reader may have surmised that this avoids copy-
ing expressions when implementing such assignments.

In Extended Refal it is possible to introduce new sentences
into an algorithm during its execution, and to use free variables
of arbitrary syntactical types described through appropriate
recursive functions. We have no place here to describe the

details on this subject.

1.2 Formal Description of Basic Refal

I. Syntax
A considerable part of the syntax will be described in the

Backus Normal form.
I.I Signs.

<sign> ::= <gpecific sign> | <object sign>

<specific sign> ::= #|/|<bracket>|<variable type sign>
<bracket> ::= <structure bracket>|<concretization bracket>
<structure bracket> ::= (|)

<concretization bracket> ::= k| | | =
le

Object signs are capital Latin letters and other signs

t

<variable type sign> ::= s

which are different from specific signs. The set of all object
signs is assumed to be finite.
I.2 Symbols and Expressions.

<symbol> ::= <object sign>|<compound symbol>
<compound symbol> ::= /<object string>/

<object string> ::= <object sign>|<object string><object sign>
<expression> ::= <empty>|<expression><term>

<empty> ::=

<term> ::= <symbol>|<variable>|(<expression>) |k<expression>|

<variable> ::= <simple variable>|<specified variable>

<simple variable> ::= <variable type sign><index>
<index> ::= <object sign>
<specified variable> ::= s <specifier><index>

<specifier> ::= (<object string>) |<compound symbol>
7



A pattern expression is an expression, which does not
contain concretization signs (but generally contains variables).
A workable expression is an expression, which does not contain
variables (but generally contains concretization signs). An
object expression 1is an expression, which contains neither

concretization signs nor variables.

I.3 Sentences and Programs.

<sentence> ::= #<comment><reversion indicator><left side>
<right side>

<comment> ::= <object string>|<empty>

<reversion indicator> ::= <empty>|(R)

<left side> ::= k<pattern expression> =

<right side> ::= <expression>

<program> ::= <empty>|<program> <sentence>

No sentence can contain variables with identical indexes
but different type signs. The right side of a sentence can
contain only those variables appearing on its left side. Speci-
fiers in right sides are omitted.

By the range of a concretization sign k in an expression
we mean the subexpression bounded by this sign and the conreti-
zation point | paired with it. We call the leading sign k in
a given expression the leftmost sign k with no other signs k in

its range.

2. Syntactical Recognition

2.1. We say that an object expression EO can be syntactically
recognized as a pattern expression Ep , if the variables in Ep
can be replaced — observing the rules listed below — by such
expressions, called their values, that Ep}becomes identical to Eo.

The rules are as follows.

2.1.1. A variable of the form sX, tX or eX, where X is an
index, can take as a value any symbol, term and expression,

respectively.



2.1.2. A variable of the form s(P)X, where P is an object
string, can take as a value any symbol, which enters P. Variables
s/SIGN/X and s/COMP/X take as values object signs and compound
symbols, respectively. A variable of the form sDX, where D is

a compound symbol different from those two, is equivalent to a
variable s(P)X, where P is the result of concretization of kD].

2.1.3. All entries of the same variable, i.e. those with the

same index, must be replaced by the same value.

2.2, If there are several alternative ways of assigning values
to the variables, the ambiguity is resolved in one of the follow-
ing two ways, which will be called recognition from left to right
and from right to left. 1If recognition from left to right (from
right to left) takes place, then of all alternatives the e

is chosen in which the leftmost (rightmost) expression variable

in Ep takes the shortest value. If this does not resolve ambi-
guity, the analogous selection is made with respect to the second

from the left (right) expression wariable etc.
2.3. To recognize a term kEOL as a left side kEp= means to

0
3. Refal Machine.

recognize E as Ep.

The Refal machine is an abstract device which executes algo-
rithms written in Refal. It consists of two potentially infinite
stores, which are called the memory-field and the view-field,
and a processor. At every moment in time the memory-field con-
tains a finite sequence of sentences, and the view-field contains
a workable expression.

The Refal machine works by steps. Having fulfilled a step,
the machine proceeds to execute the next one, provided that the
former has not led to a normal or abnormal stop. Execution of
the step begins with the search for the leading sign k in the
view-field. If there is no sign k, the Refal machine comes to
a normal stop. On finding the leading sign k the Refal machine
examines the term which begins with it; it is called the cctive
term, and we say that the starging sign k became active.

9



3.1. If the active term is k/BR/(N)E_L,where N and E are some
expressions, the machine writes down a new sentence
# k/DG/ N = E
into the memory field, putting it before the first sentence.
The active term is removed from the view field, and the step

is completed.

3. 2. If the active term is k/DG/N|, the Refal machine finds
in the memory field the first sentence of the form
# k/DG/N = E
with the same N, removes it from the memory field and substitutes
E for the active term, thus finishing the stepn. If there is

no such sentence, the active term is merely removed.

3.3. In other cases the Refal machine compares the active

term with the consecutive sentences in thememory-field,beginning
with the first one, searching for an applicable sentence, by
which we mean such a sentence, that the active term can be
recognized as its left side. Recognition is performed from 1left
to right if the reversion indicator is empty, and from right to
left if it is (R). Having found the first applicable sentence,
the Refal machine copies its right side, replacing the variables
by the values they have taken in the process of recognition.

The workable expression thus formed is substituted for the active
term, and the step is finished. 1If there is no applicable

sentence, an abnormal stop occurs.
4. External Functions.

In real implementations of Refal, as distinct from the
abstract Refal machine described above, one more action is taken
at each step before using the sentences: the examination of
whether the active term is or is not an external function call.
By external we mean those functions which are not describhed
in Refal. Some symbols must be specified in every implementation
as external function determiners. If the activ term has the
form kFE|, where F is such a determiner, control goes to a
program (or whatever) that performs the concretization. It may

result in the replacement of tahe active term by some

10



work able expression, and may produce any effect in the environ-
ment. After it is over, the current step is finished and control
goes back to the Refal machine.

The functions which provide input-output facilities clearly
must be external. 1In all implementations a function /PR/ is
avail a le, which 1is defined so that when a term k/PR/E_]_ be comes
active, the expression £ is printed and the term is trans-
formed into E. Another function, /P/, prints the argument
and deletes the active term.

We do not introduce into the formal description of Re fal
the concept of number, but in implementations it is possible to
code positive integer numbers in a certain range (e.g. for
ES EVM up to 231-1) as compound symbal s of a special kind.

The arithmetic operations on them are performed with the aid of
appropriate external functions.

A compound symbol which enters a symbol variable as a

specifier may al so represent an external function.

1.3 Re presentations and Metacodes

In written and printed representations, variable indexes
are lowered. ™e sign # may be omitted in which case each
sentence must begin in a new line. If the determiner in a
sentence repeats that of the preceding sentence, it may be
omitted together with the iniitial signk. ‘Thus the abow
&finition of the function /FIRSYM/ could be written as fal lows:

k/FIRS YM/ sje, = s;

(el)e2 = k/FIRSYM/ele 2_1_
>
It is also possible to use the shorthand notation, in
which Creek letters are introduced as representing combinations
of a sign k and a function determiner. Additionally we agree
that if a concretization point paired with a k-sign impl icit

in a Greek letter closes a subexpression it may >e omitted

11



(because concretization points closing subexpressions can be
unambiguously restored). Therefore, the definition of /FIRSYM/
may also take the form:

k/FIRSYM/

asle2 = s

a
1
a(el)e2 = aeje,
o =

At last we introduce one more facility into the shorthand
notation: wupper indexes can be used without any further defini-
tions. If o is defined as above, then «? means k/FIRSYMA/ and
a25 is equivalent to k/FIRSYM25/ . An upper index used with an
object sign turns it into a compound symbol. So, Fl is equiva-
lent to /F1/, and R~ to /R+-/.

To write in Refal algorithms dealing with algorithms
written in Refal itself we have to represent sentences by object
expressions, therefore, we need a special code for this purpose.
It will be called metacode A. We further need a code to input
Refal programs into a computer, which will be called metacode B.
It is convenient to represent object signs in Refal by bytes
in a computer, and it is convenient to treat each byte as an
object sign. Since in I/O operations we are dealing, after all,
with sequences of bytes, Refal sentences, and all possible Refal
objects, for that matter, must be represented in metacode B by
object strings (strings of object signs). In metacode A, Refal
objects will be represented by object expressions — for there
is no need to destroy their tree structure.

So, metacode A is a mapping of the set of all Refal objects
(that is programs and expressions) on the set of all object
expressions. Metacode transformation will be designated by
adding an asterisk as a superscript to the designation of a
Refal object. If Z is a Refal object, Z* is its metacode-A
transformation, Z** its double transformation, etc.

Naturally, the metacode transformation and the reverse must be

unique, but there is no need to require that each object expres-
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sion could be interpreted as the metacode of some Refal object.
It would be convenient if the metacode of an object expression
were always identical to the expression itself, but this is,
obviously, impossible because of the required uniqueness of the
inverse transformation. (Indeed, let t be an expression, which
is not an object expression. Then E* is an object expression.

E** must be identical to E¥,

If its metacode transformation
then the inverse metacode transformation, when applied to E* ,
must give both E and E*, which do not coincide by the defini-
tion of E.) Nevertheless, it is desirable to define metacode A
in such a way that the subset of those object expressions EO for
which Es # EO is minimized.
We define a metacode A by the following rules.
° The metacode of a sequence of objects is the sequence of the
metacodes of these objects. The metacode of (E), where E is an
expression, in (E¥). This rule applies also to specifiers.
° The asterisk * is a special svmbol. Its metacode is *V.
All the other symbols are transformed by the metacode into them-
selves.
° A variable type sign V is transformed into *V. For example,
the metacode of S, is *SX. Restriction: The asterisk cannot be
used as a variable index.
° An expression kE| is transformed into *K(E") .
° A sentence with the left side L and the right side R is
transformed into *((L*) = R*), if the reversion indicator is
<empty>, and x(R(L*) = R*), if it is (R). The comments are
ignored, which may be regarded as a restriction on the unique-
ness of the inverse transformation.
As an example consider the following program:

k/RPM/e +e, = k/RPMl/e;| - k/RPM/e,]|

k/RPM/el = k/RPMl/ell

k/RPMl/e, (e,)e; = e, (k/RPM/e,|) k/RPMl/e,|

k/RPMl/el = e,
which describes a function, replacing the symbol + by the symbol -
on all levels of parenthesis structure. In the metacode A it will

become the following expression:

13



* ((/RPM/ *El + *E2) =
* ( (/RPM/ *E1l) =
* ( (/RPM1/*E1 (*E2)*E3) =
* ( (/RPM1/*E1) =

*K (/RPM1/*El) - *K(/RPM/*E2))
*K(/RPM1/ =El))

*E1 (*xK(/RPM/ *E2)) *K(/RPM1/%*E3))
*E1l)

We shall not describe metacode B here (it may vary with

implementation), we will only give an illustration. This is how

the above program will appear on the programming form:

RPM El1 '+' E2 = K/RPM1/El. '-' K/RPM/E2.

El = K/RPM1l/El.

RPM1 E1(E2)E3 = E1 (K/RPM/EZ.) K/RPM1l/E3.

El = El1

14



CHAPTER 2. INTERPRETIVE IMPLEMENTATION AND PROGRAMMING

2.1 Principles of Interpretive Implementation

In Chapter 4 we shall outline the project of a super-
compiler system which uses Refzl as the metalanguage to define
programming languages, and produces compilers for these languages.
But to start using Refal and to initialize a bootstrapping
process, one needs an interpreter for Refal. The Refal
machine as defined above, is such an interpreter. However,
if it is implemented on a computer ,literally, the efficiency
will be so poor that it will be impossible to use Refal as a
programming language for serious problems. To make this possible,
we set forth the following five requirements of the implementa-
tion of the Refal machine:

Rl. When a parenthesis or a concretization bracket has
been located in the view-field it must be possible to locate
the paired bracket immediately, without scanning the enclosed
expression.

R2. If a variable enters the right side of a sentence in
the same number as, or in a smaller number than it enters
the left side, then it must be possible to fulfill substitu-
tion of the right side without actual copying or scanning of
the values of this variable. In other words, subexpressions in
the view-field must be transposable without rewriting.

R3. It must be possible to locate the leading sign k
without actually scanning the view-field, which is implied in
the formal description of the language.

R4. The time needed to bury or to dig out an expression
in the view-field must be independent of its length.

R5. Having found a determiner, it must be possible to
locate the corresponding group of sentences without scanning
the memory-field.

In existing implementations these requirements are met
by organizing the view-field as a symbol list structure and
maintaining a push-down store for the addresses of the conreti-
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zation signs present in the view-field. With such an implementa-
tion, Refal becomes a practical programming language, which can
be used with the same order of magnitude efficiency as LISP

or SNOBOL.

2.2 The Projecting Algorithm. Open and Closed e-Variables.

Requirement 1 concerning brackets is very important
for syntactical recognition. In the formal description this
concept was introduced from the point of view of its final
result only. But to understand the precise algorithmic mean-
ing of what is written in Refal, it is necessary to take into
account the actual process of syntactical recognition, the
algorithm that is used to recognize an object expression E0
as a pattern expression Ep . This algorithm can be more conven-
iently described from the opposite side — as an algorithm of
mapping Or projecting Ep on EO. We proceead to do so.

Entries of symbols, brackets and variables will be
called elements of expressions. Gaps between elements will be
called knots (see p. 17 ). The following general rules must
be observed at every stage of mapping.

Gl. If a knot Kl is positioned in Ep to the left of a
knot K2 , then its projection Pl in Eo cannot be positioned to
the right of the projection P2 of the knot K2.

G2. Projections of parentheses and symbols must be
identical to themselves.

G3. Projections of variables must meet requirements on
their values, in particular, different entries of the same vari-
able must have identical projections.

It is assumed that at the moment when syntactical recogni-
tion begins, the bounding knots of Ep are projected on the
bounding knots of EO. The mapping algorithm is described by six
rules (P1-P6) listed below. They are meant for the left-to-right
case, the algorithm for the reversed direction being analogous.
At every stage of projecting, the rules P1-P4 determine the
element to be projected next; thus each element gets a progjecting

number.

16



Eo o—T A \ 4 (

The projection of the pattern expression

Ep = A ( e t

2 ) S3

on the object expression

EO =A( (23))B
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Pl. After a parenthesis is projected, its paired
parenthesis bracket is projected immediately.

P2. If as a result of previous steps both ends (boundary
knots) of an e-variable turn out to be projected, this variable
is projected. Such entries are called closed e-variables. If
there are two of them, they are projected from left to right.

P3. An entry of a variable which already has a value is
called a repeated entry. Parentheses, svmbols, s-variables,
t-variables and repeated entries of all variables in Ep are
called rigid elements. If Pl and P2 are not applicable and
there are some rigid elements with at least one end projected,
the leftmost of them is chosen. If it is possible to project it
without contradicting rules Gl1-G3, then it is projected, and
the process goes on. Otherwise a deadlock situation is stated.

P4. If Pl, P2 and P3 are not applicable and there are
some e-variables with the left end projected, the leftmost
is chosen. It is called an open e-variable. 1Initially it gets
an empty projection, i.e. its right end is projected on the same
knot as the 1left. Other values may be assigned to open variables
through lengthening (see P6).

P5. 1If all the elements of Ep are projected, the syntact-
ical recognition is successfully fulfilled.

P6. In a deadlock situation the process comes back to the
last (i.e. with the maximum projecting number) open variable,
and its value is lengthened, which means that the projection of
the right end of the variable is moved in EO one term to the right.
Thereafter the process is resumed. If the variable cannot be
lengthened because of the rules Gl1-G3, the preceding open vari-
able is lengthened. If there is no open variable which could

be lengthened, the recognition of E, as Ep is impossible.

0

Examples of Projecting.

On page 17, the variable e, is closed. Consider another

1
example (the figures over elements are their projectind numbers) :
1 6 7 8 2 9 10 11 4 5 3

( e + e

1 2 ) ez t+t e (o5 )
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Here ey and e; are open variables, ey /+ and e, are closed.
It is easy to understand that if several main (not repeated)
entries of e-variables are present on the top bracket-structure
level of a given expression, the rightmost of them will be
closed and the others open. This rule is also applicable to
every subexpression enclosed in parentheses.
In this example:
9 10 11 2 3 5 6 4 8 7 1
e, + e, ( ( * * ) e t3 )
it may seem at first glance that the first entry of e is open.
In fact is is repeated.
In the rest of this chapter we shall describe the primary
methods of interpretive programming in Refal, i.e. prcgramming
for an interpreter obeying principles R1-RS5.

2.3 Function Formats.

Suppose we want to define in Refal a function, which in a
given expression on the top level of bracket structure, removes
all repeated blanks, that is replaces each group of adjacent
blanks by a single blank. How is the problem approached?

Let us denote the reguired function by ¢(k-sign included!) ;
a blank will be represented by the sign U. As there must be
no pair of adjacent blanks in the result, we can define the
concretization as a recursive removal of one blank of every such

pair. This leads to the following two sentences:
¢ e uu e, = ¢ e u e,

¢ e > e

The variable ey in the first sentence is open. Initially
it takes an empty value and then is lengthened until the first
combination U U (if any) is found. The variable e, is closed,
therefore the remaining part of the argument is not scanned,
and by applying the sentence one blank gets eliminated. During

the next step the projection of e, must be scanned again in
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search of a pair of blanks, and this is clearly useless,
because it cannot contain any. So our algorithm is not effi-
cient. We can amend it by taking e, out of the conretization
range in the right side. Now it takes the form:
¢elLJLJe2=’el¢Ue2
ve 7 e

According to R2 the interchange of ¢ and e takes effort
which is independent of the length of e . According to R3 the
conretization sign in ¢ is located immediately. The part of
the argument which follows U U 1is not, as mentioned above,
scanned, and when we fail to find this combination, the second
sentence is applied without further examination of the argument.
Thus no unnecessary actions are implied here.

In the last example the concretization sign was used as a
pointer in scanning an expression. This was possible because
the scanned part of the expression did not participate in
concretization, and therefore it could be taken out. When it
is not, we retain the expression in the concretization range
and use parentheses as delimieters or pointers. As an example,
consider a correction function <y, which in a given string of
symbols deletes a symbol if it is followed by the negation
sign 7, and if there are several negation signs, deletes the
corresponding number of preceding symbols. We can describe y

in a very simple fashion by the following two sentences:
Y elsa | e2 >y el e2
Y& 7&
But this algorithm is not efficient. To construct an efficient

algorithm we introduce an auxiliaryv function yl with the format

Yl(El)Ezl , where El is the examined part and E2 is yet unexamined:

1
ye =y () e
1t !
Yl‘elsa’ Tey, =y (fl)ez
Y (el)ezsa 1 e3 =y (elez)e3

1
v (ej)e, = eje,
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A pair of structure brackets (parentheses) introduced to
isolate a part of the argument, thus avoinding unhecessary scans
(open variables), will be called a pouch. The argument of a
function may have any structure with respect to parentheses;
this structure will be called its format. The notion of the
number of arguments, so important for numerical functions, becomes
pointless for Refal functions, because any number of expressions,
say three expressions El ’ E2 , and E3 , can be brought together
into a structure, from which they are easily extractable, for
instance (El)(Ez)E3 , or ((El)EZ)E3 , Or (El)(Ez)(E3)° Moreover,
whatever way we choose to write down a sequence of arguments
it will be natural and convenient for the Refal programmer to
regard it as one composite argument. Accordingly, we will always
consider formally that a function in Refal has just one argument,
but when its format is explicitly specified, the subexpressions
of the argument may also be called arguments — provided the
meaning is clear.

Let us give an example of a function with a sophisticated
argument. Suppose we are to compare two expressions and compile
the list of those terms, which have the same serial number in
both expressions and are identical. Both original expressions
must be reatined and separated by parentheses in the final result,
and the list compiled must be added at the end, also separated
by parentheses (cf. Sec. 25.). The format of the function which

does this work (we assign determiner a ) will be
a( (El) EZ) ( (53) 54) ES l ’

where E. and E2 — are the scanned and yet unscanned parts of the

1

first expression, E3 and E4 are the same for the second expres-

sion, and ES is the list of terms compiled to date. The defini-

tion of the function is
a((el)taez)((e3)tae4)e5 > a((elta)ez)((e3ta)e4)e5ta
a((el)taez)((e3)tbe4)e5 g a((elta)ez)((e3tb)e4)e5

a((el)ez)((e3)e4)e5 = (elez)(e3e4)(e5)
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2.4 Scans of Different Orders

The number of open e-variables in the left side of a
sentence may be called the order of the scan implied in the
sentence. A scan of the n-th order requires, generally, a
number of elementary operations proportional to Nn, where N
is the number of terms in the expression under concretization.

This is a simple example of the second order scan. Suppose
we need to find two identical terms in an expression. This goal
can be achieved by using a sentence with the left side:

a e tx e, tx e, =
We have here two open variables: e and e, therefore the power of
the implied scan is 2. Let us examine the performance of the
Refal machine when it applies this sentence. First, the variable
e will be assigned the empty value, and ty will become the
first term of the object expression. Then e, will take on an
empty value. If the second term of the object expression is not
equal to the first, the variable e, will be lengthened in a
search for a term, which would be identical to the first.
On coming to the end of the object expression, the Refal machine

will lengthen the variable e, , i.e. will choose as tx the

second term of the object exéression etc. Thus, the Refal
machine will perform those and only those actions which are
necessary by the essence of the algorithm, therefore there is
no loss of efficiency concealed in our program.

Consider, however, a sentence with the left side

a el A ex Z e2 =>

It purports to discover the first from the left expression

that begins with A and ends with 2. Again this is a scan of

the second power: If the expression sought for actually is
present in the argument, no unnecessary actions will be performed
during the search and the scan will actually be of the first
power) . But suppose the argument does not contain symbol Z at all.
This fact requires only N steps for its discovery (N is the number

of the terms). Meanwhile, the Refal machine will unnecessarily
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lengthen the variable e and perform, in the general case,
const.-N2 steps before coming to the conclusion that recogni-
tion is impossible: a loss of efficiency. Surely, a sophisti-
cated interpreter (semicompiler) might spot this in the pre-
processing (compilation) and introduce corrections, but this
must be considered as optimization, which should not be expected
from each implementation of Refal. To guarantee efficiency we
must redefine our function so as to eliminate unnecessary scans.

First, we spot a symbol A by the sentence
« e Ae, = g(e A) e,

where B is an auxiliary function, and then we search for Z by
using the following left side in the definition of B:

B(el A) ex yA e, =>

(Recall that variables in Refal are local to sentences, so that
the same indexes in different sentences, though convenient as a
menomonic, should not cause confusion.)

So, we received two sentences with the first power scan
instead of one sentences with the second order scan. Generally,
it is safe to use first-order scans, because the implications
are easily seen, but some caution is needed with higher order
scans in order to avoid inefficiency. Redefinintion to elimi-
nate unnecessary scans is always possible and fairly obvious.
In particular, it is possible to program in such a way that
there will be no open variables at all. In this case, all the
scans present in the algorithm will be expressed by functional

recursion.

2.5 Reproduction of Variables. Branching and Loops.

If a free variable enters the right side of a sentence
more times than it enters the left side, we will say that this
variable s reproduced. 1In this case the Refal interpreter
has to make one or more copies of the value of this variable

when applying the sentence. This must be taken into account in
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programming, because unnecessary reproduction of variables may
lead to dramatic losses in efficiency. When there is no repro-
duction of variables the interpreter will just rearrange the
contents of the view-field, inserting and removing only
those elements which are explicitly indicated in the sentence
as constants (i.e. symbols and brackets). If there is repro-
duction of variables, the interpreter will have to make copies
of some parts of the view-field which may be very extensive.
Thus, of the following two similar sentences:

alej)e, = (ejy)e

a(el)ez = (ey)e,
the second may require one hundred times more time to perform
than the first. Therefore, if a variable may have a long
value, it should not be reproduced unless it is needed by the
essence of the algorithm.

This consideration has a direct bearing on branching and
exchange of arquments and values between functions in Refal.
In other languages branches are usually defined through condi-
tional expressions which make use of predicates (Boolean
functions). 1In Refal it would not be difficult to define the
semantics of conditional expression so that it could be used

in the usual form:

c.1 k/IF/(T)/THEN/(el)/ELSE/e2 = e

Cc.2 k/IF/(F)/THEN/(el)/ELSE/e2 > e,
c.3 k/IF/(ep) e, ™ k/IF/(kepl) e, |

The first two sentences here will be used after the concretiza-
tion of the predicate into a truth-value has already been
performed. The third sentence will bring about concretization
of the predicate, should we choose to write it without embrac-
ing concretization brackets. It can be translated into English
in this way: to concretize a conditional expression, first
concretize the predicate.

Logical connectives would not be difficult to define either.

But programming branches in this way for a Refal interpreter would
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be inefficient. We will show this in the following example.
Let a relation (a two place predicate), which is written

in the form:
k/FOLLOWS/ (e, ) /AFTER/e, |

be defined. This relation may be used, e.g., in algebraic mani-
pulation, the variables e and e, being very bulky. Suppose we
want a procedure of ordering a pair of expressions according

to this relation. We define it this way:
k/ORDER/(el)(ez) => k/IF(/FOLLOWS/(el)/AFTER/ez)
/THEN/ ((e,) (e;)) /ELSE/ (e)) (e,) |

This definition. looks familiar to one's eye, but it leads to
senseless reproduction of variables during interpretation,
and hence to essential loss in efficiency. Each of the
variables e and e, enters three times the right side of the
sentence, while only once on the left. Therefore, the Refal
machine will copy it twice — only to destroy both copies
shortly afterwards. The first copy is destroyed when the predi-
cate is concretized (because the argument gets lost and replaced
by a truth-wvalue); the second copy is destroyed in accordance
with one of the sentences C.1l or C.2.

How does one avoid this difficulty?

The Refal machine is very simple and straightforward.
To program for it efficiently one has to keep track of the
"physical" rearrangements it makes in the view-field when apply-
ing a senta2nce. It must be borne in mind that if a function
destroys a free variable the value of which still is to be used
later we will be obliged to resort to variable reproduction
before using this function. In siort, to avoid unnecessary
reproduction of arguments, we must avoid unnecessary destruction
of arguments.

Let us apply this pring¢iple to predicates. Instead of the
usual predicates, which substitute a truth-value for the argu-
ment(s), we shall use recursive functions which retain the

argument, and only add to it at the beginning the truth-value
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resulting from evaluation. Such functions will be referred to
as conservative predicates. For instance, the conservative
predicate o which tells whether an expression contains two
identical terms on the top 1level of parenthesis structure

may be defined as
a eltxe2txe3 = Teltxeztxe3
a e, = F el

In our example, we should redefine the predicate /FOLLOWS/
in such a way that the result of concretization is either T(el)ez,
or F(el)ez. This eliminates one unnecessary copying. To elim-
inate the other, we abandon function /IF/ and make up

the following straightforward definition:
k/ORDER/(el)(ez) = k/ORDER1l/ k/FOLLOWS/(el)/AFTER/ezl l
k/ORDERl/T(el)e2 = (ez)(el)
k/ORDER1/F(e))e, = (e;)(e,)

introducing one auxiliary functioh.

The branching of the algorithmic process is achieved here
through the syntactic analysis of the argqument: whether it starts
with T or F. But the presence of more than one sentence in the
definition of a function always generates a branch controlled
by syntactic analysis, and conversely, the only way to generate
a branch in Refal is to have more than one sentence in the
definition of some function. Accordingly, the predicates in
Refal lose their role as the only vehicles of branching. The
differentiation of functional units into those which only analyze
and branch but do not transform, and those which transform with-
out branching, becomes optional and as a general rule unnecessary.
A Refal function in a carefully written program verforms twyc jobs:
on the input end, it makes branchings and corresponding transfor-
mations; on the output end, it leaves clear syntactic indicators
to be used for branching by the function which takes up the
resul t of concretization. For example, as the basis for a proce-
dure of ordering a sequence of terms we sho uld take not the
predicate of order, but the procedure of ordering two terms,
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which (1) puts the terms in right order, and (2) adds T or F
at the beginning to indicate whether they were initially in
right or wrong order.

The number of constant elements in the right sides of
sequences al so must be considered in effective interpretive
programming. If the right side contains many elements which
are not present in the left side in the same order, the inter-
preter will have to insert these elements in the view-field:
one by one, if there is no optimization. And if these symbols
or brackets become unneeced at the next stage, and get removed
from the view-field, this program cannot be recognized as
fully efficient. We can amend the program by using functions
/BR/ and /IG/ of "Surying" and "digging" information.

Consider this exampl e. Iet conservative predicate /ORL/
defined on the set of ordered pairs of letters assume value T
when the letters are identical or the second appears later
in the alpghabet than the first, and value F otherwise. The

simpl est version of the definition is:

k/ORD/sl S, = B ﬁsz ABCDEFGHIJKLM NOPQRS TUVWXY Z

B S S, exszeyslez = F S, S,

B8 S S, = T S) Sy

This solution has the shortcoming we have just mentioned:
each time when the first sentence is used the alphabetical list
of letters will be brought into the view-field — and thrown out

at the next step. The other solution is to perform the

concretization
k/3 R/(ALPH) =ABCDEFGHIJKLMNOPQRS TUVWXY % |

at any stage before using hee predicate /ORD/ , wiich we
redefine now in the following way:

k/ORD/ss, =8 s;s,k/DG/ALPd | |
8 slszexszeyslez = F slszk/BR/(ALPH)=exszeyslez 1
B §s,e, ® Tss, k 3R/ (ALPH) =e_ 1

27



Now the list
in the form required for the view-field.

take a small time, which is, according to
length
that after using the list, one should not

principle R5 independent of the

be buried again immediately (this is done

this example); otherwise the list will be

as a whole is dug and buried, being represented

These procedures
implementation
of the list.
forget that it should
by function 8 in
lost.

Notice,

In Refal, all iterative processes take the form of func-

tional recursion. However,

and the use of recursive functions, which

the difference between simple loops

is so noticeable in

usual programming languages (say, ALGOL 60), has its analogue

in Refal, being reflected in the structure of the right sides

of sentences.

If the right side is a call of the function itself,

it is a simple loop: the configuration (see Chapter 4) of the view-

field does not change, only one argument is replaced by another.

Allowing the argument to include calls of

other functions, which

do not call back the original function, we get nested loops,

for example

1

l ce e D> kF co o

KF kP2

sz ce e = sz oo e l

But if a sentence has the form

1 2 1

kF ooo:kF oo e kF e oo

coe J__L

11

each application generates a new pair of concretization brackets

— function F2 calls, which accumulate

in the view-field and

will be taken up for concretization only after another,

nonrecursive,

This is a recursion in the sense of ALGOL

sentence for the function Fl

has been used.
60.

Consider the factorial function as an example. According

to its recursive definition, we can immediately write

program which uses recursion in ALGOL:

integer procedure FACT(n);
value n;
FACT := 72f n =

integer n;
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In Refal, we must first introduce the function o perform-

ing arithmetic operations. Let it have the format

a 0 Nl, N, 1
where 0 is the operation sign, Nl and N2 are the operands. Then
the corresponding description of the function /FACT/ will be:

k/FACT/0 = 1

k/FACT/en = a x k/FACT/ a-e , 1], e,

To eliminate the recursive function call in the ALGOL

program, we can rewrite it this way:

integer procedure FACT(n);
value n; integer n;

begin integer f, m;

f :=1;

for m :=1 step 1 until n do
f := £ x m;

FACT := f

end

The corresponding program in Refal is:
k/FACT/ e, = :/Fl/(l)(a+en,l) 1]
k/Fl/ (en)(en)ef > eg
k/F1/ (e ) (e )e, = k/F1l/(a+e ,1)(e )oax ece | |

Here the first sentence corresponds to the declaration of
the local variables and the initial assignments to them, the

second and third sentences correspond to the for statement.
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2.6 Decomposition of the Algorithm into Functions

One Refal function is usually attached to the algorithmic
problem to be solved. But in a complicated case, to define
this function we have to introduce auxiliary functions, which
may demand the introduction of new auxiliary functions, etc.

For instance, a translator from ALGOL 60 into assembler language
takes several dozen functions described, all in all, by a
few hundred sentences.

The most usual reasons to introduce an auxiliary function are:

(1) To break down an object into some parts according to
a pattern. This pattern will be reflected in the left side of
the defining sentence.

(2) To define branching by putting one sentence into corres-
pondence with each particular case.

(3) To change the format of the argument, which is dictated
as a rule by the necessity of bringing a new object into the
process.

(4) Preliminary processing of the argument in order to
describe the main process in a more convenient or efficient way.

Suppose that some object is to be processed by several
functions in succession. This can be achieved in two ways.
First, we can define all the functions independently, and
then define a function which applies them consecutively, for

example:
k/F/e, = k/F3/k/F2/k/Fl/e, | | |

Second, we can define the first function in such a way that it
will call the second when it has finished processing; the
second function can call the third in the same manner, etc.
The first method has the advantage of independently defined
functions, which may be used on different occasions. On the
other hand, the second way is more convenient when the functions
are introduced ad hoe, and the choice as to what function to
apply next may depend on the form of the result.

Some functions may not exactly specify what other functions

will be called; such functions are called metafunctions, they
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control the use of other functions, dependent on input informa-
tion. For example, the function /APPLC/ ("apply consecutively")
defined as fol lows:

k/APPLC/( ) e, = e

k/APPLC/(slez)ex => k/APPLC/(ez) ksl e, 11

takes its first argument (the expression in the pouch) as a
list of function determiners and applies these functions consecu-
tively from left to right to the other argument.

In some implementations of Refal it is required that each
concretization sign in the program is always followed by a
determi ner, thus rendering the second sentence inadmissible.
However, these implementations provide a special external
function /MU/ which works as a universal metafunction.
Specifically, the concretization of k/MU/slex | produces
the same results as kslex _Lwith any values of S, and e, .
Therefore, we only need to rewrite the right side of our

serntence as fol lows:

k/APPLC/ (e,) k/MU/sy e | |

2.7 All-Level Scans of Bracket Structures

Remember function ¢ from Section 2.3, which eliminates
repeated blanks. It leaves unprocessed those parts of the
argument which are enclosed in parentheses. Now we want to
modify it in such a way that the argument is processed on all
levels throughout its parenthesis structure. The simplest
solution to this problem is to insert an additional sentence
between the first and the second sentences, which would

describe the procedure of entering parentheses:
) elul_e2=>¢ g |_A¢l.|e2
¢ e (e) e3> q (be,) deg
boe e
Here we also had to modify the first sentence by enclosing

the variable e, on the right in concretization brackets
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because it still has to be scanned in order to find out
whether it has parenthesized subexpressions. Variable e
in the right side of the second sentence can be taken out

of concretization brackets, for it no longer contains either

repeated blanks or parentheses.

This definition is not free of algorithmic inefficiencies.

We present two more solutions:

1
¢ e, uu e, = ¢ e, L ¢ou e,
1
¢ e, - ¢ €

¢le1(ez)e3 = el(¢ez)¢le3

1
¢eg T &
and
¢ U il el = ¢ U el
¢ Sael e Sa ¢ e1

¢(ej)e, = (¢e)) de,
¢ g

leaving it to the reader to analyze the differences between
them in the algorithmic aspect.

The language Refal takes parentheses very seriously.

The Refal object is a tree written in line with the help of
parentheses and concretization brackets, and its structure
cannot be easily ignored. Whatever way we choose to describe
an algorithm in Refal, it remains to be expressed through
operations on tree structures.

Consider this example. We want a procedure which scans
the object from left to right and of all the entries of each
symbol, keeps only the first, deleting the others. This
procedure, in fact, ignores the tree structure of the object,
it regards parentheses as symbols (but of a special kind, since
they should not be deleted). In Refal, we will have to define
this procedure as moving around a tree, but unlike the preced-
ing example, we will have to transfer information from one

branch of the tree to another.
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Let us assign determiner a to our procedure. Obviously,
we must maintain a list of symbols already discovered. Let us
put it into a pouch, which we will position at the end of the
argument. Therefore, the auxiliary function will be intro-

duced as follows:

1l
ae = a e ()

If there were no parentheses in the arguments, function al would

be defined by these three sentences:
1

1
al speq(elspez) = q :q(elspez)
o speq(el) = spa eq(elsp)
al tl =

Because of the parentheses, the list of symbols accumulated
in one subexpression must be used when scanning another. This
means that we must take in this list when entering parentheses
(which is easy), and bring it out on exit (which is a bit more
difficult). The most universal way to exchange information
between any points in tree structures is to use procedures
/BR/ and /DG/. We will keep the list of symbols buried under
the name LS. On scanning each subexpression delimited by
parentheses, function al will bury the up-to-date list, and it
will dig it out on the next higher level of the parentheses
structure. At the end of the work the list should be dug out

and destroyed so as not to waste space.

N -~ ol e, () | k/DESTROY/ k/DG/LS | |
aispeq(elspez) = al jq(elspez)

alspeq(el) = sp; eq(elsg)

o (el)ezts 2 (a elts) o ez(k/DG/LS 1)

ol (e,) = k/BR/(LS) = eg |

k/DESTROY/e1 =
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As an exercise, the reader may define function a without
resorting to functions /BR/ and /DG/.

Now we describe some scanning techniques that are coupled
with rearrangement of the bracket structure. The parentheses
may be removed and restored, if they are replaced by some
special symbols which are not used otherwise. Let it be /L/
for the left parenthesis and /R/ for the right. The procedure
replacing parentheses is fairly simple:

k/REP/ e;(e,)e; = e, /L/ k/REP/ e, /R/ e, 1

el nd el

The inverse procedure, which pairs corresponding symbols
/L/ and /R/, and replaces them with parentheses, is somewhat
more complicated, but, as we shall see, requires only five
sentences to define, and no bury-dig functions. We shall give
a detailed account of the process of designing this program,
in order to illustrate the method of work in Refal.

First, some examples. If after a "quasi-bracket" /L/
immediately (not counting normal symbols) follows a quasi-

bracket /R/, they can be paired and replaced by parentheses:

A/L/ BC/R/D = A (BC)D

If after an /L/ another /L/ follows, it is the second one that
will be paired with the first /R/ to appear, the first /L/ being
kept unpaired. The scanned part of the object may be:

| I

A/L/ B ( CDE ) FG

The general form of the scanned part will be called a

left multibracket. It contains a number of yet unpaired /L/ ,
but does not contain any /R/ s. Paired /L/ and /R/ are already
replaced by "real" parentheses. How do we represent this type
of object in a Refal program? We could keep a multibracket in
its "natural" form, putting it in a pouch. But this would
require a multiple scan of the argument. The first scan, when
we are lengthening the multibracket, is, of course, inevitable.
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Other scans are being done when we seek the last symbol /L/
to pair it with the /R/ encountered. We can avoid them if
instead of quasi-brackets /L/ which break down the multi-
bracket into separate segments we use structure brackets
— parentheses! A multibracket of the form

El /L/ E2 /L/ E3
can be represented as
(Eq) (E,) (E5)
or else as
((E))E,)Eq
The latter proves more convenient. Using it, we devise the

following definition of the pairing function, which requires
exactly one scan of the argument:

k/PAIR/ e, = a( ) e,
ale) /L/ e, = al(e)))e,
al(ej)ey) /R/ e3 = ale;(e,))e,
ale;)s e, = ofe

P
a(el) > e

lsp)e2
1

The notion of a right multibracket can be introduced in
the same way as the left multibracket. The structure

El /R/ .. En-l /R/ En
will be represented in the form
El( * o o En_l(En) * o o )

Using these representations, we can describe one more way
of performing all-level scans of bracket structures. When we
move along the processed expression, the scanned and yet
unscanned parts are left and right multibrackets. Suppose, e.g.,
that we are at the second level down in the bracket structure.
This situation may be depicted as follows:

¥
El(EZ(E3 E4) ES) E6
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where the arrow shows the control point. With our representa-
tion of multibrackets the argument of the scanning function
will be of the form:

[((El) Ey) B3] E4(E5(E6))
(For the sake of lucidity, the format parentheses are repre-
sented here as square brackets.) Therefore this way of scan-
ning is coupled with rearrangement of the processed tree:
the subexpression worked on is raised to the top 1level of
bracket structure.

There is a technical point in dealing with the above-
mentioned argument which ought to be indicated: we must avoid
confusing the parentheses introduced to represent multi-
brackets with "genuine" parentheses representing the original
structure of the argument, which may happen if it ends with a
right parenthesis. Suppose, e.g., that the processed expression
is

(A)BC (D)
At the moment when the control point has just passed symbol C,
the argument of the function will be

[ (p)BC] (D)
Suppose now that the original expression was
A(BC)D

When the control point passes C, the argument of the function
will be

[ (a)BC] (D)

which is indistinguishable from the first case, indicating an
amgiguity.

To eliminate this difficulty, we may add to the original
expression any symbol, e.g., an asterisk, when we call an
auxiliary function with a pouch; thus, a terminal right paren-
thesis in the argument (and only it) will be always attributed
to a multibracket. In the end the asterisk should be of course
removed.
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The above function o, which removes all repeated entries
of symbols, will be defined using this technique in the
following way:
1. FORMAT TRANSFORMATION. SECOND POUCH IS FOR SYMBOL LIST

ae, = al( Y *( )

1
2.1. END OF JOB

1
o (el) * ts = e,
2.2. REPEATED SYMBOL

1 1
o (el)speq(ezspeB) =2 q (el)eq(ezspe3)

2.3. NEW SYMBOL

al(e )s. e (e ) = al(e s )e _(e_s_)

1°"p7q s 1"p" "q""s"p
2.4. RIGHT PARENTHESIS IN ORIGINAL EXPRESSION
1 1

a ((,el)ez)(e3)ts = q (el(ez))e3ts
2.5. LEFT PARENTHESIS IN ORIGINAL EXPRESSION

1 1

o (el)(ez)eBts =2 q ((el))ez(e3)ts
If we have finished the work before completing an all-level

scan, the argument in the "inside-out" form

*
[(...(El)...)Em] E (e (E) oo )

n+l n
can be brought back to normal by applying the backtracking
function 8:

B (ej)e,(ey) = B e (e,)e,

B e = e

1 1

with the format parentheses preliminarily removed:

B(...( Ej)...) E_E (cooCE %) v0) |

m m+l

2.8 An Example: Translation of Arithmetic Expressions.

As an example of a more complicated program, we list the
definition of a function (/TRAREX/), which translates an

arithmetic expression into a program for the assembly language
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of a one-addressed computer. Elementary operands are ALGOL 60
identifiers and integers. Literal constants in the resulting
program are formed with the help of an equality sign, e.g.
ADD, =36;

Intermediate results are stored in R+ 0, R + 1, etc. Syntacti-
cal correctness is checked and error printings are made.
Incorrect subexpressions are replaced by the identifier ERROR.

First, the argument expression is parsed into a more
convenient form for translation, which has a prefix structure
with the prefix being either an operation sign, or an asterisk
indicating an elementary operand. The parsing is done from
right to left. The pouch in the format of the function /TRANSL/

contains the displacement to store the next intermediate result.

TRANSLATION OF ARITHMETIC EXPRESSIONS
k/TRAREX/ e_ = k/TRANSL/ (0) k/PARSE/ e 11
a = k/PARSE/

a + e, = o e

1 1
1 = a0 - e

1
(R) o els(+ -)f e, = S¢ (a el)a e,
= ale
1 1
(R) ole.s(x /). e. = s.(at e.) o
1 f "2 ‘f 1
1 . 2
o e, = a e

a - e

o e

)

a3 (el) = o e

3
a s/LETTER/l e, g k/IDENT/(sl)e2 1

3
o s/DIGIT/1 e, = k/NUMBER/(sl) e, 1
3
a” e = ERROR k/P/ ERROR: e |
k/IDENT/(e ) S/LETTER/, e = k/IDENT/(e;s,) ej 1

(e;) s/DIGIT/, e; = k/IDENT/ (eys,) ej |
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(el) > % e,

(e;) e, » ERROR k/P/ ERROR: e, e, |
k/NUMBER/ (e,) s/DIGIT/, e; = k/NUMBER/ (e;s,) e; |

(el) => x = el

(e e, = ERROR k/P/ ERROR: e e, 1

l) 2

k/TRANSL/ (e ) s.(e;) * e, = k/TRANSL/ (e ) e, |

2
k/CODE/ s¢ | + e, i

(e ) s(+xX); (x e;) e, = k/TRANSL/ (e ) e, |

2
k'CODE' s. |, e;;

(e ) sf(el)e2 = k /TRANSL/ (en) e, 1
STORE, R + e_;
n
k/TRANSL/ (k/PLUSl/e | ) e, |
k/CODE/ s, 1, R+ e i

(en) * e, = LOAD, e

1 1’
k/CODE/ + = ADD

- = SUB

x = MULT

/ = DIV

+ = POWER

The functions /LETTER/, /DIGIT/ and /PLUS1/, the meaning
of which is obvious, can be easily described in Refal, but
it is preferable to have them irplemented as external

functions ,
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CHAPTER 3. EQUIVALENT TRANSFORMATION

3.1 Strict Refal

When a formal system is developed, the first step to take
along the way of metasystem transition is to introduce a concept
of equivalencé and elaborate a system of equivalent transforma-
tions of formal objects. In the case of Refal it has been
discovered that a compact yet powerful system of equivalent
transformations of algorithms and functions can be formulated
([21]) if the basic version of the language is somewhat restricted.
These restrictions are:

(1) The functions /BR/ and /DG/ are excluded;

(2) t-variables are excluded;

(3) in the left sides of sentences there must be no open
variables, neither repeated entries of e-variables

(repeated s-variables are permitted).

For the sake of simplicity we shall assume later on that every
sentence has a determiner, and sentences are grouped into
function descriptions.

We call this language Strict Refal. The translation of
a program from Basic Refal into Strict Refal can be easily made
automatically. We note though, that the restrictions are not
very severe and leave the language expressive enough to conven-
iently describe most complicated algorithms.

A pattern expression will be called an L-expression if
no one of its subexpressions contains more than one e-variable
not enclosed in parentheses, and no one e-variabie enters the
expression twice. In strict Refal the left sides of sentences
are L-expressions. From the definition of L-expression there
immediately follows

Theorem 3.1. Each subexpression of an L-expression is
an L-expression.
Examples of L-expressions:
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ABC
/RS/(s(+-)1e2(Ae3B))sl
(e;) (e,) (ej)e,
Examples of pattern expressions which are not L-expressions:

el + e2

s, e, (s3 ez)
Due to the absence of open e-variables the following prop-
osition holds:

Theorem 3.2. Let EO be an object expression and El an
L-expression. There can exist only one set of values of the
free variables in E2 such that the substitution transforms

El into EO.

To demonstrate this we only need to review the projecting
algorithm in 2.2. All rigid elements are projected uniquely.
Having projected them all, we come to a situation where the
only (if any) e-variable present on each level of bracket
structure in each subexpression has both its ends projected,
and therefore, gets its value uniquely also.

3.2 Classes and Subclasses

To every pattern expression Ep a set corresponds, which
comprises all object expressions syntactically recognizable as
Ep. We call this set a class depicted by Ep , or simply a
class Ep. A class depicted by an L-expression is called an
L-class. To denote set-theoretic relations and operations on
classes we shall use the usual signs: C , =, N , U,

No distinction will be made between object expression and the
class it depicts. Thus the relation Eo c Ep , where EO is an
object expression, means that Eo is recognizable as Ep.

In the formal description of Refal the requirements 2.1.1
to 2.1.3 for the values of free variables were formulated.
Now we generalize the notion of value by allowing values to
contain free variables. Points 2.1.1 and 2.1.2 are modified in

this way:
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2.1.1%, The value of an unspecified s-variable can be any
symbol or any s-variable. The value of an e-variable can be

any pattern expression.

2.1.2%, The value of a specified variable can be a symbol
from its specifier or a specified s-variable with a specifier
containing a subset of the set of symbols contained in the

specifier of the replaced variable.

The simultaneous substituion of expressions Ei for varai-
ables Vi , where 1 =1,2,...,n, will be written as
Vl > El, V2 > E2 t eeey Vn - En
(It will always be implied that the substitution is legitimate,
i.e., the above mentioned requirements to the values are
satisfied.)

The result of applying a substition A to a pattern E
expression will be denoted by Ep // bo. By E // Al // Az
we mean (E // Al) // AZ'

Theorem 3.3. Let Ep be a pattern expression and A a sub-

stitution. Let E. = E A. Then E' C E_ .
ion e p p // en p S Ep

Proof: Let us take an arbitrary object expression Eo.
Suppose it is recognizable as E;. This means that a substitu-
tion Ao exists, such that EO = Eé // AO. Therefore
EO = Ep // b // AO. It is easy to see that the composition of
two legitimate substitutions is a legitimate substitution again.
Hence, EO can be seen as a result of applying composition A Ao
to Ep , Wwhich means that Eo %s recognizable as Ep. Thus for
any £, it follows from £, C Ep that £, C Ep. This is just what
is implied in relation E' C E_.

A class Eé , obtained as Ep // & will be referred to as a
subclass of Ep; the corresponding operation will be called
the contraction of Ep through A.

An Example. The class of expressions which begin and end

with the same letter, this letter being A or B, is depicted by

the pattern expression s(AB) s, - Through the substitution

e
1 "2
- =(e2) we contract it to the subclass A = (eZ)A.

s, * A, e

1 2
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We note, that a subclass of an L-class is not, generally,
an L-class. For instance, any class is a subclass of the L-class
e -

We now take up the question of finding the union and inter-
section of classes. The union of two classes may or may not be
a class. For example, the union of classes s(12)a and s(34)b
is class s(1234)a. On the other hand, the set of all terms

is the union of two classes: s, and (el) , and it cannot be

represented as a class. The be;t representation for this set

is the union s, Y (el). The intersection of two classes also
may not be a class. We put the problem of representing the
intersection of two classes in the form of a union of classes.
The solution of this problem will be given for the special case
when at least one of the two classes is an L-class. To perform
equivalent transformations, this case will suffice, which, of
course, reflects the fact that in strict Refal the left sides
of sentences are L-expressions.

Thus, let El be an L-expression, and Ep an arbitrary
pattern expression. We can see the intersection Ep N El
as the set of all those object expressions EO from Ep which are
recognizable as Ez’ The problem, therefore, is a generalization
of the problem of syntactical recognition. In particular, if Ep
happens to be an object expression, then Ep N E2 is either Ep
itself, in the case when Ep is recognizable as Ez , or empty
when this is not the case. The answer here may be obtained
by using the algorithm of projecting (mapping) E2 on Ep.
In the general case we also will find a solution by projecting
El on Ep , but we must keep in mind that Ep represents now
a set of object expressions, not a single one; in the process
of projecting we shall contract this set, excluding from it
subsets of those elements (object expressions) which certainly
are not recognizable as Ez.

Those terms of which an expression is by definition a
sequence will be referred to as its constituent terms. If
object expressions El and E2 are identical, their first
constituting terms must also be identical. 0f all constituting
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terms of El only the e-variable may be transformed by a
substitution into an expression consisting of several (or no)
terms; other terms are always transformed into exactly one term.
Therefore, if El can be represented in the form TzEé , where

Tz does not have the form eZ , the term T can be projected

on the first constituting term of Ep sepaiately, and if this
latter one is Tp , @ legitimate substitution must exist for
successful recognition, which transforms T2 into T_. For such

a substitution to exist, we will sometimes have to make contrac-
tions in Tp , and therefore in Ep.

Analogous considerations are applicable, of course, to the
last (rightmost) constituting term. 1In defining the projecting
algorithm, there is a freedom of which constituting term, the
leftmost or rightmost, to choose at each step. The final
result will of course be the same independent of the strategy
taken, but the length of the process may be very different in
some cases. The simplest version is to move left to right until
an e-variable is met, and then start from the right end back to
this variable. This version will be used in the examples below.

We proceed now to describe the generalized rules of
proiecting. Contractions in l% will be written as substitutions
V> t. when a variable from E takes a value, this will be
written as an assignment V « E . Clearly, this is also a substi-
tution, which produces a contraction, but in El , and not in Ep.
We use arrows directed in different sides to show where the
contraction is made. This is important, because a variable from
Ep may occasional ly be identical (syntactically) to a variable
from EQ. T avoid confusion we will sometimes denote the empty
expression (and the class consisting of the empty expression)
by <empty>. The empty set (which is not a class) will be denoted
as @§. For the sake of brevity, we will assume that all s-variables
have specifiers. An unspecified s-variable can be interpreted
as having all possible symbals in its specifier.

The following points cover all possible cases which may
arise in projecting. By X , V , Z and VY, (with any i) we
s1all denote arbitrary indexes, by S and Si — arny symbols, ard
by P, ¢ , ard R -— any specifiers.
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1. El is empty. Recognition is possible if Ep is either empty
or has the form

eVl e¥Y., ... eVn

2
where some indexes Vi may coincide. In the latter case,

contraction

eVl + <empty>, eV2 + <empty>, ..., eVn + <empty>

is needed. Otherwise, recognition is impossbble, i.e. not a

single object expression from Ep is recognizable as EQ.

2. El is el. Recognition is possible with any Ep. As a result,

the variable el takes the value Ep , which fact is depicted as
el :=E_ .
P

' In all'the following points Ez takes the form of either
TQEQ , Or Ele , where T2 is any term which is ?ot an e-variable.
In the first case we fepresent Ep in the form TpEp , in the second
case — in the form E Tp , where Tp is any term. If this is
impossible (that is Ep is empty) then recognition is impossible.
We formulate the rules for the first case (leftmost constituting
term), the rules for the other cases are analogous and will be
referred to by the same pair of numberswith an added asterisk,
such as 3.1*., On applying one of the rules 3.1* - 6.4*%, we
take into account the contractions and assignments indicated
in the rule by making appropriate substitution in Ep and Ez ’
after which we proceed to project yet unprojected parts of the

original El’

3. Tg is S. This holds for all points 3.n with any n.

3.1. Tp is Sy- Recognition is possible only if S1 is identical
to g.

3.2. Tp is s(Q)y. If S enters ) we make the contraction sy -» S
and continue projecting, otherwise recognition is impossible.
3.3. To is (E;). Recognition impossible.

3.4. T_ is eY. Let us divide the class Ep into two suhsets: the
first subset will be the subclass obtained by applying to Ep the
substitution eY - <empty>, the second will be the complement,
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including all the remaining object expressions. We cannot
state anything concerning the first subset, we will just
continue to project El on this subclass. In the second sub-
set (which is not a subclass) recognition can be possible only
if the leftmost term of the value of eY is S, that is, only in
the subclass of Ep formed by the substitution eY - SeY. To

sum up, we form two subclasses of Ep by the substitutions
ey » <empty>
ey » SeY

and continue the process of projecting in each of these,

independently of one another.

4. Tl is s(P)Z.

4.1. Tp is Sl. Recognition is possible if Sl enters P.

In this case sZ takes the value Sl’

4.2. Tp is s(Q2)Y. The needed contraction is sy - s(R)Y ,

where R is the intersection of the sets P and Q (if R is empty,
recognition is impossible). The variable sZ is taking s(R)Y as

a value. Now we face a problem. We have to make the corres-
ponding substitution in El, but we do not want to mistake the
variable sY from Ep for one of the variables in EQ. To resolve
the conflict, we will introduce a new type of element, the

alien s-variable, with the variable type sign a instead of s.

In our case the substitution will amount to replacing all entries
of s(P)Z in Eg by a(R)Y. The projecting of a-variables will

be described in point 6. Since EQ now has references to the
variables from Ep , a contraction of Ep may demand some modifi-
cation of Ez. Specifically, when a contraction of the form

s(P)Y » E is made in Ep , we must replace all the alien vari-
ables with the index Y in EQ by the value E in which the variable

type sign s, if present, is changed to «.

4.3. Tp is (E;). Recognition impossible.

4.4. Tp is eY. Two subclasses of Ep are generated by the con-
tractions:
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ey » <empty>
ey » s(P)V1 ey

Here s(P)Vl is a new variable with an index Vl differing from

all other indexes.

. i
5. Tl is (El)’
5.1 & 5.2. Tp is Sl or s(2)Y. Recognition impossible.
5.3. T_ is (E;). Recognition is possible if E; is recognizable

as E%. Therefore we proceed to project Ei on E;, and for
those subclasses on which the projection is possible continue
the process by resuming projection of E; on E'. ?he contrac-
tions and assignments made in projecting Ei on E; must be
taken into account when we resume projecting on the main level

of bracket structure.

5.4. Tp is eY. Two subclasses of Ep are generated by the

contractions
eY -+ <empty>
ey -» (eVl) ey

where eY, is a new variable with index Vl differing from all

1
other indexes.

6. T, is an alien variable a(P)VY.

')
6.1. Tp is S. If S enters P then we make the contraction sY - S
(which means, incidentally, that if there are other entries

of the same alien variable in Ez' they will be replaced by S,

see Rule 4.2). Otherwise, recognition is impossible.

6.2. Tp is s(Q)X. Let R be the intersection of P and Q.

If it is empty, recognition is impossible. If R is not empty, we
make the contraction in Ep through the following simultaneous
substitution:

s(Q)X > s(R)Y , s(P)Y » s(R)Y

(in El , the alien variable aY will be replaced by a(R)Y).
We note that index X may be identical to VY.
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6.3. T_ is (E;). Recognition impossible.
6.4. Tp is eX. Two subclasses of Ep are generated by the

substitutions:
eX -+ <empty>
eX » s(P)Y eX

As we mentioned above, when the term being projected
T2 is the rightmost, the rules are analogous, and the
formulations differ only if an e-variable from Ep is involved.
For example, instead of 6.4, we will have:

6.4%. Tp is eX. Two subclasses of Ep are generated by the
substitutions:

eX »+ <empty>
eX » eX s(P)Y

In the process of projecting, the variables of EQ take
some values, which may contain some variables from Ep and may,
therefore, alter when contractions take place. 1In order to
get the correct list of the values of variables in the end
of the projection, we must update this list when each new
contraction is made by making the substitution in the values.

Applying these rules step by step, we generate a branch-
ing process, each branch corresponding to one subclass of the
original class Ep. Some of these branches may be terminated
by the verdict "Recognition impossible", others may come to
a successful end through the use of rules 1 or 2. Obviously,
the process of projecting will always be finite. Thus we
obtain the following theorem:

Theorem 3.4. The Generalized Projecting Algorithm (GPA),
when applied to the projection of an L-expression El on an
arbitrary pattern expression Ep , provides a representation
of the set E2 NEp in the form

1 2 n
U U e o o U
EP EP EP

where E; are subclasses of the class Ep and n is a finite

number, which may be in particular equal to zero (Ez N Ep= a) .
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Let us consider several examples of generalized projecting.
For the sake of brevity, we will introduce the following conven-
tions. To indicate the rule used at each step, its number
designation will be placed at the beginning of the line. Period,
comma and equality signs will be used as delimiters; to avoid
confusion, these will not be used as object signs in Refal
expressions. In branching, we will always first take up the
subclass generated by the substitution eY - <empty>. Having
finished the whole tree which is produced by this branch,
we come back to the remaining alternative. To note this, we
mark each branching point by placing its sequential number
in parentheses immediately after the rule's designation. Thus
each sequential number will appear exactly twice.
1) Let us find the intersection of the following classes:

Ez A Sy (ez) ey s, A
E

D As, (c+eb) e

3.1. The sign A is projected on the identical sign in Ep.

’ L
4.2. S)3=S_ E = (e2) e aaA. Now El takes on the role

a [} 3
of EQ. Therefore in the following we shall not

distinguish between them and use El as the notation.

i _ i _
5.3. Ez = e, Ep =C + e - We enter the parentheses.
2. e2:= C + eb. Return to the main level of the bracket
structure.
El = e3 aa A, Ep = ec

3.4*%, (1) e, <empty>. Recognition impossible. Return to (1).
3.4*, (1) e, > e_ A

3.1*, E, =
6.4*%, (2) e, > <empty>. Recognition impossible. Return to (2).

6.4*, (2) e -+ e_ s

c c Ta
El = e;3 . Ep = ec .
2. ey:= ec .
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Recognition attained. Collecting all the substitutions
made, we find that EQ N Ep is the subclass of Ep , obtained
by the substitution

that is the class

A sa (C + eb) ec sa A .

It can be recognized as El if the free variables take the values:

(1)

= s e, :=C + e e,:= e

S1°7 %a r €2 b’ ©3 c *
2) The second example. Let
EQ =5 (ez) e; s, A
Ep = e + e,

(In the following we shall use the notation X(n) meaning:

"Recognition impossible. Return to n" .)
4.4. (1) e, > <empty>
4.1. Sy 3= +, El = (e2) ey s, A, E_=e¢e

5.4. (2) e, > <empty>, X(2)

2
5.4. (2) e, > (e3) e,
2. e,:= e,
El = e3 S, A, Ep =e, .
3.4*, (3) e, > <empty>, X(3)
3.4*%, (3) e, > e, A
4.4*, (4) e, > <empty>, X(4)
4.4*%, (4) e, - e, S,
* o=
4.2%, S43= S,
2. ey:= e,
Recognition attained. We have received the subclass
1 _
Ep = + (e3) e, S, A

Return to (1l).
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4.4. (1) e, > s3 e
4.2, Sy:= S,
Eg=(eg) egsya, E o=e +e,.
5.4. (5) e > <empty>, X(5)
5.4. (5) e, > (e4) e
2. e,:= e,
3.4*%, (6) e, > <empty>, X(6)
3.4*, (6) e, > e, A
EQ = e3 S, . Ep = e + e, -
4.4*, (7) e, > <empty>
4.1%, S4%= +
2. ej:= e
Recognition attained. We have received the subclass
2 _
Ep = S, (e4) e, + A
Return to (7).
4.4*%, (7) e, > e, s¢
* e =
4., 2%, S4:= Sg
2. e3:= e, + e,
Recognition attained. We have received the subclass
3 _
Ep = s, (e4) e, t e, sg A
and finished the process of projecting. Thus
E, NnE_ =€t uEsuE3

L P P P P
The three subclasses which resulted from the application

of the GPA in this case are overlapping. Thus, the object
expression +(A)+A belongs to the first two classes, the
expression +(A)++A belongs to all three classes.

3) Consider an example of generalized projecting which

involves specified symbol variables.
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ESL = s, (e2 s(ABC)1 ) Sy s(ABC)l

Ep = s(AB)l (BCe s(AB)l )ez s (BC) ,
4.2, Sy := s(AB)l

El = (e2 s(ABC)l)a(AB)l s(ABC)l
5.3. Ei = e, s(ABC),; , E; = BCe  s(AB);
4.2%, s(AB)l > s(AB)l ' s(ABC)l:= s(AB)l
2. e,:= BC e,

The projection inside the parentheses is completed.
The values assigned to the variables Sy and e, must be
substitutgd into the remaining part of Ez, and the contrac-
tion in E; (in this case trivial) must be expanded on the

whole of Ep. As a result we get:

El = a(AB)l a(AB)l ’ Ep = e, s(BC)2

6.4. (1) e, ” <empty>

6.2. s(BC)2 > s(B)l
EQ = a(AB)l ' Ep = <empty>, X(1)
6.4. (1) e, ” s(AB)1 e,
El = a(AB)l , Ep =e, S(BC)2
6.4. (2) e, + <empty>
6.2. s(BC), ~ s(B)l ' s(AB)l + s(B),

Recognition attained. We get the sublcass

1

Ep = s(B)l (BCex s(B)l ) s(B)l s(B)l

If the specifier of a symbol variable consists of one
symbol, we can replace the variable by this symbol:

el = B(BC e, B)BB

p
Now we return to the branching (2).

6.4. (2) e, > s(AB)l e,

E, = <empty>, Ep = e, s(BC), .
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Recognition impossible. Hence, the subclass E; is equal to
the intersection Elﬁ Ep. .

As we could see above, the classes Ep resulting from the
use of the GPA may generally overlap. But if Ep is also an

L-expression, these classes will be nonoverlapping.

Theorem 3.5. The intersection of two L-classes obtained through

the use of the GPA is the union of nonoverlaoping L-classes.

Proof: The subclasses Eg are obtained from the L-expression
Ep by the substitutions listed in the rules of generalized
projecting 1 to 6.4*. In these substitutions symbol variables
never generate expression variables, and expression variables
may generate a new expression variable only confined by
parentheses (Rules 5.4 and 5.4*). Therefore, an L-expression
may only generate an L-expression.

More than one subclass may be generated by the application
of one of the branching rules: n.4 and n.4* with n equal to
3, 4, 5 or 6. These rules provide substitutions for e-variables
in Ep. If Ep does not contain e-variables, the GPA will
never give more than one subclass. If on the main (top) level of
bracket structure, the expression Ep does not have an e-variable,
all the generated subclasses will be identical on the main level,
so that to compare two subclasses we must compare their subexpres-
sions confined by parentheses. By induction, we see that now we
only have to consider the case of an e-variable eZ on the main
level of bracket structure.

Let us denote by n the number of constituting terms in Ep
without the term eZ. 2Applicaticn of any legitimate substitution
to any other constituting term will not alter the number of
constituting terms in E_. Consider the first branching. When
we schoose the first alternative, i.e. el > <empty>, we receive
a subclass, each element of which consists of exactly n consti-
tuting terms. When we choose the second alternative, we receive
a subclass, each element of which consists of at least n+l
constituting terms. Consequently, these two subclasses, and
any pair of subclasses which may be obtained from them through

subsequent substitutions, will not overlap. The same consideration
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is true for the second and all subsequent branchings, which
proves the theorem.
The following theorem, which is a generalization of

Theorem 3.5, iscentral for equivalent transformations:

Theorem 3.6. Let Ll
arbitrary pattern expression, which may contain only those

and L2 be L-expressions, and Ep an

free variables which are present in Ll. Let <Akz‘dith k=1,2,...r
be the set*of substituti02§ in Ep generated by projecting

L2 on Ep.( ) Then L1 // &, where k =1,2,...,r, are non-
overlapping L-classes.

To prove this theorem we only need to note that the
demonstration of theorem 3.5 remains valid if the substitutions
applied to the L-expression Ep (which becomes Ll in Theorem 3.6)
are obtained by projecting E2 (which becomes L2 in Theorem 3.6)
not necessarily on itself, but on any pattern expression (Ep

in Theorem 3.6).

3.3. Algorithmic Equivalence

Wehshall make a distinction between algorithmic and
funetional equivalence. By algorithm we mean the ordered set
of sentences in the memory-field of the Refal machine. An
algorithm A' will be called strictly equivalent to an algo-
rithrr A, if the replacement of A by A' in the memory field
will not change the result of any step, performed by the
Refal machine with any contents of the view-field.(**) This
means that if the result is recognition impossible in one case,
then it also must be recognition impossible in the other,
and if the step is successfully performed, the resulting view-

field must be the same in both cases.

EJ
) When new variables are introduced in the process of project-
ing, they must be different from all variables entering Ll’

not only E .
Y P

(**)Instead of "contents of the view-field" we shall say later on
just "view-field". 54



If A' is strictly equivalent to A, then the domain of A',
i.e. the set of all those view-fields which do not lead to an
abnormal stop (recognition impossible) after any number of steps
of the Refal machine, is equal to the domain of A. It is useful
to weaken this requirmment. We shall call an algorithm A' just
equivalent(*) to A, if the results of executing one step of
the Refal machine with A' and with 4 in the memory-field are
related in the following way: if A does not lead to an aknormal
stop, then A' produces the same new view-field as A; if A leads
to an abnormal stop, then A' may produce any result. Therefore,
the domain of the algorithm may be expanded when we transform
A into A'.

For the algorithms which never lead to an abnormal stop,
the notions of (nonstrict) equival ency and strict equivalency
are coextensive. It is not difficult to write algorithms in
Refal in such a way that abnormal stops become impossible.

For this end, ore has only to see that for ech function F,
the union of all classes in the left sides of the sentences
is the compl ete set of object exoressions. 1In particular,
orne may add to the description of the function F a sentence
with the left side
k F g =
thereby expanding the domain as is deemed convenient. However,
it may lead to an unwarranted lengthening of the program.
Suppose, for example, that we need a function, which would
remove the first symbal of its argument. Suppose, furthermore
that all calls of this function are such that the argument in
fact begins with a symbol. Then we need only one sentence to
define this function (to which we attach, say, the determiner a):
@ s, e, = e,
The algorithm which uses the function a may have the domain
equal to the complete set, although the description of the

function o has a narrower domain. No matter how we expand

(*)

or nonstrictly equivalent.
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the domain of the function a, this will not change the algo-
rithm as a whole. Thus a nonstrictly equivalent trausfor-
mation of some parts of an algorithm may turn useful even if
we are interested in a strictly equivalent transformation of
the whole algorithm.

We formulate now the following five rules of algorithmically

equivalent transformation.

Al. At the end of the description of a function F an arbitrary
sentence with the same determiner F can be added.
(This rule is the result of our definition of equivalency,

which allows expansion of the 2omain.)

A2. 1If the intersection of the left sides of two adjacent

sentences is empty, these sentences can be transposed.

A3. If a sentence with the left side Ll precedes a sentence
with the left side L, , and L, C Ll + then the second sentence

can be eliminated.

2

A4. Suppose that for a pair of adjacent sentences
k Ll = Rl

k L2 = R2

a substitution A exists, such that Ll = L2 // A, and R

Then the first sentence can be eliminated.

1~ Rz // b.

A5. Let L and R be the left and right sides of a sentence,
and A - a substitution. Then a new sentence

kL //A=>R// A
can be inserted inmediately before the original sentence.

Notice that all we need to apply these rules is
the GPA. Relation L, C Ll takes place when L2 n L1 = Ll , i.e.
in projecting Ll on L2 » NO contractions are needed in L2 for

recognition to be possible.

An Example. Suppose we have the following definition of a

recursive predicate a:
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.1 o sy = F

.2 a s, s (+ -)2 = F
.3 a sy 82 = F

.4 a s(+ -)l s, = T
.5 a sy S, Sy > F
.6 a

The sentence .4 will never be used because it is gepeened
by sentence .3 (Rule A3). Therefore we eliminate it. Now,
the sentence .2 is submerged by the sentence .3 in accordance
with Rule A4, and we eliminate it too. It is easy to see
that all the sentences left are transposable (Rule A2),
thus we can rewrite the algorithm in this manner:
@ S; S, S3 S, €g > B e
a s, = F

1l
a sy 82 = F

5

aslszs3=F

Using Rule Al, we add at the end one more sentence:

= F
ael

which expands the domain of the function o by including the
cases when its argument is either <empty>, or contain: paren-
theses. But it was not this domain expansion that we aimed at.
It became possible now to submerge (Rule A4) the preceding
three sentences into the last. As a result the algorithm

is greatly simplified:

& Sy Sy S3 Sy €5 5

6] e1 = F
It should be stressed that unlike Rule A3, rule= A2 and A4
are applicable only if one of the sentences is <immedziately

followed by the other. For example, in the algorithm
B A=
B s, =F

1
B sy €5 = T
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the first sentence cannot be submerged by the third.
The system of five rules Al-A5 is not complete; it
only gives the most useful tran:zformation rules. The incomplete-
ness of this system can be seen from the following example.
Consider this definition:
a sa el = A
a (el) e, = B
a = C

o e =D
X

The fourth sentence will never be used, because every
expansion beayins with either a symbol or a parenthesis, or
else is empty. Therefore, this sentence may be eliminated,
but this cannot be done using rules Al-A5 only. 1In Section
4.3 we shall present an algorithm which performs transforma-

tions of this kind.

3.4 Functional Equivalence.

By the domain of a function F we mean the set M of those
object expressions EO , for which the process of concretiza-
tion of the expression k F Eg | will be brought by the Refal
machine to a normal end. Note the difference between this
definition and the definition of the domain of an algorithm.
Speaking of an algorithm, we mean the process itself
irrespective of whether it is finite or not, hence the only
reason for an expression EO to be outside the domain
is to result in an abnormal stop (recognition impossible).
Speaking of a function, we mean “he result of a process,
thus if the concretization will never end, the expression
EO is outside the domain.

Let an algorithm A define inter alia a function F. We
shall say that an algorithm A' is functionally equivalent to
A with respect to the function F if for every EO from the
domain of F, the concretization of k F E0 l with the algo-

right A' 1leads to a normal end and gives the same result as

58



with the algorithm A. We shall speak of strict functional
equivalency, if this relation holds for any object expression
EO , and the two domains, therefore, are identical. As in
the case of algorithmic equivalency, we will be interested
in and formulate the rules for simple (nonstrict) func-
tional equivalence. It should be noted that nonstrict
equivalence (both algorithmic and functional) is not a
relation of equivalency in the sense the term is us=d
in mathematics, because it is not symmetric. But it is
reflexive and transitive: a guasi-ordering relation.
Clearly rules Al-A5 of algorithmic equivalence are
applicable for functionally equivalent transformations.
Two additional rules, Fl and F2, specific for functional
equivalence, will be formulated below. We shall call them
the rules of driving. Their main idea is to execute one or
more steps of the Refal machine in a situation where the
expression under concretization is not completely defined,
but contains free variables. The expressions containing
free variables are taken, of course, from the right sides of
the sentences: we are as if "driving" som& expressions from
the right sides through the left sides in order to execute
one step of a Refal machine in a general form — hence the

nickname of the operation.

Fl. (Rule of driving) Let one of the sentences defining a
function F be of the form:

F.X kFlg=C kGE |C

where E_ is a pattern expression. Cl is a left and C2 a right
multibracket, and G is the determiner of a function which is
defined by the sentences:

G.1 kG L; = Rl

9
2 2
G.2 kGLg”Rg

. . - . . . . . . .

n n
G.n k g Lg = Rg
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Using the Generalized Projecting Algorithm we find n sets

of substitutions <Ai,...,A;_>, i=1,2,...,n, which specify n
intersections 1
i_ D i .
E NnL_ = v E // AL, i=1,2,...,n.
p g j=1 p J
Then we can replace the sente:;ce F.X by r, + r_, + ... + r

1 2 n

sentences of the form
k Lg // 85 = (C) /7 83) R;j (c, // 83

which are arranged'in the order of increasing i . Here R;j
are obtained from R; through the replacement of ghe free
vari;bles by those values they take when Ep // A; is recognized
as L;. We note that if for some i the number of subclasses
r, is one, and substitution AY is trivial (which means that

1
E C L;), then by virtue of Rule A3, all the sentences with

p_
greater i can be omitted.
Proof: As a result of the application of the sentence F.X

in the process of concretization, a term of the form

k G EO 1
will enter the view-field of the Refal machine as on: of its
subexpressions. Here Eo is some object expression. Until
the concretization sign k in this term becomes active, the
term, whatever it is, »ill nct influence the work of the
Refal machine in any way. When the sign k becomes active,
the Refal machine will start the next step by trying to
recognize E, first as L1 , then, if recognition is impossible,

0

as L; , etc. We do not know EO exactly, but we know that

EO - Ep , and this is something. Using the GPA to recognize

b as L; , we come to one of the following three cases:

Fl.1. E c it , therefore every &
- g 0

belonging to Ep will
be recognized as Ll . Consequently, we can, anticipating

the action of the Refal machine, replace the term k G Ep L in

F.X by the expression R;l , obtained from R; by substituting
the values (which are generully pattern expressions with free
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variables from Ep) assigned to the free variables in L _during
the process of projecting.

Fl.2. Ep N L; = @#. Recognition of EO as t; is impossible,
and we proceed to the second sentence.
F1l.3. E_N L1 is the union of r, subclasses of Ep obtained

through sukstitutions A;. Since the variables of E_are
defined in the left side Lf, the conditions of Theorem 3.6 are

satisfied, and Lf // A% for 3 =1,2,...,r,, will be nonover-

1
lapping L-classes. Using Rules A5 and A2, we transform sentence

F.X into r, + 1 sentences:

1
1 1
k Flg // 8= C kGE | Cy//n)

k F Le // A

1
~c, xGE |,/ at
1 1 P 2 r

1
. )
r 1

F.X k.F L. =C kG 3 Lo,

Now, since
1

1 .
Ep // Aj c Lg , for j = 1,2,...,r1

we will have case Fl.1 for each of the new r1 sentences and
we can make the corresponding substitutions in the right sides.
We have isolated all the subclasses of Lf for which

any E_. belonging to Ep can be recognized as L; , which makes

sentegce G.l applicable. Therefore, sentence F.X will be used
now for those Eo only for which sentence G.1l proved unapplic-
able. Thus we can continue the transformation of sentence
F.X ignoring G.l and starting the step by trying to recognize

G Ep as the left side of the second sentence G.2. Repeating
this procedure, we will come ultimately either to the case Fl.1,
which ends driving, or to the end of the definition of function
G. 1In the last case, the group of sentences which has resulted
from the original sentence F.X due to driving will still have
sentence F.X at the end. But it can be dropped now. Indeed,

this sentence will be, possibly, used with the transformed
algorithm A' for those E

in the original algorithm A proved applicable to concretize

0 S Ep only, for which no sentence
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k G Ep L , thus bringing the Refal machine to an abnormal stop.
This means that whatever function has demanded this concreti-
zation, its argument was out of its domain, and the transformed
algorithm may produce any result. We have completed the proof of
the correctness of Rule Fl.

Widening of the domain as a result of the use of Rule F1
will be shown in the following example. Let functions /Fl/ and
/F2/ be defined by the algorithm

F.X k/F1/ s; s; = k/F2/ s; |
F.2 k/Fl/ el = e,

G.1 k/F2/ A = A

G.2 k/F2/ (el) e, g e, e,

Let us drive the function call k/F2/ S, l in sentence F.X.
Driving it through the first sentence G.l, we get one subclass,
obtained by the contraction sy * A. The second sentence G.2
produces no subclasses where recognition is possible (r2 = 0).
As a result, we receive the following definition of the

function /Fl/:

F.l k/F1/ A A = A

F.2 k/Fl/ e = e

and the definition of function /F2/ is not needed any more.

Now, according to F.l1l-2, function /Fl/ is defined everywhere
on the set of expressions. According to the original definition,
it was not defined on the set of all double symbols with the
exception of double A. If we retained sentence F.X, we would

derive the definition:

F.X1 k/F1/ A A = A
F.X k/F1/ sy s, = k/F2/ s; |
F.2 k/Fl/ (el) e, = e, e,

which is strictly equivalent to the original, but we would
not be able to eliminate the definition of function /F2/.

The following rule provides a generalization of Rule Fl.
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F2. Suppose one of the sentences describing a function F
is of the form:

k Fle=C kGE]C,

f 1
where € is an arbitrary (general) expression. We replace in
E every term which begins with the sign k and is not itself
situated in the range of another sign k by a new e-variable
different from all the others. 1If the sentence thus modified
allows the application of the rule Fl under the condition
that in all the substitutions A; no one of the auxiliary
e-variables is affected by contractions, then we can use F1l,
and afterwards replace the auxiliary e-variables by the terms
they represent and perform in these the necessary substitutions.
This rule adds more to "nonstrictness" of functional
equivalence. Now the original function may lead for some
arguments to the nonstop situation, while the transformed
function will have this argument inside its domain. Consider

the fol lowing example:

1. k/F/ e = k/BEGPAR/ (k/X/e; |) |
2.1 k /BEGPAR/ (e;) e, = T

2.2 k /BEGPAR/ e = F

3.1 k/¥ *eq = k/¥ * |

3.2 k/w’%_= &

We can use Rule F2 to drive the call of function /X/ in
the definition of function /F/. Then its definition reduces

to one simpl e sentence:
k/F/ = T

Since the argument of /BEGPAR/ in the original sentence 1
will always begin with a parenthesis whatever the result of
concretization of the function /X/ call is, sentence 2.1

will always be used giving T as the result — but concretiza-
tion of the /BEGPAR/ call will start only after, and if,
concretization of k/X/e1 l has been successfully finished.

If it is infinite, which occurs for the arguments e begin-
ning with an asterisk, function /F/, like function /X/ will be
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undefined. Using Rule F2 we greatly simplify function /F/,
but pay the price of expanding its domain.

3.5. Iterative Usage of Driving

The problems which can be expressed in terms of symbol
strings or trees composed of such strings (expressions) can be
conveniently formulated in Refal. Repeatedly using equivalent
transformations we can find partial or complete solutions of
such problems, the leading role being played of course by the
rules of driving. We shall illustrate this by two examples.
(1) The problem is: what must the string X be in order for
the composite string ABXBX to be symmetric?

The property of a string being symmetiic can be defined

by the recursive predicate o:

o =T
S.2 o s1 > T
S.3 o] s1 e2 sl = g e2
S.4 o e1 = F

Now aur problem can be formulated as finding all those arguments

of the predicate a:

A a e1 = g AB e1 B el

for which it takes the value T. We shall transform sentence A
by using rule Fl repeatedly.

At the first step of driving sentences S.1 and S.2 prove
to be inapplicable. We proceed to project the left side of S.3
on the expression to be driven (the notation will be the same

as in 3.2).

El S €5 Sy Ep = AB ey B e -
4.1 s, *= A
El = e, A, Ep =B e, B e -
3.4*, (1) e, * <empty>, Ep= B B X (1)
* e =
3.4*. (1) e, > e A, e, B e, A B e
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Recognition is attained by isolating one subclass. This gives
us the sentence
=>
A.l aelA oA B e, A B e A
which we insert before sentence A. By driving in A.1l we
immediately transform it into

A.l a e, A= Bel ABe

1 1
Continuing driving in sentence A we transform it into
=
A Qa e1 F

Translating these two sentences into English, our first

result is: the argument e, must end with A. Now we drive in A.1l.

1

E2 = 5,58, Ep = BelABe1
4.1 sy := B

'.:'2 = e, B, Ep = e AB e,
3.4*, (1) e1 + <empty>,

El = e2 B, Ep = AB
3.1%. E, = e, Ep = A,
2. e, := A

Recognition attained. We return to (1l).

3.4*, (1) e, * e, B

1 1
* - 3
3.1*, ER e, s Ep e1 BAB e1
2. e2 = e1 BAB e1 .

Again, recognition is attained. Thus, we have received two

subclasses, and we insert two new sentences:

A.l.1 a A = 0 BAB

A.l.2 a e, BA = o Be, BAB e, B

1 1 1
Continuing driving in A.l we transform it into

A.l a e1 A =F

Using the algorithmic equivalence rule A4 with respect to
sentences A.l and A we eliminate sentence A.l. Making
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straightforward driving in sentences A.1.1 and A.l1.2 we

receive the following description of a:

a A=>T

a ey BA = ¢ el BAB el

a e1 = F

If the definition of a predicate begins with a number

of sentences whose right sides are T the left sides of these
sentences cdefine a list of classes, which is a partial solu-
tion to the problem. By now, we have obtained only one class,
consisting of the only expression A. Driving in the second

sentence we obtain this description of a:

o A=T
BA = T
BA = T

32 BA = 0O e1

S)
Sy, €1
el = F

We have obtained two new classes: BA and S, BA. One more

s, BA s, e

2 2 1

R R R R

driving will give additional classss S, S, BA and

s, S, BA. This process can be carried on indefinitely.

s

2 73 72
The set of all object expressions EO for which concretization
of o EO l gives T is not a class. It is easy to see that
the described procedure gives the exact decomposition of this

set into an infinite union of nonoverlapping classes.

(2) Let us consider the function of addition of binary

numbers defined by the following sentences:
P.1 k + (ex) ()= e,

P.2 k + () (ey) = ey

P.3  k + (egs;) (ey 0) = k + (e) (ey) L s

+

P.4 k + (ex 0) (ey 1) = k + (e)) (ey) 11
P.5 k+ (e, 1) (e 1) = k + (k + (e) (1) ]) (ey) | o

The predicate of equality will be defined in this way:
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E.1l k=() ()=T1T
E.2 k = (e_ sy) (ey s;) * k= (e)) (ey) 1
E.3 k =

We put the question: with the first argument of the function
+ being 101, what must the second argument be for the sum to
be equal to 1011 ? The predicate a which is to be transformed

to obtain the answer to this question is defined by the sentence:
A ae =k= (k+ (101) (e) | ) (1011) |

In transforming this sentence we shall use a strategy of
driving, which may be called from without within. It is this.

In an attempt to make a simplifying transformation, we start
with driving the subexpression delimited by the first from the
left concretization sign in the right side of the sentence and
the conjugated concretization point. If there are no concreti-
zation signs in this subexpression, or they can be ignored
according to Rule F2, we complete the driving according to Rule
Fl, and this is the end of the first rtep of transformation. If
some of the auxiliary e-variables, formed according to Rule F2,
should be found to require contraction, we take the first of them
and try to drive the corresponding subexpression, applying the
same principles as in the previous attempt. Obviously, sooner
or later we shall find a drivable subexpression: in the worst
case it will be the one deliminated by the leading concretiza-
tion sign and the conjugated concretization point.

In our case, we first try to drive the call of the equality
function, and find out that it is impossible because of the k-sign
in its first argument, which is a plus function call. Therefore,
we drive on this call. Sentence P.l is applicable with the
contraction e, * <empty>. This gives us the sentence

a = k = (101) (1011) |
which we immediately transform into
a = F

In transforming predicates, it is very convenient to put,
when it is possible, the sentences with F in the right side in
the last places of the definition, through the use of the rule

(*) Also to be referred to as inside from outside, or outside-in
strategy.
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of transposition A2. Then we add at the end of the sentence
ae =F

by virtue of Rule Al, and eliminate the F sentences by using

Rule A4. 1In our case all new sentences will be transposable,

so we shall keep track only of the sentences with the right

side different from F.

Sentence P.2 proves to be inapplicable. Sentence P.3

generates the sentence

a e 0=k = (k + (10) (ex) l 1) (1011) l
Using the strategy from without within for this sentence, we
drive the equality function call, which gives:

A.l ae 0=k = (k+ (10) (e) |) (l01) |

Continuing the driving of the initial sentence A, we find
sentence P.4 inapplicable, and sentence P.5 gives

ae 1=k-= (k‘+ (k + (10) (1) | ) (e | 0) (1011) |
Again, driving it inside from outside we obtain:
a ey l=F
and lose interest in it.

Thus, we have obtained only one sentence A.l for further
transformation. 1In fact, we have performed the first step of
the usual algorithm of subtraction from right to left. Our
general strategy formulated in terms of Refal notions produced
a familiar algorithm in this particular case. If we continue
the transformation, we finally get:

a 110 =T

a 0110 = T

o ex = F
which gives a complete formal answer to the problem in clear
form.

It is worth noting that we derived two solutions instead
of one, because we did not introduce the equivalence of numbers
which differ by leading zeros. As the problem is defined,
there are exactly two solutions. The number 00110 if added to
101 gives 01011, not 1011 .
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CHAPTER 4. COMPILATION PROCESS

4.1. Formulation of the Problem

What does it mean to define the semantics of an algo-
rithmic language? The most direct definition is the interpre-
tive one: to construct a machine which upon receiving a text
(program) written in that language and a work object (the set
of data the program is to be applied to), would execute the
program, step by step, according to the algorithmic intention
of its author. Thus, a metalanguage to define (semantically)
algorithmic languages should formally describe machines, i.e.
algorithms, which is to say that it must again be an algorithmic
language. The language Refal +was designed as such a language
which is both algorithmic and a metalanguage to deal with algo-
rithms. Now we shall look into how a programming system employ-
ing Refal as the means to introduce new algorithmic languages
might work.

Let A be an algorithm written in a certain language,
and £ a work object. To define the language we define in Refal
a recursive function with a determiner L (identifying the
language) in such a way that the process of concretizing the

expression
(1) k L A(E) |

could be seen as (or, will model) the application of the
algorithm A to the object E. 1In particular, the result of the
concretization (when it exists) should be the result of the

use of A on E. 1In programming terms, the program A is
interpreted here, thus the function L will be called

the interpreting function of the language. Since Refal allows
the use of any object signs, there is no restriction on the
composition of program A and work object E: the algorithmic
language to be defined is allowed to use any characters differ-
ent from those depicting the specific signs of Refal. We might
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consider A and E as arbitrary strings of object signs, but
nothing prevents us from introducing Refal parentheses into
these strings, thus making them generally object expressions.
If the object language uses parentheses in the way they are
usually used (to create trees), it is8 convenient

to identify them with the structure brackets in Refal.

When defining a language through its interpreting
function, we do not give an explicit definition of the set of
correct (legitimate) texts in that language. Instead, it is
natural to introduce the following definition: a pair of
expressions A and E is called a correct text-object pair in
language L , if concretization of (1) does not lead to an
abnormal stop of the Refal machine (note: a nonstop situation
is allowed). Now the set of correct texts A may be defined as:
a text A is correct if the set of those work objects E that make
a correct pair with A is not empty. If we have an independent
definition of the set of correct work objects then we can give
an alternative definition of the correct text: a text is correct
if it makes a correct pair with any correct work object.

So, we have a formal description of the algorithmic lang-
uage L through its interpreting function. How do we use it?

If we have a computer implementation of the Refal mazchine
(an interpreter or a semicompiler), we can use the language L
in the following manner. Each time that we have to execute an
algorithm A written in L, the expression to apply this algorithm
to being E, we form the working expression (1) in the view-
field of the Refal machine and start it into action. We will
obtain the desired result in this way, but understandably this
is not an efficient way to use a programming language systemati-
cally, because this is an interpretation mode. Can we improve
the efficiency by turning to a compilation mode? What is compila-
tion?

Let us examine it in a very simple example of a language
with the interpreting function /L/ defined by the following

sentences:
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L.1  k/L/ e;i e, (e)) = k/L/e, (k/Ll/ej(e)) | ) |
L.2  k/L/ e} (e)) = k/L1/ e, (e)) |
Ll.1 k/L1/CROSS(s; e,)(s; e,) = s;s, k/L1/CROSS(e;) (e,) |

L1.2 k/L1/CROSS (el) (ez) = e 2

L1.3 k/Ll/ADD(el)(ea) > e ey

Here the first sentence indicates that a text in the
language /L/ may be formed as a sequence of instructions
separated by semicolons, and the instructions are executed
from left to right, being applied each time to the result of
the execution of the preceding instruction. Function /L1l/
defines the execution of separated instructions. There are
only two kinds of instructions: CROSS and ADD. Instruction
CROSS (P) "crosses" the work object with the word P by putting
their symbols in alternation until one of the words is
exhausted (we assume that the objects which the language /L/
deals with are strings of symbols). Instruction ADD(P) adds
the word P at the end of the work object e, - Here is an

example of a program:
CROSS (CAT) ; ADD(DOG)

In order to execute it on the word LION as the work object (input

data), we put into the view-field of the Refal machine:
k /L/ CROSS(CAT); ADD(DOG) (LION) |
The concretization of this expression gives:
CLAITONDOG

Now suppose we have some object machine Mo, and we want
to translate our program into the language of MO. Let MO have
two fields, referred to as object and result in which the
object and the result of work are stored and gradually trans-
formed, and let it be able to perform certain simple operations,
which we will describe in English. What do we do to translate
the program on the basis of the interpreting function /L/

defined in Refal? We analyze the process of interpretation
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of this program with some general, not exactly specified input
data, and describe the operation of the Refal machine in the
language understandable by MO. Chapter 3 of the present work
provides us with the necessary apparatus. We imagine that the
following expression is put in the view-field of the Refal
machine:

k /L/ CROSS(CAT) ; ADD(DOG) (e.) |

(which is, of course, impossible literally and must be under-
stood as a set of view-fields) and use the rules of driving to
follow the process of concretization. Since we defined driving
for the strict Refal only, we should rewrite the definition of

/L/ in the corresponding way:
L. k/L/ e, = k /LL/ () e, L

LL.1  k/LL/(e;); e, (e,) = k/L/e, (k/Ll/e(e,) 1) 1

LL.2 k/LL/(el)sx e,(e.) = k/LL/(eys ) e,(e) |
LL.3  k/LL/(e;) (e,) = k/L1/ ej(e)) |

(The definition of /L1/ remains unchanged.)

A number of initial steps of the Refal machine is done
without contractions of free variables, i.e. with any input
data. This is the part of the job which is performed once
and forever at compilation time. Then we receive the

following view-field:
k /L/ ADD(DOG) (k /L1l/ CROSS(CAT) (e.) | ) |

Contraction e, > s;e. is needed here according to Rule Fl,
which means that a conditional statement depending on unknown
input data must be added to the program for Mo. Proceeding
in this manner, we compile the following object program:

1. Object assumes its input value, result becomes empty.

2. If object begins with a symbol Sy it is deleted,
and Csl is added to result, otherwise result becomes CATDOG,
and go to End.

3. If object begins with a symbol Sy s it is deleted,
and As2 is added to result otherwise ATDOG is added to result,
and go to End.
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4, If object begins with s and the rest is e
then Ts
is added to result.

5. End.

37 4 '
3 €4 DOG is added to result, otherwise T object DOG
(*)

In the general case of a language L and an algorithm A in

that language, the expression
(2) kLA (e |

must be driven through the Refal machine, and the goal of the
theory of compilation is to examine this process and describe
the operations performed on the argument ey, in the language
of the object machine Mo. If this theory were to be elaborated
bearing in mind one definite language L, that is drawing upon
its specific features, then the theory would result in an
algorithm of compilation from this language L. But we shall
not bear in mind any specific language, of course. As in deal-
ing with equivalent transformations, the theory should be applic-
able to any texts in Refal, and therefore, the goal of the
theory is to design one universal algorithm to compile from
any language, had its interpreting functions been defined in
Refal. This algorithm may have variations, though. In particular,
it must vary from one object machine Mo to another.

The object machine should have facilities for symbol
manipulation, since this is what the Refal machine is doing.
In addition, it may have any specific opeations, however
complicated, and these may be even undefinable in Refal, such
as generation of a random number. The only requirement is that
the universal compiler (supercompiler) could recognize the
corresponding Refal expressions as external function calls,
and translate them into the standard notation for MO.

In particular, MO may be the Refal machine. Then as the

result of compilation we get a program in Refal again! The

%) In fact, both alternatives in this statement lead to the same
result, but to discover it one has 'to use Rule A4, not just
Rule F1.
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axpression (2) can be introduced as the right side of the

sentence defining a new function:
ae =k LA (e) |

Then compilation amounts to an equivalent transformation of

this function, or more exactly, the theory of compilation
provides a new class of equivalent transformations, which cannot
result from simple application of the rules described in
Chaoter 3.

In our case:
a e, = k /L/ CROSS(CAT); ADD(DOG) (e,) |

As the result of compilation (which in this particular case
is nothing more than an iterative application of Rule F1l and

algorithmic equivalency rules) we get

o sl 52 ex = C sl A 52 T ex DOG
o sl ex = C sl AT ex DOG
a e = CAT e_ DOG

X X

This definition is shorter and is executed much faster
than the original definition using function /L/. Thus, optimi-
zation is one of the aspects of the theory of compilation.

In the expression (2), metasymbol A represents some
definite expression, therefore the argument of the function
L is partially (but not completely, because of the variable ex)
specified. The problem to be solved by the theory of compilation
is to eliminate the redundancy of the general definition
of the function L in the circumstances when we need it only
in a specific context. From this formulation, one can see
that the structure of the expression (2) has actually no signi-
ficance; the only important thing is that it is more specific
than the general format of the function L. Also, it is of
no significance that function L has been introduced as the
interpreting function of a language; it may have any meaning.
Removing these preconditions, we get the most general formula-
tion of the problem.
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The method of solving this problem mdy be described
(informally, for the time being) in this way. Let there be
an algorithm given, and a general expression in the view-field
of the Refal machine. We consider this expression as a
generalized state of the Refal machine, and map the generalized
states of the rRefal machine onto the generalized states of the
object machine MO. When we execute each next step of
the Refal machine, its state changes, which generates a
graph of states. We shall trace this group and model it on MO.
That 1is, compile such a program for Mo, that if the Refal
machine and the machine Mo with corresponding initial states

work in parallel, then their states will remain corresponding.

4.2. Graph of States.

The workable expression in the view-field of the Refal
machine will be called its exact state, for it uniquely deter-
mines all the consequent states of the Refal machine (recall
that we use strict Refal, so that digging and burying are not
allowed). A set of exact states will be called a generalized
state. Our main concept in describing generalized states
will be a configuration, by which we mean a set of workable
expressions produced when the free variables of a general
Refal expression assume some values. Thus a configuration
is defined by (or as) a general expression. If the free vari-
ables in this expression may assume all syntactically permitted
values, we refer to the resulting generalized state as a full
or unrestricted configuration; if the values of the free
variables are somewhow restricted, we call this state a
restricted configuration.

The dynamics of the Refal machine with a given memory field
may be represented by its graph of states, which is essentially
a graph of configurations. The vertices of this graph repre-
sent generalized states of the Refal machine, and the arcs
(directed edges) represent basic relations between them. There
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are three types of arcs, which we shall be introducing in

the course of exposition. The first type is a dynamie are,
which depicts a possible transition from one generalized
state to another resulting from one or more steps of the
Refal machine. The condition when the transition occurs will
be indicated on the arc as a contraction of free variables in
the original configuration. The contractions on the dynamic
arcs of the graph of states are essentially the left sides

of Refal sentences. To model the Refal machine with the help
of a graph of states, we apply the contractions to specific
values of free variables in exactly the same way as we are
applying left sides. For example, the contraction

€1 7 %2¢1
is not only a conditional statement, which determines whether or
not the val ue of e, starts with a symbol, but it also assigns
this symbol to s, and redefines e correspondingly. Contrac-
tions on the arcs in a graph serve as definitions of new vari-
ables appearing in the subsequent states.

The dynamic arcs outgoing from the same wertex
are ordered in conformity with the use b the Refal machine
of different sentences. W shall picture dynamic arcs by more
or less horizontal solid lines in the order from top to bottom.
The states will be numbered, and for each number the corresponding
oconfiguration will be given in the list of 2onfigurations
accompanying the graph.

A configuration may be either active, if it includes at
least one concretization sign k, or passive, if this is not the
case. Actiw configurations will be depicted as circles, and
passive as squares, with the number of state inside.

There will be two standard designations:

and ?

representing the empty configuration and the state recognition
tmpossible of the Refal machine. Each graph of states will
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have as a starting point a full configuration; the correspond-
ing state will be called the start of the graph. During the
construction of the graph of states, we will be applying the
rules of driving to some configurations, thereby exploring
their evolution in time. These configurations (more precisely,
the corresponding vertices, i.e. the states) will be referred
to as explored, and the others as unexplored, these notions
being applicable of course only to active configurations.
The formal indication that a vertex is explored is the presence
of at least one outgoing dynamic arc. If it is found for
this configuration that the recognition is impossible, we use
a dynamic arc leading to vertex as mentioned above.

A finite graph of states without unexplored vertices

will be called complete.

Theorem 4.1. Let S be the start configuration of a
complete graph of states G. Then for every exact state from
S we can find all the subesquent states of the Refal machine
using only graph G.

At the present time we are proving this theorem for the
case when graph G consists only of vertices and dynamic arcs,
and we shall complete the demonstration later. Replace free
variables in the start configuration by their values. We shall
be able to choose uniquely one of the dynamic arcs which
originate from the start, or else establish that recognition
is impossible. In the former case we come to the next exact
state. If it is passive this is a normal stop of the Refal
machine, if it is active it is explored, and we continue to
apply the same procedure.

Our goal in the theory of compliation is to know how to
construct complete graphs of states. Let us start with examin-
ing this process on the following example. The algorithm in
the memory-field is:

el‘B()el
(el) /PLUS/ e, - B(el +) e,

(e)) sj,e; = Bleys,) ey

w fon) ™ R

(el) ng el
77



And the initial configuration is
(1) @ A /PLUS/ e, /PLUS/ B |

Executing three steps of driving we get the following
graph (Figure 1):

Q—O—0—0

Figure 1

with the configurations:

(2) B( ) A /PLUS/ e, /PLUS/ B |
(3) B(a) /PLUS/ e, /PLUS/ B |
(4) B(A+) e, /PLUS/ B |

The vertices from which only one dynamic arc without
contractions originates, such as 2 and 3 in Figure 1, will
be called transitory. A transitory vertex different from the
start vertex (this restriction is to avoid confusion with the
identification of the initial state) may be removed from the
graph of states. We shall remove transitory vertices in this
example, and will do so later on, if the opposite is not
explicitly stated.

A straightforward application of Rule Fl1 to our graph

transforms it into Figure 2.

e, - <empty»> 5

/PLUS/ e <:>
O—@ )
e, + <empty>

(]
-
¥

1 5
RRING
Figure 2
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The list of new configurations is:

(5) A+ + B
(6) B(A + + ) e /PLUS/ B |
(7) B(A + s,) e /PLUS/ B |

The third arc outgoing from state 4 will never be used,
because it is screened by the first arc with the same contrac-
tion. To see more clearly how the graph of states transforma-
tions correlate with equivalent transformations of Refal
programs as formulated in Chapter 3, we shall at this point
start outlining the procedure of mapping the graph on the
Refal machine.

Each configuration of the source Refal machine MS will
be mapped on a configuration of the object Refal machine MO,

which has the special form:
n n
k Ch (V) (Vy) eeo (V) ] oer k PTO(Vy) (Vy) ... (V) |

where n is the sequence number of the configuration, m is the
number of (different) free variables, and Vi are these

free variables. c” stands for an active, and " for a passive
configuration. While a configuration is yet unexplored, its
definition in Refal will consist of one sentence, the left
side of which is its notation in MO terms and the right side
is the defining expression in M° terms. For instance, the
starting point in our case is:

x ct (e;) = o A /PLUS/ e, /PLUS/ B I

Performing driving, we first of all express the right side
of the sentence in terms of M0 configurations. As a result, the
sentences defining an explored configuration will have both
sides expressed in M0 terms, thus representing not a condition

0, but a dynamic

of correspondence between the states of M° and M
transformation taking place inside MO. When there are no
unexplored configurations (a complete graph), we get a completed

program for MO.
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The stage of work represented in Figure 1 corresponds to
the following program
1 4
k ' (e)) =k C (e)) |

4
k " (e)) =8 (A+) e /PLUS/ B |

At the stage of Figure 2 we get:

1 4
k C7 (ey) =k C° (ey) 1
ca.1 kct () sk’
4 6
k¢ ( /PLUS/ e;) =k C (e)) |
ca.3 xkct () »xp’|
4 7
k C” (s, el) =k C (el) (s,) 1
k c° = A+ + B
6
k C° (e;) = B(A + +) e /PLUS/ B |
k c’ (e;) (s,) =B (A +s,) e /PLUS/ B |

We want to make the object code in Refal as efficient
as possible, so before continuing exploration we will drive
configuration C4 in the definition of Cl, thus eliminating C4
altogether. First, this reduces by one the number of steps
necessary to co cretize Cl; second, this has some additional
implications, which will be discussed later. Also we simplify
the definition of C4 using the rule of screening (A3) to C4.3
and C4.1 to eliminate C4.3.

Loy -k p° 1

k C
1 6
k C”(/PLUS/e;) = k C° (e;) |

k Cl(s2 ey) -k c’ (e) (sy) |

If we execute one more step of driving in Figure 2 we

get the graph in Figure 3, with the new configurations:

(8) A+ + +
(9) B(A + + +) e, /PLUS/ B |
(10) B(A + + s3) e /PLUS/ B |
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(11) A+ s, + B

2
(12) B(A + s, +) e; /PLUS/ B |
(13) B(A + s, s3) e; /PLUS/ B 1
el+<empty> e1+ <empty>

5

+ /PLUS/ e

2

€1 1
(E) e, - /PLUS/el . e, »>s; e
A
e - <empty>
> s, e - e, ~ /PLUS/ e
e, > s3 e
Figure 3

Mapping this graph onto the object Refal machine M-,
and C

0

we again perform "M0 to M™" driving. Configurations C

disappear, and we receive:

81

(ey) (s |
(e;) (s,) (s3) |

k ct () =k c |

k ¢t (/pLUS/) -x p® |

x cl(/pLUS/ /PLUS/e;) = k c? (e;) |

x cl(/pLus/ s; €;) =k clo(el) (s5) |

k cl(s,) -x Pt (s |
1,2 12, 2

k C (sz/PLUS/ el) =k C
1

k C (82 S5 el) =k C

COHO OO
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There are as many sentences here as there are paths on
the graph, which start from Cl and end at an unexplored or
passive configuration. The left side of each sentence is the
composition of the contractions which appear on all arcs of
the corresponding path.

It is easy to see that we can proceed in this way ad
infinitum. But we need a complete graph, which is, first of
all, finite. To accomplish this, we shall use the method of
generalization. Comparing all active configurations in our
graph we perceive that with the exception of Cl, all are
of the form

B (E) e; /PLUS/ B |

where E is different for different configuration expres-

sions. Let us introduce a generalizing configuration
(14) B (e,) e /PLUS/ B |

that is such a configuration that all the others could be
produced from it by substitution. For instance, C12 can be
produced from this configuration by the substitution e,> At+s,+.
Note that there is a great deal of arbitrariness in this choice.
There is always the possibility of taking B ey | as a generali-
zation. But because of the reason to be presented later, too
"sweeping" a generalization does not lead to efficient pro-
grams. On the other hand, there is a more specific configuration
in our case, which could also be taken as a generalization,

namely,
B (A +e, e /PLUS/ B |

but the first configuration is easier to discover and it leads to
the same result with respect to efficiency.

Now we represent configuration C4 as a special case of Cl4,
i.e. configuration C14 where variable e, has taken the value A+.
On the graph of states, we shall draw a representation arc,
depicted by dashes, from C4 to C14 (see Figure 4). The substitu-
tion expressing the values of the new configuration through the

values of the original will be indicated as an assignment
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statement on the arc. But instead of the usual form

e :=6
X

we used earlier, we shall write this assignment in the form

<«
E e,

This form, which may seem strange at first glance, is in fact
very natural and convenient in the analysis of graphs of
states and permits better understanding of the relationship
between the contraction and the assignment. This notation

is a part of a consistent system of notation, based on the
following principles:

(1) In writing a substitution we always use an arrow
which is directed from the variable to be replaced to the
substituting expression.

(2) Seen amother way, a substitution may reflect a
relationship between two groups of variahles: those of the first
group are old variables, i.e. they are already defined (have
values) , those of the second group are new, i.e. they get
defined by the substitution. We shall always put the old
valiab les on the left and the new on the right of the
substitution formula. Thus two types of substitution emerge,

contractions and assignments, as presented in the fol lowing

sCheme :
01 d variables New Variables
(already defined) (being defined)
Contraction v — L
Assigmment E i v

vh2re L 1is an L-expression including (possibly) new variables,
and E is any expression, which may include old variables;

V is a single variable.

(3) In the notation of substitution, the variable which
is to be replaced and the expression in which the replacement
must be performed make a mair separated by the substitution

sign // , and the arrow points to the substituted expression.
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We have already used one form:
E// V> E

The other form, completely equivalent from a syntactical point

of view, 1is
E' « V // E

(4) When we construct a graph of states we move from
left to right defining new variables. Therefore the lists of
both contractions and assignments will be lengthened (and read)
from left to right. But because of the different directions
of the substitution arrows, the law of composition of substitu
tions will be different for contractions and assignments,
although equally easily suggested by our representation:

Wt wat?=v-utyygv-1?

(et «vy (B2 vy = (L« v EY v

A variable like e, in Figure 4, which is introduced by
an assignment statement, will be called a generalization vari-
able. When we model the concretization process using the
graph of states, all generalization variables will take definite
values expressed in terms of the values of free variables and
constant expressions. But in the process of exploration
(when constructing the graph) we treat them as if they were
free: hence generalization.

So, when we derive, for the first time in the process of
driving, configuration (4), we come over to configuration (14)
(see Figure 4 below). This procedure will be called submission:

we will say that we submitted C4 to C14. Then we continue to

drive Cl4, and find out that the two active configurations we

receive on the next step, C15 and C16

to C14, thus making the graph in Figure 4 complete: there are

(*)

, also can be submitted

no unexplored states any more.

(*)

Sometimes we shall use a small square 0 instead of

<empty>.
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el->[]
—34 15

A+ « e e, » /PLUS/ e e+ <« e
e, » s,e e,s, « e
1> 53%) ;<EZ>_3_§___.3€%‘I’,

Figure 4
(15) e, +B
(16) B(e2 +) ey /PLUS/ B |
(17) B(e, s3) e; /PLUS/ B |

Mapping this graph on the object Refal machine and
returning to passive configurations in the final result their
natural form, we derive:

1 14

k cl4(el) =k CT7 (A+) (e) |

k C (e,)) () = e, + B
14 , 2 2 14

k C (ez) (/PLUS/el) =k C (e) +) (el) L
14 14

k ¢7 (ey) (sje;) =k C77 (eys5) (e)) |

Hurrah! We have brought our first process of compilation
to a successful end. Let us evaluate the result. It is fairly
good. In the original program, the string to be processed
cons isted of three parts: A /PLUS/ was the first, e the
second, and /PLUS/ B the third. Only the second, middle
part was unknown; the other two (which might have been much
longer, of course) could be processed beforehand in order to
optimize the algorithm. This is just what the compilation has
accompliseed. The new algorithm stores the processed first part,
then processes the unknown part, and upon completion, adds on
at the end the processed third part. The algorithm of proces-
sing the unknown part is exactly the same (disregarding format
differences) as the original one.

Let us consider another example. This is the program:
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¢ =
beps;mvoe ||
boe; =
and this is the initial configuration:
(1) voe ||

After several steps of driving we come to the graph of

states shown in Figure 5:

e1 - 0

SO
€ ” e152<zzz: e, » C
€1 ” €153
(1) voey ||
(2) vvoe | |]
3) vvwvoee [ 111
4) vvvwvee | 1111

Figure 5

Obviously, this graph can be continued endlessly, and
it cannot be made finite by submission of configurations (2),
(3), etc., to a generalization: there is no generalizing
configuration of these configurations, because they have
different numbers of concretization signs. To represent such
situations on the graph of states we introduce the third
(and the last) type of arc: a composition arec, which will be
depicted by a vertical "wavv" 1line. Using this device we
construct a graph of states shown in Figure 6:

(1) ‘P ¢ el J_J_ ex e,> O

(20 Yoe, | L - 1

(3)  ¢e | €17€152
Figure 6 1

86



Now, with the introduction of composition arcs, the full state
of the Refal machine (exact or generalized) is character-
ized not by a single vertex, but, generally, by a vertical row
of vertices connected by composition lines. When we proceed to
explore the lower (internal) configuration, the upper (external)
one does not go anywhere: it stays put. It is only for the
sake of convenience that we do not represent external parts

in trailing the fate of the internal parts, and this becomes
possible because the external part remains unchanged (except
for possible contractions) until the transformation of the
internal part is completed. So, the graph shown in Figure 7a
stands actually for what is depicted in Figure 7b (both graphs

are showh schematically).

2
1 2 1 2 2 e 9
4 4
3 7 3 0
5 5
9 { &6
8 9
oY
(a) (b)
Figure 7

Note that unlike external parts, all the internal parts of a
configuration do participate in the transformations, therefore
when an upper vertex is explored, the lower part disappears,

as can be seen in Figure 7b: transitions C5 to C7 and C5 to P9.
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Like two other types of arc, a composition arc represents
a substitution, but this time it is the substution of the
result of concretization, for the computed variable of the tail-
vertex indicated at the arc (ex in Figure 6). Computed vari-
ables are absent in the original configuration. When we decompose
configuration (1) in Figure 6 into the composition of (2) and (3),
we introduce a variable, e, s which, like a generalization variable,
is not free to assume any syntactically allowed value: its value
will be uniquely determined by the values of free variables in
(3) after the concretization of (3) is performed. But when we
explore the external (tail vertex) configuration, we treat the
computed variable as if it were free. This is why decomposition
is also a type of generalization — the external configuration
represents a wider set of exact states than the set of those
states which are actually possible at that moment. Generaliza-
tion variables and computed variables will be referred to as
redundant variables.

We had no choice as to how to decompose configuration (1)
into two configurations, because it contained only two concreti-
zation signs. In the general case, when there are more than two
concretization signs, there is some freedom in selecting the
internal configuration, in other words, the subexpression to
be driven first. The most reasonable way is to use the
from without within strategy mentioned in Section 3.5. After
the selected subexpression has been replaced by a computed vari-
able, the external configuration may again be decomposed in two,
using the same startegy. Another possibility is always to
select for driving the subexpression beginning with the leading
sign k.

Now we can complete the proof of Theorem 4.1. The rules
of construction of representational and compositional arcs, like
those of dynamic arcs, are such that the variables in the
head-vertex of a representation arc assume unique values if the
variables of the tail-vertex have taken definite values, and
the noncomputed variables in both ends of a composition arc

assume unique values if the variables of the tail-vertex of the
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preceding dynamic or representation arc have taken definite
values.

The dynamic transition from a generalized state which
is not at the bottom of a vertical segment is, normally, condi-
tional, depending on the value of the computed variable. When
we model the Refal machine with the help of the graph of states,
we will face the problem of making this conditional jump only
after the lower part of the segment has been concretized, and
therefore the computed variable has taken on a definite value.
Hence, dynamic transitions will be as unique in the case of
full states represented by vertical segments as they are with
full states represented by single vertcies. Thus, at every
step of the Refal machine we will know its exact state, which

completes the proof.

4.3. Clean Graphs

Let us sum up what the graph of states is.

—The vertices of a graph of states are (generalized) states
of the Refal machine, but not every possible state of the Refal
machine may be represented by a single vertex. Generally, a
state of the Refal machine is a vertical segment, i.e. a
sequence of vertcies connected by composition arcs.

—With each vertex a configuration is associated, which is,
generally, restricted in accordance with the location of the
vertex in the graph. Each vertex is identified by its number.
More than one vertex may be characterized by the same configura-
tion.

—-Generally, a graph of states is not a tree, but it is
convenient to represent it as a tree, some terminal vertcies
of which may be identical to (have the same number as) a non-
terminal (explored) vertex. We assume now that the graph of
states will always be represented in the form of a tree(even if
it is pictured with loops), because this simplifies dealing
with graphs. We shall call a path in a graph a sequence

V1A VoA, ..V 1A 1V + whose terms are alternately vertcies
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Vi and arcs Ai  such that k > 1 and for 1 < i < k the arc Ai

leads from Vi to V. and all the vertices are distinct from

i+l '
each other.

—There are arcs of three types in the graph of states.
Dynamic and representation arcs will be occasionally called
horizontal, as opposed to vertical composition arcs. Vertices
may be called active or passive, corresponding to the configura-
tion they belong to. From an active vertex either one represen-
tation arc or several dynamic arcs must originate. Dynamic arcs
are ordered. From a passive vertex no horizontal arcs may origi-
nate. Independently of horizontal arcs, one vertical arc'hay
or may not originate from a vertex. 1In a vertical segment, a
horizontal arc may lead only to its topmost vertex.

—Dynamic arcs bear contractions, representation arcs bear
assignments. Assignments are, at the same time, generalizations.
Let assignment E « V be borne by an arc leading from c® to c™.
Then variable V in C™ has the full scope of values, i.e. repre-
sents the set of all syntactically allowed values. Those
variables which are not indicated in the right side of one of
the assignments have the same meaning as in the preceding con-
figuration. Contractions and assignments define new variables
or redefine old ones. The variables defined by assignments will
be referred to as generalization variables. A computed vari-
able is defined in a vertex if it is borne by the composition arc
originating from this vertex. When this configuration gets
explored, the computed variable is treated as a free variable
having its full scope of values. Free variables appearing in
the stait configuration are, ipso facto, defined, and have their
full scopes of values. Only those variables may appear in a con-
figuration which have been in some of these ways defined on the
path from the start to this configuration.

—An active vertex is explored, if on the path from it to
a terminal (in the tree representation) vertex there is at least
one dynamic arc. A graph is complete if all terminal vertices

are either passive or identical to one of the explored vertices.
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We shall introduce now several new definitions. Input
variables in a graph of states are the free variables of the
start configuration. Input variables, generalization variables
and computed variables will be referred to as quasiinput
variables. An exact quasiinput state is specified when a
value of each cuasiinput variable is specified. A quasi-
input set is a set of exact quasiinput states. In particular,
a gquasiinput set mav be a quasiinput class; it is specified
when contractions (possibly trivial) are specified for each
quasiinput variable. A quasiinput class can be repnresented
by a single pattern expression if we choose a way of combining
contractions for all the variables into one expression. We
shall write a quasiinput class for the case of n ordered

quasiinput variabhles in the form

(L) (L)) eee (L)

1 n
where Li are the right sides of contractions for the variables.

To each exact aquasiinput state a terminal path (that is
a path ending with a terminal vertex) corresponds : the one
taken by the Refal machine if the quasiinput variables are
assigned corresponding values. We shall say that the exact
quasinput state takes this path and all its subpaths (paths
which are parts of the terminal path). To each path in the
graph a quasiinput set corresponds which comprises all exact
quasiinput states taking this path. The same set corresponds
to the vertex which ends this path. A path is called feastible
if the corresponding quasiinput set is not empty, otherwise
it is unfeasible. A graph in which there are no unfeasible paths-
will be called clean.

To refer to a specific path in a graph of states, we shall
represent it as a sequence of vertex numbers, separated by
the following symbols: a comma "," representing a dynamic arc;
an equality sign "=" representing a representation arc; a
bracket "[" representing a composition arc. If different dynamic
arcs lead to vertices characterized by the same configuration
(or just to draw attention to a specific arc), we may indicate
the arc by placing the contraction borne by it in parentheses

before the corresponding comma, e.g. 6(ey - T), 8 .
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1
C”(e)) (sg)

Figure 8

In Figure 8 the path leading to vertex 1l is 1 = 2,

4 =6 (7, 11 . In configuration (1l1) the following variables
may appear: e; and S¢ as input variables, indicated, to make
it clear, at the start vertex (1); e, defined as a generali-
zation variable at the path 1 = 2 and redefined at 4 = 6; S,
defined by the contraction on the path 2, 4. 1Input variable e
is subject to two contractions, and we can combine them into
one contraction: € > s S¢ey. This is possible because between
the two contractions there is no redefinition of e, . If the
arc 4 = 6 bore assignment (ez)sa “ ey it would give back
to e its fully generality, and the contraction for e, at
vertex 11 would be simply e, > sce,.

We shall join input variables into a composite expression
as shown in the argument of configuration C1 in Figure 8 adding
newly defined redundant variables in the order of their
appearance. What is the quasiinput set corresponding to the
path leading to vettex 11 ? It may seem at first glance that

it is the class (sasfel)(sf)(ez)‘ In fact, it is a subset of

92



this class, because of the restriction on the variable Sy
resulting from the position of vertex 4 in the graph: Sa should
be distinct from A, otherwise arc 2,3 will be chosen by the
Refal machine. Thus, configuration (4) is an example of a
restricted configuration. Restrictions on variables may produce
unfeasible paths if they are na taken into account during the
process of graph construction. In Figure 8 the path leading to
vertex 9 is feasible, but adding to it arc 9, 10 we get an
unfeasible path: contraction s + A 1is impossible because of
the above-mentioned restriction. Consider configuration (5).
It is also restricted. Variable e cannot. begin with a symbol.
This fact may be taken into account in drawing arcs originating
from vertex 5. There is no arc corresponding to the impossible
contraction, and at the vertex 14 the only possible value for e,
is <empty>, which should be reflected in treating vertex 14,
to simplify the graph.

Now let us discuss, using Figure 8 as an example, the
problems we encounter trying to submit a new configuration to
an already existing one. Suppose we try to submit vertex 1l
to vertex 5, as shown in the figure. We must answer two ques-
tions. The first is: if we consider configurations correspond-
ing to vertices 11 and 5 as full configurations, is it true that
configuration 5 is more (or equally) general than 11 ? To
answer this question we have to find out whether there exists
a substitution which changes configuration 5, being applied to it,
to configuration 11. This is a more special problem than that
for which the Generalized Projecting Algorithm was designed.
We do not need to find intersections; we only want to know
whether one patterh expression can be recognized as the other.
The algorithm for this problem is applicable to any pair of
pattern expressions and is an obvious generalization of the
projecting algorithm in Section 2.2, in which one allows free
variables in an "object" expression and treats them as unknown

wholes.

93



If we found configuration (5) to be no less general than
(11) , we must answer the second question: are not the restric-
tions on the variables in the earlier vertex more severe than
the restirctions at the current point? From this point of view,
we should not unconditionally submit vertex 11 to vertex 5,

because the variable e, as redefined at 11 may have its full

scope of values, whilelat vertex 5 it is restricted. But it
may happen that for some reason we are sure that the actual
scope of e, is limited to what it is at 5; then the submission
will be legitimate. If we do not have such (rather extra-
ordinaryv) information, we should either explore vertex 1l as
an independent configuration, or generalize vertex 5 by making
a seemingly trivial assignment e v e, and reexplore it.
If all variables in a vertex have their full scopes, this
vertex may be made the start of a separate subgraph, not connected
with the main graph (and other subgraphs) in any other way
than by submissions.

To deal with quasiinput sets we need some additional
means of representing sets of object expressions. First we
define eight types of the simplest contractions which will be

called elementary. They are:

(1) s(P)i ) where S € P
(2) s(P), > s(Q)y where Q C P
(3) s(P); ~ S(P)j where i # j
(4) e; > <empty>
(5) e. > s'e, where s! is new
i J 1 ]
(] v
(6) e, > (ej)ei where ej is new
(7) e. > e, s' where s' is new
i i j
' T
(8) e; > e, (ej) where ej is new

As in Chapter 3, unspecified s-variables are considered
here as having a special "any symbol" specifier which comprises
the infinite set of all symbols. Primed variables si and ei
stand for variables which are distinct from any already intro-
duced variable. They are, in fact, generators of variables,
the index of the newly generated variable being assigned as

the value to the index of the generator variable.
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It is easy to see that all contractions which appear in
using the Generalized Projecting Algorithm (see Section 3.2)
are either elementary or compositions of elementary contractions.
For example, a contraction of the form e, > S e; can be
represented as

]
(ei > sj ei) (sj - S) ,

where contractions are to be applied from left to right.

Theorem 4.2. A composition of any number of elementary
contractions is a contraction to an L-expression. Conversely,
any L-expression can be represented as the composition of
a number of elementary contractions applied to an e-variable.

Proof. There are no elementary contractions which would
change one e-variable into another, and only new e-variables
may be introduced. This means that no repeated e-variables
may result from a composition of elementary contractions. New
e-variables emerging due to elementary contractions are always
at a different level of parenthesis structure, therefore no
pair of e-variables on the same level may appear. So, both
requirements to L-expressions are satisfied, which proves the
first part of the theorem. To prove the second part, we only
have to notice that applying the GPA to project any given
L-expression on a single variable e, , one receives a represen-
tation of this L-expression in the form e, // & , where A is a
composition of elementary contractions.

By A \B we denote the difference between sets A and B,
that is the set of all elements of A which are not at the same
time elements of B . As usual, A \B \C means (A \B) \C etc.
If the definition of a function in Refal consists of sentences
with left sides Ll'LZ””’Ln , then the set of all object

expressions for which the k-th sentence will be used is

(1) I A Y

We call this set a restricted class; expressions Ll'LZ”“’Lk-l'

which are negative, will be called restrictions on the class Lk.
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It is very difficult to establish from a record of such a form
whether the set is empty or not. As the first step to amend
the situation, we replace restrictions on the class by
restrictions on the variables. Using the GPA we find k-1

intersections:

r. .
| Ly Nl = j:i L, /7 87, i=1,2,... k-1.
where Ag are contractions of the variables in Lk. Now we
represent our restricted class in the form
1 2 r) 1 Tk-1
(2) Lk \\ Al \\ Al ...\\Al \\ A2 ...\\Ak_l

where Ag will be referred to as restrictions on the variables
in Lk. To determine whether a given object expression belongs
to this restricted class we first recognize it as Lk’ If we have
succeeded in that, we find out whether the values assigned to

the variables in L, allow at least one of the contractions Ag.

If it is the case, the object expression does not belong to the
set, otherwise it does belong.

Operation \\ (read: "restriction"), applicable to a set
E of object expressions and a substitution A , produces, like
operation // (substitution), a subset E \\ A of the set E, but
unlike the case of substitution this subset is not generally
a class when E is a class.

The expression

E \\ Ay \\ A,
means

(E \\ Al) \\ AZ

The operation of restriction is commutative in the sense:

EANVAD NN A = ENN A\ A

1 2 2 1
For the operation of substituting a simple rule holds
with respect to the composition of substitutions:

E // (61 6y «ve 6) =E // 61 // 62 oo // Sh

which is true by the definition of composition. For restriction

the corresponding rule is more complicated:
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(RC) ENN (8, 6, 8, «cc 8 ) = E N 61
v (E // 61) \\ 62
v (E // 61 // 62) \\ 63

U (E // 8y // 8yeuu8 ) M\ 8

We shall refer to this rule as RC (Restriction-Composition)
and use it for the case when Gi are elementary contractions.
The rule permits decomposing a class restricted by any
contraction into a union of classes restricted by single
elementary contractions. Now, the following distributive law

holds, obviously, with respect to union and restriction:

(UR) (E, U !E2 U ... U En) WA = (El \W A) U ... U (En \\ A7)

1
We shall refer to this law as Rule UR (Union-Restriction).

It is easy to see that by algebraic manipulation based on Rules
RC and UR we can represent any restricted class (1) (represented
first in the form (2) through the use of the GPA) in the form:

i 2 n

L, L7V Lk r v oo UL L

k
i s
where L are compositions
i i i i
st =0l ol Ll o0
1 72 P

. . . . . . i
of "constrictions" (i.e. contractions or restrictions) oj:

i, i i
o. is §. or \\ 6§
. J /7 J J
where 6; are elementary contractions.

For example, let a restricted class X be written in the

form (2) as:

X = LA\ A\ g,
where

By =6y 85 83

by = 84 S

We proceed as follows (using + instead of V):

LA Ay = LA 8 + L /7 80\ 6, + L /7 81 // 8, \\ &4
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The set X will be the sum (union) of the following three sets:

(L \\ 61) \\ A2 = [ \\ 61 \\ 64 + L\ 61 // 64 \\ 65

(L /7 8\ 80 \\ ay =L /7 6\ 6, \\ 6

2 4

+ L // 61 \\ 62 // 64 \\ 65
(L // 61 // 62 \\ 63) \\ A2
=L // 61 // 62 \\ 63 \\ 64 + L // 61 // 62 \\ 63 // 64 \\ 65
o i _ i i i . s

A composition product I = 0 05 =« op of constrictions
will be referred to as a constriction term. When we start
algebraic manipulation with a class E somehow restricted, all
further transformations and subset formations will produce
unions (sums) of the form

1 2

Ef " UEGZfU ... uUcEZ"

Therefore, in formulating the rules of manipulation we can omit

arbitrary £ and consider constriction sums

or
s 4524 ...+ 50

For example, Rule (RC) may be written as

\\ (8 62 e Sn) = \\ 61 v // 61 \\ 62 + // 61 // 62 \\ 63

+ .. + // 61 // 62 eee J/ 8

Our task now is to develop algebraic rules for simplifica-

1

L\

n
tion of constriction terms. We note first that if a term
begins with a number of "positive" contractions (contractions
proper) we can simply perform the corresponding substitutions

in E. If we want the result not in the form of the union of
restricted classes but in the form of a constriction sum
applied to the original E, we shall remember the corresponding
contractions for each term and add them at the left side.

Thus whenever we are concerned with simplification, the term

begins with a "negative" contraction (restriction):
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(a) \\ 61 Oy O3 eo- Gp

Second, we notice that restrictions, unlike contractions, are

g

commutative. Therefore we can organize the process of trans-
formation in the following wav. At the beginning of the sequence
being transformed we shall always have a group of restrictions
which have been processed already:

{\\ 61 \\ 62 ees W\ 6m} Opsl °°° Gp

If Orsl involves a variable which is not involved in the group
of processed restrictions, then it is commutative. We either
apply a substitution 6m+1 to E if 041 1S a contraction // 6m+l ’
or treat the restriction as if it were in the first place in

the sequence: case (A). In particular, no action may be taken
other than adding \\ 6m+l

Suppose now that the replaced variable in O+l is identical

to the list of processed restrictions.

to the variable in one of the processed restrictions \\ Gx. Two

cases are to be considered:
o o o \\ GX e e \\ 6m} // Gm'*'l e o o
\\ Gx eeo N\ Gm} \\ Gm

(B) {\\ &

1 p

g

(c) {\\ 6 1 0 9

l ® o o
In both cases we can formulate rules which involve only

§_and §
X m+1 m+1
does not commute with \\ Gx generally; therefore to transfer

, but in case (B) we must remember that // §

// 6,1 to the beginning we must compare it to all \\ §, involv-
ing the same variable. 1In case (C) it will not be an error just
to add \\ 6m+1
pairs \\ 6x \\ §

to the list, but again we must try all possible
n+l if we want a maximum of simplification.
There are three groups of rules to manipulate constric-
tions, which correspond to cases (A), (B), and (C). The rules
of the first group are elimination rules; they are applicable
to a single restriction, no matter whether there are other
restrictions for the same variable or not. The rules of the
second and third groups are correspondingly applicable to pairs

restriction-contraction and restriction-restriction,
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For our purpose it is necessary now to treat separately
the cases of a finite specifier, i.e. of a variable of the
form s(P)i , and of the "any symbol" specifier, i.e. of an
unspecified varibble S; - Therefore, instead of three
elementary contractions involving an s-variable, we will have
six elementary contractions; this brings the full number of
elementary contractions to eleven. In what follows we describe
not only the rules of transformation, but the algorithm of
their application (with some freedom of variety). We shall
always make full lists of possible cases, and if no simplifi-
cation is possible indicate this as "no action".

A rule of the form

., =L, Ul

1 2 3
should be understood as: with any E

E Xl =EL,VETLI,
A. Elimination Rules
A.1  \\ s; * s(Q)i no action
A.2  \\ s(P)i* s(Q)i =// S(P)i > s(P \Q)i
A.3 \\ s; S no action

A.4 \\ s(P)i + S =// s(P)i + s(P \{S})i
A.5 \W\W s, > sj

A.6 \\ sl(P)i > s(P)j no action
A7.L\\ e, >0 = (// e; ~ sJ'. e) U (// e; ~ (ejf) e;)

A.7R \\ e; * O = (// e » e, s%) v (// e, > e, (eﬁ))

A.8 \\ e, > s! e; = (// e; » Q) v (// e; ~ (eé) e;)

A.9 \\ e; * (eJ!) e;= (// eg > D)V (/) e, » 53 e;)

A.10 \\ e, > e, 53 = (// e, oy v (// e, > e; (eé))
A1l \\ e, > e, (e3)= (// e; » O) VU (/) ey > e 53)

Elimination rules are applied as soon as a negative term
is located. Either of the rules A.7L or A.7R may be used,
and a clever algorithm may make a guess as to which choice
will be more expedient. Also, it is possible to take
no action at all, and we shall include this possibility in

subsequent considerations.
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So, after applying elimination rules we face a situation
when only five out of eleven restrictions may take the place
of éx in (B), and both 6x and 6m+l

formulation of rules B and C, we again unite cases 5 and 6

in (C). Now, for a shorter

(as listed in the Elimination Rules) into one case s(P)j > s(P)j ’
and in addition consider case 3 as a special variation of
case 1, by considering symbol S as s'(Q)j with Q = {S}.

B. Restriction-Contraction Rules
B.1 \\ s, +»s(Q; // sy > s(Q); =//s; »s(Q VY,
B.2 \\ s, »s(Q,; // s; » sy = // s; » 5 \\ sy > s(Q)j
B.3 \\ s(P),; ~» s(P)j // s(P); + s(Q),

= (// s(P)y » s(Q ; \\ s(P)j > s(Q)j)

UV (// s(P), > s(Q. // s(P)j > s(Q)j W os(Q), - s(Q)j )
B.4 \\ s(P); ~ s(P)j // s(P); > s(P), =

if k = Jj then @ else

// s(P)i > s(P)k \\ s(P)k -+ s(P)j

B.5 \\e,»0//e ~0=g
B.6-9 \\ei -0 // e; * E=// e; E

where E is one of: s:'jei ’ (eﬁ)ei, eisé, ei(eé) .
C. Restriction-Restriction Rules.

c.l \\ s; *s(Q; \\ s; *s(Q); = \\ s; »s(QU QM)
c.2 \\ s, »s(Q; \\ sy > S5 no action
c.3 \\ s(P)i -+ s(P)j \\ s(P)i -+ s(Q)i

1f P is "any symbol", then no action else use Rule A.2
for the second restriction; then use B.3.

c.4 \\ s(P)i + s(P)j \\ s(P)i -+ s(P)k no action (k#j is implied)
C.5 \\ e, ~ 0O\ e, » O =\\ e, 0

' = '
C.6 \\ e, > 0\ e, * sjei // e, > (ej) e;
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\\ \\ '
Cc.7 e, * 0O e; * (ej) e // e, * sa e

i

c.8 \oe >0\ e ->e; s% // e > e

'
c.9 \\ ei - 0O\ ei > ei (eJ)

i (eé)

]
// e, > e, sj
Whenever in any of the rules an empty specifier appears
in a "positive" contraction, the corresponding term in the
union must be set empty.

There is one additional rule:

D. Rule of Symmetry.
. \ ) . o= \ ) .
D \ s(P)l -+ s(P)J \ s(P)J > s(P)l
This rule is used for restriction \\ Gx , when constric-
tion Omtl has in its left side variable s(P)j.

Because of the eliminatrion rules, only the following four

types of restrictions may enter the list of processed restric-

tions:
(1) \\ s; > s(Qy
(2) \\ s; * 8y
(3) W\ s(P)i > s(P)j
(4) \\ e, * O

where P and Q are finite (not "any symbol") specifiers. By using
rules of groups B and C, and rule D, we ultimately represent
each restricted subclass in the form

, _ + + - -
Ei \\ 61 \\ 62 oo\ Gq Ei // 61 N4 Gp \\61\\...\\6q

where each of the restrictions \\ 6; is one of the four tyvpes
above. We notice in addition that for each unspecified
s-variable there may be only one restriction (1) (because of
Rule C.l), and a number of restrictions (2). For a specified
s-variable there may be only some restrictions of type (3);

for each e-variable there may or may not be one restriction (4)
in the list. A restricted class so represented will be

rererred to as s-restricted.
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Examqlg.

In the definition of a symmetric binary string:

.1 a =T
.2 o s(lO)l e, s(lO)2 =2 q e,
.3 a ey = F

what is the set X of expressions processed by the third sentence?
This set may be represented in the form (1) as

X = \ O\ s(lO)1 e, s(lO)l

€1
Projecting the left sides of the first and second sentences

of e, , we get representation (2):

X = ey \\ e; * 0O\ (el > s3e1) (s3 > s(10)3) (el > els4)
. (s4 > s(10)4) (s(lO)4 > s(10)3)
Using Rules RC and UR we get:
x=xtux2ux3duxtouxd

(because of the composition of five contractions).

Let us transform each term now:

1 _ N - -
Xt = e; \\ e, O\ e; * s3&; ey // e; » (es)el (eS)el

[Rule C.6]
X< = el.\\ e; * a// e, ° sz \\ sy s(10) 5
=e; // e ¥ s;e \\ sy > s(10)5 = sj3e, \\ sy > s(10)4
[Rule B.6]
X~ = ey \\ e; ° a// e, ° s3e; // Sy s(lO)3 \\ e; * eys,

— \
= s(lO)3 e, W\ e

> e.s
1

1 1S4 = s(10) 3V s(10) 4 el(ey)

[Rule A.190]
X' = ey \\ e; > o// e; * s3e // sy » s(lO)3 // ey~ e154\\ S4>s(10),

= s(10) \\' s, » s(10)
3 4

€154 4
x> = s(10) 5 e; s(10), \\ s(10), » s(10)
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Thus the set X is the union of six s-restricted classes:

X = (es)e1 U sye; \\ sy s(10)3 v S(lO)3 v S(lO)3 el(es)

U s(10) \\ s, » s(10), v s(10)3el s(10), \\ $(10) ,»s(10) 4

3154 4

An s-restricted class may be empty even if this is not
immediately obvious (we recall that when an empty specifier
appears, the class is removed in the course of transformation,
sO in an s-restricted class no specifier may be empty). The

following is an example:

s(lO)ls(10)25(10)3\\ s(lO)l» s(10)2\\ s(10)1+ s(10)3\\s(10)2
> s(lO)3

Our task now is to construct an algorithm which would
determine whether a given s-restricted class is empty or not.
We shall construct this algorithm as actually picking up one
representative of the class, if such exists. We notice that
only restrictions of the type

\\ s(P)i > s(P)j

may cause trouble in picking up a representative. Indeed, the

\
\ S. > S(Q)j

leaves us with still an infinite choice of possible symbols S;-
The same is true with respect to a restriction of the form

\\ si -> sj

(we can just take a new symbol for each new unspecified s-vari-
able we encounter). And of course, there is no problem in
picking up a nonempty expression.

If we have a system of inequalities for a number of
s-variables with a finite specifier P consisting of p different
symbols, we construct a graph G, the vertices of which are these
s-variables, and two vertices i and j are connected by an edge
if there is a restriction \\ s(P); + s(P)j or \\ s(P)j + s(P).
Then we compute (see, e.g., [27]) the chromatic number x (G) ,

that is the minimum number of colors needed to color verticies
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in such a manner that no adjacent vertices have the same color.
If X(G) > p, the restricted class is empty, otherwise we can
pick up a representative, treating symbols from P as colors.

The result of our consideration may be formulated as

Theorem 4.3. For each vertex in the graph of states of a
Refal machine, the quasiinput set can be represented as a
union of nonempty s-restricted classes.

Now we know how to clean the graph of states; we remove
all vertices to which empty quasiinput sets correspond; we
also remove dynamic arcs leading to these vertices.

This gives us

Theorem 4.4. An algorithm exists which makes any graph of

states clean.

4.4. Compilation Strategy

When we have constructed a complete graph of states,
we have represented the set of all possible states (with a
given start) as compositions of certain subsets — configurations.
Thus constructing a graph of states produces a set of configura-
tions. Conversely, if we specify, no matter how, a set of
configurations which we call bastie, and if we agree that only
basic configurations may enter the graph of states, we will
to a considerable extent define the graph of states to be
constructed. 1Into the set of basic configurations we include
of course only active configurations: there is no point in
restricting passive configurations from entering a graph of
states. The general scheme of constructing a graph of states
is as follows. Starting with the initial configuration, we
execute driving, and every time that we receive an active
configuration we decide whether to continue driving or to
express the configuration through some explored basic configura-
tions and stop driving. More specifically, the strategy of
compilation may be defined by giving answers to the following

questions:
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(1) How do we choose the subexpression to be driven? Two
most natural strategies would be, first, following the defini-
tion of the leading concretization sign, and second, the
strategy "from without within".

(2) When do we start trying to stop driving? For example,

we may take as a rule never to stop on a transitory vertex,

no matter whether or not it is a basic configuration.

(3) Wwhen and how do we decompose a configuration?

(4) What should be the initial list of basic configurations,
or the initial criterion for a configuration to be basic?

(5) When and how do we expand the list of basic configura-
tions, or to change the criterion?

With a compilation strategy given, the first question to
answer is: will this strategy necessarily lead to the con-
struction of a finite complete graph?A question still more
fundamental: are there any strategies at all which always
lead to a successful end (complete graph)?

The answer to the last question is positive. There is
a compilation strategy, which finds itself at the extreme
interpretation end of the interpretation-compilation axis.

It may be called generalization to funmctions. With this
strategy the following answers are given to the five above

mentioned questions:

(1) The range of the leading concretization sign is chosen.
(2) Try to stop at every step.
(3) Always decompose a configuration which has more than

one k-sign separating the leading subexpression.

(4) Basic configurations are configurations of the form:
k Fe |

with any determiner F.

(5) This criterion does not change.

Essentially, this strategy leaves the program in exactly
the same form as it has been written in Refal. The graph of
states decomposes into subgraphs corresponding to functions,
and no optimization occurs. E.g., if we discover a call of

function Fl with a specific completely defined argument:
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k Fl ABCD ]

then instead of computing and substituting the result of
concretization, we will have to generalize to the configuration
1
k F
1

this configuration, that is reproduce the definition of F~.

e | and construct the complete graph of states for

The choice of basic configurations determines the depth
of compilation. The more specific the basic configjurations
are, the deeper the compilation process will go, and when the
basic configurations are more general, the resulting program
will retain a higher level of interpretation. Thus, the character-
ization of a program in terms of interpretation versus compila-
tion, familiar to every programmer, becomes more comprehensible
and receives a formal definition: it is the generality of the
configurations chosen as basic in constructing the graph of
states.

The strategy of generalization to functions can be
considerably improved by excluding transitory configurations
and including into the basic configurations the formats of
functions. We shall illustrate this strategy (generalization
to formatted functions) by the following example. Let function
Fl with the format

1

(GFF) k F© o(e;) (e,) ey |

be defined by the sentences:

ool
k F (el)(ez) s3e, = k F

1

1
(e)) (eps3) €4 |

k F (el) (e,) = (el) (e,)

Using the strategy of generalization to formatted functions
we take expression (GFF) as a basic configuration. This will give
us the graph of states represented in Figure 9a. Let us
compare it with the graph in Figure 9b, which is the result
of generalization to unformatted functions for the same Refal

program.
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(e1 N (eé)el)(el+ (eé)el)(el -+ 0)

Figure 9b
According to Figure 9b, the argument ey should be split
into three subarguments e 1 & and ez whereafter symbol
variable sa is separated (if possible) from e - After
exchanging symbol Syq ¢ the three subarguments are ce
again united into one argument — all this being repeated at
each step of the Refal machine. According to the version of
Figure 9a, the start configuration has three arguments. At
each step, a symbol sa is separated from the third argument
and passed to the second. The first argument is not involved
at all. Obviously, the graph in Figure 9a, when mapped on
the object machine (a real computer), will provide an essenti-
ally higher efficiency than the other graph: there is no need
to decompose and then recompose the argument with the help
of parentheses during each cycle of the loop. Our second
strategy is more compilative than the first, because the format
parentheses are included in the basic configuration, making it
more specific. The parentheses are now absent from the object
program; they have been dealt with in the process of compila-
tion. Seen from the other side, the first strategy is more
interpretive, because the argument of the function Fl is

interpreted at run time as an expression of the form (el)(ez)e3.
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The process of compilation may be controlled by
includir.g some specific configurations into the set of basic
configurations, or, on the contrary, stating that configura-
tions of a certain kind should not become basic by any means
(and therefore they will never be recipients of dynamic arcs,
which means that they can be excluded, if necessary, from the
final graph of states). Changing the compilation strategy,
and varying the level of compilation thereby, we may receive
different programs from the same initial definition of the
problem in Refal. For an example let us go back to section 4.1,
where the language /L/ was defined and the start configuration

(1) k /L/ CROSS(CAT); ADD(DOG) (e ) |

given.

If the set of basic configurations is declared empty,
which means the maximum depth of compilation (and in this case
leads to a finite graph because a solution without loops
exists), we receive the following graph of states (Figure 10):

e+ sle e -+ sle e. + sle
@ (zfx lxj&\‘(f:i\x 2xkf§\ X 3x)7
e » 0O
X

e -1 -+ 0

~4\x_’ \ex 8

(<))

Figure 10

where the configurations are:

(2) k /L/ ADD(DOG) (k /L1l/ CROSS(CAT) (e,) 1) 1

(3) k /L/ ADD(DOG) (C s; k /L1l/ CROSS(AT) (e, ) | ) 1

(4) CATDOG

(5)  k /L/ ADD(DOG) (C s; A s, k /L1/ CROSS(T) (e,) 1) 1
(6) C s,ATDOG

1
(7) CslAssz3exDOG
(8) CslAszTDOG
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When mapped on the object machine, this graph will
become an efficient program. But imagine that instead of
"CAT" in the formulation of the problem we have a word of 100
letters. Then the graph of states will contain 100 branching
points, and the resulting object program will be quite bulky.
We may desire — as a tradeoff between space and time
parameters — to make the program more compact at the expense
of retaining a level of interpretation. We declare as basic
the configuration

(9) k /L1/ CROSS(e,)(e,) L

The following graph will be constructed as the result of
the compilation process (Figure 11):

CAT +« e
O— @D —fF

sl
(e + s'e )(e.+» s'e.)
y ay x. bSx »12
>4 13 e,
Figure 11

(10) k /L/ ADD(DOG) (e;) |
(11) e, DOG

(12)
(13)

Sa®p®2
eyex
We see here an example of mixed strategy: decomposition of

the text in the language /L/ into statements and execution of

the first statement are done at compile time, but the second

statement — the procedure of "crossing", which of course could
have a longer word than "CAT" as the first argument — is
interpreted.
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The notion of compilation strategy provides us with a
key to the notion of a normal form of a Refal program. Suppose
we have a graph of states and consider various ways to map it
onto the object Refal machine. Differences in Refal programs
stemming from different ways of mapping are clearly nonessential;
a question of form. So let us fix a definite way of mapping —
say, that described in Section 4.2. Now we choose a compila-
tion strategy. If it is generalization to functions, then
compilation of the original Refal program for any function
with a subsequent mapping will give us a new Refal program
which is a representation of the original in a standard normal
form. When we change the compilation strategy, we receive
functionally equivalent Refal programs which may be referred
to as normal forms, each normal form being defined by the
corresponding compilation strateqgy. Differences between various
normal forms of the same function may be huge and are "essential",
not "formal"; they reflect the differences in the strategies

they have resulted from.

4.5. Perfect Graphs.

A walk in a graph of states is a sequence of alternate
vertices and arcs VAV, A ... V, A, 1A which "might be"
followed (passed) by the Refal machine with some definite
values of the input variables (i.e. the Refal machine in a
definite exact input state). When we say "might be" here, we
mean that the actual existence of an exact input state which
forces the Refal machine to make this walk is not presupposed;

a walk exists if certain rules are observed in its construction.
These rules are as follows:

(1) If only horizontal arcs are outgoing from a vertex vy

in the walk, then any of them can be taken as Ai' For a concise
representation of a walk, as in the case of a path, it is con-
venient to write outmly the numbers of vertices and separate
them by special signs indicating the nature of the connecting

arc: it will be a comma "," for a dynamic arc and an equality
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sign "=" for a representation arc. (If needed, the contrac-
tion on the arc may be specified in parentheses before the
comma. )

(2) If there is a vertical arc outgoing from Vi , it must be
taken as Ai when we first encounter Vi ; this downward passage
of a vertical arc will be denoted in our concise notation by

a left bracket "[". When we come to a passive terminal
configuration Vj , we look for the latest unpaired left bracket
and return to the vertex preceding this bracket. This upward
shift is depicted by a right parentheses "]" after Vj , which
becomes paired, of course, with the last left bracket. A pair
of corresponding brackets will be referred to as a functional
loop.

(3) After a right bracket closing a function loop, a hori-
zontal arc must be taken if there are any.

(4) When we come to a passive terminal vertex, without a
composition arc or after closing the functional loop, and there
are no unpaired left brackets, the walk cannot continue. It

is concludec.

An Znput set is a set of exact input states. In particular,
an input set may be an input class; it is specified when con-
tractions (possibly trivial) are specified for each input
variable. To each exact input state either a concluded or
an infinite walk corresponds: the one taken by the Refal
machine from this initial state. To each walk (finite: a walk
is finite if the opposite is not stated) an input set corres-
vonds, which comprises all exact input states from which the
Refal machine will make this walk. A walk is called feastible
if the corresponding input state is not empty, otherwise it is
unfeasible. A graph of states in which all possible walks are
feasible will be called perfect.

The graph in Figure 4 is perfect. We can easily find a
corresponding input set for each possible walk in it, and this
set will not be empty. For instance, for the walk
1, 4 = 14, 16 = 14, 17 the restricted input class
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/PLUS/ S3 € VA Sy * /PLUS/

corresponds to it, and for the concluded walk 1, 4 = 14, 17 = 14,
17 = 14, 16 = 14, 15 the corresponding input set is

S3 84 /PLUS/ \\ s3 + /PLUS/ \\ s4 » /PLUS/

If there are no redundant variables in a graph of states,
or they are never subject to contractions (which is the case
for Figure 4), and if the input variables have the same range
of values on both ends of each transformation (submission) arc
(which again is the case for Figure 4), then a clean graph of
states will be also perfect.

Here is an example where a redundant (transformation)
variable is subject to contraction, but the graph of states,is,
neverthe less, perfect. We choose to define the procedure of
deleting asterisks from a string of symbols in this bizarre way:

1
a e, = q ex(END)
a“xe = q e,
1 1
a”s.e = a“eg.s,

1
o (END)ex - e,

The following graph of states corresponds to this (Figure 12),
which as can easily be seen is perfect:

e. -» (END)ex Np

Figure 12
A perfect graph (or the program in Refal represented by

this graph — we will not distinguish these) cannot be improved
by a compilation process. Compilation is consequential when
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there is a margin of generality in the original program: the
definitions of functions are more general than is really
needed, and walks exist in the graph of states which in fact
cannot be actualized under any input assumptions. A perfect
graph of states has no margin of generality, and all the

tests implied by the dynamic arcs in such a graph must be
actually performed at every step of the computation process.
This does not mean that there may be no functionallyequivalent
graph which would work more efficiently than a perfect graph,
i.e. our term "perfect" does not mean that it is perfect in
any sense of the word. E.g., the following function, which
only scans its argument without doing anything:

B sye, = s,Be,

B (e1) e, = (Bey) Be,

B >
has a perfect graph of states, but it is functionally equivalent
to:

B e > e
This example shows us the limits of the compilation process:
compilation is essentially computation in a general form, but
it does not include the application of the principle of mathe=
matical induction. This is why the transformation of the
function B as indicated above is beyond our capability at the
moment. The inclusion of induction into the system of formal
transformations of Refal programs will be done later in
Section 4.6.
So, a perfect graph is a graph which cannot be improved

by a straightforward compilation process. But even by a
straightforward compilation process we can achieve a very
impressive level of optimization — to be more exact, we can
eliminate most typical efficiency losses resulting from
automated, straightforward construction of algorithms from
some "building blocks". We demonstrate it by giving three
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types of optimizations as examples.

The first and most obvious type of optimization is,of
course, executing at compile time all calculations which are
possible to do without knowing the input data. An example
was given in Section 4.2, where the initial function

1
k C (el) = a A /PLUS/ e, /PLUS B |

where function o was defined on page 77, was transformed into
the efficient