
Courant Computer Science Report #20

February 1980

The Language REF AL-The Theory of
Compilation and Metasystem Analysis

Valentin F. Turchin

Courant Institute of
Mathematical Sciences

Computer Science Department

New York University

Report No. NS0-20 prepared under Grant No.

NSF-MCS76-00116 from the National Science Foundation.

COURANT COMPUTER SCIENCE PUBLICATIONS

COURANT COMPUTER SCIENCE ~

AlOl ABRAHAMS, P. The PL/I Programming Language, 1979, 151 p.

C66 COa<:E, J. & SCHWARTZ, J. Progranning Languages iUld Their Cromp.ile::-s, 197G, 767 ?·

D86 DAVIS, M. Computability, 1974, 248 p.

M72 HANACHER, G. ESPL: A Low-Level Language in the Style of Algol, 1971, 496 p.

M81 MULLISH, H. & GOLDSTEIN, M. A SETLB Primer, 1973, 201 p.

S91 SCHWARTZ, J. On Progr~ng: An Interim Report on the SETL Project.

S99 SHAW, P.

SlOO SHAW, P.

Generalities; The SETL Language and Examples of Its Use. 1975, 675 p.

GYVE -- A Programming Language for Protection and Control in a
Concurrent Processing Environment, 1978, 668 p.

" Vol. 2, 1979, 600 p.

W78 WHITEHEAD, E.G., Jr. Combinatorial Algorithms, 1973, 104 p.

COURANT COMPtJI'ER SCIENCE REPORTS

WARREN, H. Jr.

2 HOBBS, J. R.

3 TENENBAUM, A.

5 GEWIRTZ, w.
6 MARJCSTE IN , P.

7 GRISHMAN, R.

8 GRISHMAN, R.

9 WEIMAN, CARL

10 RUBIN, N.

11 HOBBS, J. ~. '

ASL: A Proposed Variant of SETL, 1973, 326 p.

A Metalanguage for Expressing Grammatical Restrictions in Nodal
Spans Parsing of Natural Language, 1974, 266 p.

Type Determination for Very High Level Languages, 1974, 171 p.

Investigations in the Theory of Descriptive Complexlty, 1974, 60 p.

Operating System Specification Using Very High Level Dictions,
1975, 152 p.

(ed.) Directions 1n Artificial Intelligence: Natural Language
Processing, 1975, 107 p.

A Survey of Syntactic Analysis Procedures for Natural Language,
1975, 94 p.

Scene Analysis: A Survey, 1975, 62 p.

A H1erarch1cal Technique for Mechanical Theorem Proving and Its
Application to Programnung Language Design, 1975, 172 p.

ROSENSCHEIN, S.J. Making Computational Sense of Montague's
Intens1onal Loglc, 1977, 41 p.

12 DAVIS, M. & SCHWARTZ, J. Correct-Program Technology/Extensibillty of Ver1f1ers,

13 SEMENIUI<, C.

14 FABRI, J.

with an Appendlx by E. Deak, 1977, 146 p.

Groups with Solvable Word Problems, 1979, 77 p.

Automatic Storage Optimization, 1979, 159 p.

15. LIU, S-C. & PAIGE, R. Data Structure Choice/Formal Difrerentiatlon.
Two Papers on Very High Level Program Optimization, 1979, 658 p.

16 GOLDBERG, A. T. On the Complex1ty of the Satisfiablllty Problem, 1979, 85 p.

17 SCHWARTZ, J.T. & SHARIR, M.
1979. 71 o.

A Design for Optimizations of the B1tvector1ng Class,

la STOLFO, S. J. Automatic Discovery of Heuristics for Nondeterministic Programs
from Sample Execut1on Traces, 1979, 168 pp.

19 LOERINC, B. M. Computing Chromatic Polynomials for Special Families of Graphs,
1980, 111 pp.

20 TURCHIN, V. F. The Language Refal--The Theory of Compilation and Metasystem
Analysis, 1980, 245 p.

Notes:
Reports:

Available from Department LN. Prices on request.
Available from Ms. Lenora Greene. Nos. 1,3, 6,7,8,10 ava1lable in xerox or.ly ..

COURANT INSTITtJI'E OF MATHEMATICAL SCIEN~S
251 Mercer Street

New York, New York 10012

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Computer Science NS0-20

The Language REFAL--The Theory of

Compilation and Metasystem Analysis

Valentin F. Turchin

Report NS0-20 prepared under

Grant No. NSF-MCS76-00116 from

the National Science Foundation

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1. DESCRIPTION OF THE LANGUAGE

1.1 Informal Description

1.2

1.3

Formal Definition of Basic Refal

Representations and Metacodes

CHAPTER 2. INTERPRETIVE IMPLEMENTATION

2.1

2.2

2.3

2.4

2.5

2.6

AND PROGRAMMING

Principles of Interpretive Implementation

The Projecting Algorithm. Open and Closed

e-Variables

Function Formats

Scans of Different Orders

Reproduction of Variables. Branching and Loops

Decomposition of the Algorithm into Functions

2.7 All-Level Scans of Bracket Structures

2.8 An Example: Translation of Arithmetic Expressions

CHAPTER 3. EQUIVALENCE TRANSFORMATION

3.1 Strict Refal

3.2

3.3

Classes and Subclasses

Algorithmic Equivalence

3.4 Functional Equivalence

3.5 Iterative Usage of Driving

CHAPTER 4. COMPILATION PROCESS

4.1 Formulation of the Problem

4.2 Graph of States

4.3 Clean Graphs

4.4 Compilation Strategy

4.5 Perfect Graphs

4.6 Generalization and Induction

4.7 Mapping on the Computer

iii

Page

v

1

1

7

11

15

15

16

19

22

23

30

31

37

40

40

41

54

58

64

69

69

75

89

105

111

123

134

CHAPTER 5. METASYSTEM TRANSITION

5.1 Metasystem Levels

5.2 Graph of States as a Production System

5.3 Set Selectors

139

139

142

165

5.4 Covering Context-Free Grammars 171

5.5 Differential Metafunction 178

5.6 Integral Metafunction 197

5.7 Metasystem Analysis 213

5.8 Algoritmmic Impossibility of Ultimate Perfection 216

5.9 Neighborhoods 220

5.10 Supercompiler System 233

REFERENCES 239

INDEX 242

iv

INTRODUCTION

This book presents a formal system based on the language

"Refal" (i.e. REcursive Functions Algorithmic Language). Besides

the language itself, and the techniques of programming in it,

the system includes a theory of equivalence transformation of

algorithms defined in Refal, and an approach to foundations of

logic called metasystem analysis.

The origins of Refal are in computer science. It was

designed as a universal metalanguage for formal definition of

algorithmic languages --oriented towards classes of problems,

or invented ad hoc for specific problems. At the same time

Refal can be regarded as a regular algorithmic language

oriented towards symbol manipulation. It is implemented on

computers and has been used in this capacity. However, a

programming system using Refal as a metalanguage proper, and

including a "supercompiler" is still in the project stage.

The aim of this project is to facilitate the creation

and implementation of specialized algorithmic languages at low

expense, and also to allow computers to perform a great deal of

work on optimization of algorithms and even on algorithmiza

tion itself, which is now performed manually. We hope to create

a programming system, in which the ad hoc introduction of a

new special language, or a hierarchy of languages, for each

large-scale programming problem is just as natural and practic

able as is the introduction of an ad hoc hierarchy of proce

dures when we are programming, say, in ALGOL-60. We hope to

create a system, in which the programmer will have to formulate

only the definition of his problem, its mathematical model,

without bothering about the details of algorithmic efficiency

and data structures in the real computer.

To build an extensible hierarchical system of language,

a metalanguage must be specified which would allow the system's

user to define each new language L in terms of the languages n

v

of the lower levels: L 1 , L 2 , etc. Also, a ground-·level n- n-
language L0 must be defined, and must be such that all the

languages of the hierarchy could ultimately be expressed in it.

There are two ways to formally define a new language L in n
terms of a lower-level language Lk: in a translation mode, in

which one specifies the manner in which a text in Ln is trans

formed into a text in Lk; and in an interpretation mode, i.e.

specifying the process of execution of a text in Ln in terms

of the language Lk. Accordingly, we can distinguish between

two kinds of expansible systems. Systems of the first, trans

lation mode, kind have machine (assembler) language as the

ground-level language L0 : such systems may be called macrocode

systems, and are widespread now. The metalanguage in this case

is the language of macrodefinitions. Although very useful,

these systems do not unburden the programmer, but only put him

in a bettern environment. The system we are designing is of

the second kind. Here, new languages are defined in interpre

tation mode, and b 0 is then a very elementary language which

includes only basic operations on symbolic expressions. The

description of a language and of an algorithm in that language

takes the shape of a "description of the meaning" rather than

a final definition of the program to be executed on a computer.

But then one needs an algorithm --which we call supercompiZer

-- which would translate this multilevel interpretative semantic

definition of a problem into an efficient program for a real

computer.

An important feature of our project is that the metalanguage

M in which new languages are defined, the ground-level language

L0 , and the language inwhich the supercompiler is written, are

all the same language, Refal. As shown in [1], this has the

crucial advantage that only one supercompiler Cp from the meta

language M into the language of an object machine Mo is needed

for all languages Ln of all levels. To attain this surprising

economy, we use a method, whose essence is self-application of Cp.

The result: by writing a simple "metasystem-transition formula"

vi

and pushing a button one can obtain a program for M0 which can

be either

(1) an efficient, compiled program Po which is the transla

tion of a program P written in Ln (if Pis given); or

(2) an interpreter for the language Ln , which takes a

program P in Ln and input data D and executes P on M0

in accordance with the interpretive definition of Ln; or

(3) a compiler for the language Ln , which takes a program P

in Ln and translates it into an efficient program Po for

M0 ; or

(4) a compiler compiler (if the definition of Ln is not given),

which takes the definition of a new language in M and

produces a compiler for it.

For the approach we have sketched to be feasible, the

following three requirements must be met by the metalanguage M:

(1) It must be universal -- not only in the sense that any

algorithmic transformation can ~e described in it, but also in

the sense that it must not be aimed at any special system of

concepts tied to a particular object language; this makes it

possible for one and the same metalanguage to be used with equal

success in describing whatever language we may invent, and at

all levels of the conceptual hierarchy. In programming terms, the

metalanguage must have a broad symbol manipulation orientation.

(2) The metalanguage must be convenient to use; in particular,

a text in it must look not like an intricate program, which in

some mysterious way performs algorithms written in the language

to be described, but rather must be a semantic description of

this language, consisting of a set of sentences which define the

meaning of its concepts. Thus, the metalanguage must be essenti

ally a production language, rather than an instruction/

statement language of more familiar form.

(3) The language must be minimal in the sense that the

defining machine which executes algorithms written in this

language must be simple enough for the rules of dealing with

algorithms to be formulated effectively. Otherwise there

Vii

will be little hope of creating a supercompiler which could

perform really deep optiMizing transformations of algorithms.

However, this requirement may come into conflict with the

requirement of convenience. A simple Turing machine or Harkov

algorithms languages are simple enough to be used for purposes

of theory, but certainly impractical for writing complicated

algorithms. A language which deals with itself must be

neither too sophisticated nor too elementary, a situation

reminiscent of maximizing the product of two factors with a

given sum. We can summarize the third requirement of our meta

language in these words: it must rest upon a minimum of

facilities, but still remain convenient enough to be used in

practice.

The language Refal was born in response to these require-

ments.

Independently of our work, one of the ideas of the Refal

project became quite widespread during the last two or three

years, although expressed in somewhat different terms. It is

the idea that one should distinguish between pPogPamming in a

pPogPamming language, and specifying your algorithm in a

specification language; and that a good programming system

should allow you to specify your problem only, without actually

programming it. The concept of a specification language

appeared originally in the context of proving correctness of

programs, where a specification was intended to give some infor

mation in addition to a program; later people started to speak

of a specification instead of a program. Should we use these

terms, we could say that Refal is a specification language. But

we shall stick to our terms referring to Refal as a universal

algorithmic metalanguage, and not only because our p~oject was

initiated long before the current trend in terminology. The term

"specification language" is not very meaningful. The fact that

we are "specifying" something in Refal is not essential; after

all, writing a program is also specifying it. It is essential

how we do it. It is essential that we allow an extensible

system of ad hoc languages, leaving only the metalanguage fixed.

viii

In the algorithmic aspect, the term "specification language"

is again unfortunate, not to say misleading. Any specification

of a problem to which the solution is an algorithm is, in the

last analysis, a definition of an algorithm, even if disguised

by mathematical notation of the precomputer era. The important

difference, as discussed above, is whether you define your

algorithm in interpretation mode, without thinking of efficiency

of the process, or in translation mode, aiming at an efficient

program for a machine. We use the term compilation to designate

transformation of an interpretation-mode algorithm into a

translation-mode (efficient) algorithm. The relation between

these fundamental concepts and their formalization is one of

the main themes of the present book.

The philosophical background which initiated the work on

the Refal project is developed in [2]. In that book the concept

of metasystem transition is introduced and taken as the basis

for an analysis of the evolutionary process. By a metasystem

transition we mean a transition from a system S to a metasystem

S*, containing a set of S-type subsystems unified as a whole

and somehow controlled, produced, modified, etc. Seen in the

functional aspect, this transition is a transition from the

activity A typical for system S to a metaactivity A* exhibited

by S*, which is directed in some way onto the activity A: analyz

ing it, modifying it, etc. In [2], the metasystem transition

is shown to be a sort of "quantum of evolution". Accumulation

of these quanta produces more and more sophisticated structures,

organized as multi-level hierarchies of control. For a system

to be self-developing, consecutive metasystem transitions must

become possible ("the stairway effect" in the terminology of

[2]). It is the author's belief that to make essential

progress in programming systems and artificial intelligence,

one must formalize and harness the concept of metasystem

transition. In the present book we are making first steps in

this direction.

ix

A few comments on the contents of the book, together with

some historical and bibliographical references follows.

In the first chapter the language Refal is introduced.

The second chapter presents the techniques of using Refal

as an algorithmic language expecting the program in Refal to

be executed in the interpretation mode. We do not say much

about implementation of Refal, outlining only the general prin

ciples. A detailed description of the interpretative

implementation of Refal may be found in [1].

Initially Refal was called the metaaZgorithmic Zanguage

[3,4] and had some features which made its efficient imple

mentation difficult. Subsequently it became clear that the

decisive role in this language is played by the notion of

recursive function, and the methods of programming in it had

been worked out [5,6]. The language was simplified and

received its present name.

In the creation of Refal the ideas embodied in LISP [7]

and COMIT [8] were used; A. A. Markov's work on normal algo

rithms [9] was an important source of ideas. We must also

mention papers by E. Dijkstra [10,11] and A. Van Wijngaarden

[12]. Refal shares some ideas with SNOBOL [13], and a striking

resemblance to CONVERT [14] can be seen, though in 1965-66,

when Refal was designed, the author was not acquainted with

either of these languages.

Save for the initial period, there has been no influence

of other approaches on the Refal approach which we could

mention as appreciable. To be sure, one could find parallels

between our work and work done by other authors, but it would

have required a special effort which the author did not

undertake when preparing this book.

The first Refal interpreter efficient enough for practical

purposes was put into operation in 1968, in Moscow, on the

computer BESM-6 [15,16]. An interpreter with automatic access

to external memory was developed in Leningrad [17]. In 1969

a new method of implementation of Refal was worked ou [18,19],

which allowed, in particular, a greater part of the implementation

X

work to be accomplished in a machine-independent form. At that

time this method was called compilation, but in fact it should

be more precisely called semicompilation. There now exist

Refal semicompilers for the most popular Soviet computers

(ES EVM, BESM-6, M-220, Minsk-32). An extensive exposition

of programming techniqu~s in Refal was published in 1971

as a series of preprints of the Institute for Applied Mathe

matics of the Academy of Sciences of the USSR [20]. As a

programming language Refal has been used for writing trans

lators, algebraic maniuulation and theorem proving (see, e.g.

[21-23]}. The efficiency of the use of Refal in semi

interpretive implementation is comparable to that of LISP or

SNOBOL. Debugging in Refal is, in the view of the author,

easier than in any of the languages he knows.

In Chapter 3 we introduce basic equivalence transforma

tions of Refal programs. The most important transformation,

called driving is the "concretization" (evaluation} of a

function call with only a partially defined argument, i.e. an

argument containing free variables or not yet evaluated func

tion calls. The notion of driving appeared first in [20];

more systematically the rules of equivalence transformations

were formulated in [24] and [25].

Chapter 4 presents the theory of compilation. Its main

idea is to consider the graph of generalized states

(configurations} of the Refal-machine, and to reduce the graph

to a certain normal form, using driving. In programming terms

this procedure can be defined as executing at compile time all

the evaluations which can be done, and compiling a new graph

out of those operations which have been left for the run time,

as strongly dependent on input data. The normal form depends

on the set of configurations which are declared basic. This

gives us a means to formalize the intuitive notion of the

interpretation-compilation axis, and to control the process

of compilation. Besides driving we use empirical generaliza

tion with subsequent proof by mathematical induction. The

xi

notion of a perfect graph of states is introduced, which also

serves to direct the compilation process.

The first examples of using driving for optimization

were published in 1971 (see [20]). The main ideas and results

of the theory of compilation were formulated in 1973.

Unfortunately, in the years 1974-1977 the author could not

publish his work in the USSR because of political circumstances.

(In 1974 I was expelled from my job and blacklisted as an

active participant in the Human Rights Movement in the USSR.

The book [1] was published anonymously after my emigration in

1977, and it was only possible to smuggle into it several pages

on the theory of compilation. But it was not allowed to use

the term "the theory of compilation", nor to mention that the

piece was a part. of a larger ~·mrk.)

In Chapter 5 we introduce metasystem transition into our

formal system. This is done through metaderivative and

metaintegraZ functions, which are used in MST-formuZas.

Basically, this is a self-application of the algorithm of

equivalence transformation. By this we model a feature of

human thinking, which is crucial for creativity: the ability

to transfer attention from the use of an instrument (e.g., an

equivalence transformation) to the. analysis of its use and making

a new instrument to improve the existing instrument. In our

system this transfer can be repeated indefinitely, just by

writing an MST-formula. We show that by including the meta

system transition into our formal system we do expand the range

of possible equivalence transformation algorithms; e.g., writing

an MST-formula for an algorithm which cannot prove the commuta

tivity of addition in formal arithmetic, we receive an algorithm

which proves it. Our approach is not based on traditional

axiomatic logic, but on direct modeling of the three main aspects

of human thinking:

(1) concretization (computation), including driving;

(2) generalization (empirical induction) with subsequent

proof by mathematical induction;

(3) metasystem transition.

xii

We call this approach the metasystem analysis (see Sec. 5.7).

Application of the principle of metasystem transition

to practical needs of the supercompiler system leads to the

result which has already been mentioned above: having one

supercompiler for an object machine (computer) , we are able

to produce automatically compilers and other system programs

for all languages defined in Refal in interpretation mode.

This is the only result of Chpater 5 which was published

before (in [1]). It is also mentioned in A. P. Ershov's paper

[26].

A brief account in English of the project of the super

compiler system based on the language Refal was recently

published in the SIGPLAN Notices [27].

ACKNOWLEDGEMENTS

Many people worked with the author of this book on differ

ent aspects of the language Refal and its implementation. I

want to use this occasion to thank all of them. It is especi

ally pleasant to express my heartfelt gratitude to the most

permanent participants of the Refal seminar in Moscow, whose

contribution is impossible to overestimate, Andrei Klimov,

Arkadi Klimov, Nicolai Kondratiev, Sergei Romanenko, Yelena

Travkina, and other participants of the seminar.

I am most grateful to those scientists in America and

elsewhere who spoke out on my behalf when I was jobless and on

the verge of arrest in the Soviet Union because of my

Human Rights activities. The Association of Computing Machinery

passed a resolution on my situation. The Federation of American

Scientists, in the person of Jeremy Stone, Director, many times

appealed to the Soviet authorities on my behalf, and induced

American scientists to take analogous actions. Dr. John Backus

xiii

circulated a petition on behalf of Shcharansky and myself,

which was signed by 65 participants of the Working Conference

on Formal Description of Progra~ing Concepts, St. Andrews,

Canada, in August 1977, and sent it to Moscow together with

his personal letter. Prof. Lipman Bers sent me an invitation

to visit Columbia University, and Mrs. Margaret Freeman of MIT

sent me a formal guest invitation. I believe that all of these

actions greatly contributed to the fact that I was not, in

the end, arrested (although still forced to emigrate).

I thank most sincerely Professors Jack Schwartz and

Robert Dewar for my 20 months stay at the Courant Institute,

which gave me the opportunity to write this book. My special

thanks are to Prof. Sal Stolfo for reading the manuscript and

correcting my English were it was possible. I realize though,

that one cannot radically improve the language by editing,

and ask the reader's forbearance.

xiv

CHAPTER 1. DESCRIPTION OF THE LANGUAGE

1.1 Informal Description

To sum up the requirements set forth in the Introduction,

the language which we intend to design must be: (1) universal,

(2) convenient for semantic description of different

languages, and (3) minimal. Our purpose now is to present the

main features of Refal as derived from these requirements.

Since it is not at all evident that recursive functions have

something to do with the language we design, we shall start

with calling the language we seek the language M (Metalanguage).

The concept of recur-sive function will appear in due course

as a result of reasoning, and this will once more demonstrate

its profundity and importance.

Problem oriented languages are convenient when they

reflect concepts specific for a specific field. To be conven

ient our language must model some very general features of

human thinking --or, to be more precise --its manifestation

in linguistic activity. This activity consists in manipulating

linguistic objects to which certain "meanings" are prescribed.

Linguistic objects are composed of signs, but not in an entirely

arbitrary fashion because they have an inner structure which

reflects the syntax of the language. In fact, linguistic

objects are produced from parsing, and this feature being

common to all languages, must be taken into account in

the language M. Acting on the principle of minimality we shall

assume the simplest scheme modeling the syntax of natural

and artificial languages. The elementary syntactic unit of

the language M will be called the sign. The complete set

of signs is supposed to be finite, though in accordance with

the metasystem nature of the language it is not exactly

specified. The next syntactical level is formed by symbols.

1

While signs are analogous to letters in natural language,

symbols model elementary semantic units -- morphs: word roots,

prefixes, etc. A symbol may be simple or compound; the former

is expressed by a sign, the latter -- by a sequence of signs

bounded by slashes, e.g., /BEGIN/. When an algorithm is

executed, each symbol is treated as a whole and cannot be

subdivided; neither can a new symbol be formed. TRe purpose

of this syntactical level is to provide a potentially infinite

set of indivisible units.

To build symbol structures we introduce the most common

means parentheses. We call an expression any string of

symbols and parentheses, obeying the usual rules of the

parenthesis (bracket) syntax. Strings unbalanced in parentheses

are not expressions and are notallowed. The expression is the

most general object of manipulation in the language M. It can

be paralleled with a word or a group of words in a natural

language.

Having specified the object, we proceed to specify the

actions on them. An inherent feature of all developed languages

is the presence of a hierarchy of concepts. Consider a language

object, wh~ch has some meaning. What does it mean to understand

its meaning? It is to know how in any given circumstances to

concretize the object -- that is to express the meaning through

concepts which take lower places in the hierarchy, and thus

to replace it by the language objects which fix these lower

rank concepts. With a natural language, this process comes to

an end when the relations are established between a language

object and the sensual worl~ in the case of a formal language

we come to the concepts, defined as primitive. We shall take

conceretization as the unit of action in the language M. From

a formal point of view it is, of course, no more than substi

tution of one expression for another. and it is up to the user

to ensure that these actions ·have in fact the quality of concre

tization.

2

A pair of signs is used to delimit an expression to be

concretized: the aoncPetization sign k, which precedes the

expression, and the conaPetization point 1 , which follows it.

They obey the rules of bracket pairing, so they are also called

the concPetization bPaakets. In contrast, parentheses (round

brackets), which giye a structure to the ~bject, are called

the stPuctuPe bPackets. A pair of concretization brackets may

enclose other concretization brackets; as the language M is

algorithmic, we must specify which concretization is to be

performed first. Before an expression gets to be concretized

it must contain no inner signs of concretization; parallel

concretizations will be performed from left to right. In the

following example:

3 1 2

k A (B C k D 1 E k F () G H 1 1

the figures show the order in which the concretization must

proceed.

In accordance with one of the requirements, all informa

tion that we want to convey in our language must be expressed

in sentences, which are essentially the rules of concretization.

They constitute an analogue of sentences in natural language.

Each sentence contains a left side and a Pight side. The left

side begins with the concretizati9n sign k and ends with

the substitution sign ~, which simultaneously stands for the

concretization point paired with the initial k and separates

the left side from the right. The sentences are separated by

the sign # placed in the beginning of each. Between the

sign and the initial k there may be a comment. This is an

example of a sentence, which describes a simole abbreviation:

1 k AC~1 ~ Association for Computing Machinery

Whenever a combination k ACM 1 may enter, it will ulti

mately be replaced through the application of this sentence by

Association for Computing Machinery

3

A sequence of sentences describes an algorithm. It is

performed as follows. At each step we try to find an applic

able sentence, beginning the search from the first; when

such a sentence is found, it is applied, and the next step is

executed. This procedure is reminiscent of Markov's normal

algorithns, the essential difference is that symbol strings

in Markov's language are unstructured, for this language,

like other "theoretical" algorithmic languages, models only

the very fact of man's formal actions, whereas our language

uses structured strings (expressions), and models man's formal

actions in the framework of a hierarchy of concepts.

Yet the structurization of language objects alone is not

sufficient to get a language powerful enough for practical

purposes. \ve need free variables to make our sentences really

expressive. In accordance with the syntax of the language M,

we introduce three types of variable: those which may take

as a value a symbol, a term or an expression. A free variable

can be represented by a pair of signs, of which the first is

s, t or e, and shows its type, and the second serves as an

identifier. For convenience, we will write the identifier

in the index position: s 1 , s 2 , sa , t 1 , ex , etc. These

variables may take as a value any object of the corresponding

* type. Additionally, we introduce a possibility of speci-

fying a class of allowed values of a symbol variable; details

will be seen from the formal description.

As an example of· the use of free variables we define the

concept of the first symbol of an expression. To define a

concept means to make the corresponding concretization possible

and produce the needed result. We may wish, for example, that

the concr9tization of

k FIRST SYMBOL OF PROGRAM 1
should produce the letter P. To ensure it we write a sentence:

k FIRST SYr1BOL OF s 1 e 2 ~ s 1

We shall call them s-, t-, and e-variables for short.

4

It will be used in the following way. First we must find out

whether the sentence is applicable for the above concretization.

For this purpose we try to syntactically recognize the expres

sion under concretization as the left side of the sentence.

The recognition is possible if the free variables in the left

side can be replaced by such values that the left side becomes

identical with the expression under concretization. In our case

this can be achieved in a unique way by assigning the value P

to s 1 and the value ROGRAM to e 2 • So, recognition is possible,

and we apply the sentence, that is substitute its right side

(in which the variables are replaced by their values) for the

expression under concretization.

Now we come to recursive functions. Theoretically, at

each step of concretization we look through the set of sentences

from its beginning, analyzing the applicability of each sentence.

When the number of sentences grows, this becomes cumbersome.

We clearly need a way to break down all the concretization

rules into separate parts pertaining to different concepts.

Such a way is suggested by the above example. If the left side

of a sentence begins with a concrete symbol or a string of

symbols, but not with a variable, it will be applicable only

to such expressions which begin with the same string. As we

can use compound symbols, one symbol is quite enough to classify

sentences, so we shall agree that every sentence will have the

left side beginning with at least one symbol, which will be

called the determiner of the sentence. Now in an expression

to be concretized we can single out the first symbol and

ignore all sentences with determiners different from this

symbol. Sentences break down into groups with the same

determiner, groups with different determiners being commutable

with each other. In the spirit of this agreement it is prefer

able to rewrite the last sentence in this way:

2.1 k /FIRSYM/ s 1 e 2 • s 1
and to use it accordingly.

5

What we have in fact introduced by our agreement is the

concept of a function. Functions are identified by determiners

and defined by groups of sentences with the same determiner.

A usual function designation F(E) turns into k FE I, where

the concretization sign explicitly shows that the function

must be evaluated and its value substituted. As we do not

restrict in cny way the right sides of sentences, functions are

generally recursive. The description of an algorithm takes

the form of a recursive function definition.

We can illustrate recursion by extending the definition

of the function /FIRSYM/. Indeed, this function is underdefined:

if a machine, executing algorithms written in Refal (we call it

the Refal-machine) happens to concretize an expression which

begins with a bracket, it will not find any applicable sentence

(a parenthesis is not a symbol!) and will come to an abnormal

stop. The empty expression will bring about the same result.

A natural way to extend the definition is to add two sentences:

2.2 k /FIRSYM/ (e1)e 2 ~ k/FIRSYM/e1e 2 .l
2.3 k /FIRSYM/ ~

The language Refal is known in three versions: strict,

basic, and extended. We have already exhausted the facilities

present in the strict version; in fact, we have exceeded them,

for it incorporates certain restrictions on the left side of a

sentence as we shall see in Sec. 3.1. Basic Refal will be

formally described in the next section. It includes a feature,

which allows assignment of expression values to names. When

an expression of the form k/BR/(N)E 1 is concretized (where
* N and E are expressions) it disappears, but E gets "buried"

under the name N. It can be "dug out" by writing the expres

sion k /DG/ N 1 , the concretization of which turns it into E.

* We shall generally use capital script

(A B C V E F G H I J K L M N 0 P Q R S T U V W X Y Z)
for metasymbols which denote Refal objects.

6

You cannot dig out an expression twice, which you have buried

only once. The reader may have surmised that this avoids copy

ing expressions when implementing such assignments.

In Extended Refal it is possible to introduce new sentences

into an algorithm during its execution, and to use free variables

of arbitrary syntactical types described through appropriate

recursive functions. We have no place here to describe the

details on this subject.

1.2 Formal Description of Basic Refal

I. Syntax

A considerable part of the syntax will be desc~ibed in the

Backus Normal form.

I.I Signs.

<sign> ::=<specific sign> I <object sign>

<specific sign> ::= #I/J<bracket>J<variable type sign>

<bracket> ::=<structure bracket>l<concretization bracket>

<structure bracket> ::= (j)

<conc~etization bracket> ::= kJ l I ~
<variable type sign> ::= sltle

Object signs are capital Latin letters and other signs

which are different from specific signs. The set of all object

signs is assumed to be finite.

I.2 Symbols and Expressions.

<symbol> ::= <object sign>J<compound symbol>

<compound symbol> ::=/<object string>/

<object string> ::=<object sign>l<object string><object sign>

<expression> ::= <empty>J<expression><term>

<empty> ::=

<term> ::= <symbol>l<variable>l (<expression>) jk<expression>l

<variable> ::=<simple variable>!<specified variable>

<simple variable> ::=<variable type sign><index>

<index> ::=<object sign>

<specified variable> ::= s <specifier><index>

<specifier> ::= (<object string>) !<compound symbol>
7

A pattern expression is an expression, which does not

contain concretization signs (but generally contains variables) .

A ~orkable expression is an expression, which does not contain

variables (but generally contains concretization signs) • An

object expression is an expression, which contains neither

concretization signs nor variables.

I.3 Sentences and Programs.

<sentence> ::= #<comment><reversion indicator><left side>

<right side>

<comment> ::=<object string>l<empty>

<reversion indicator> ::=<empty> I (R)

<left side> ::= k<pattern expression>~

<right side> ::=<expression>

<program> ::= <empty>l<program> <sentence>

No sentence can contain variables with identical indexes

but different type signs. The right side of a sentence can

contain only those variables appearing on its left side. Speci

fiers in right sides are omitted.

By the range of a concretization sign k in an expression

we mean the subexpression bounded by this sign and the conreti

zation point _L paired with it. We call the leading sign k in

a given expression the leftmost sign k with no other signs k in

its range.

2. Syntactical Recognition

2.1. We say that an object expression E0 can be syntactically

recognized as a pattern expression Ep , if the variables in Ep

can be replaced -- observing the rules listed below -- by such

expressions, called their values, that Ep becomes identical to E0 •

The rules are as follows.

2.1.1. A variable of ~he form sX, tX or eX, where X is an

index, can take as a value any symbol, term and expression,

respectively.

8

2.1.2. A variable of the form s(P)X, where Pis an object

string, can take as a value any symbol, which enters P. Variables

s/SIGN/X and s/COMP/X take as values object signs and compound

symbols, respectively. A variable of the form sVX, where V is

a compound symbol different from those two, is equivalent to a

variable s(P)X, where Pis the result of concretization of kVl.

2.1.3. All entries of the same variable, i.e. those with the

same index, must be replaced by the same value.

2.2. If there are several alternative ways of assigning values

to the variables, the ambiguity is resolved in one of the follow

ing two ways, which will be called recognition from left to right

andfrom right to left. If recognition from left to right (from

right to left) takes place, then of all alternatives the me

is chosen in which the leftmost (rightmost) expression variable

in E takes the shortest value. If this does not resolve ambi-
p

guity, the analogous selection is made with respect to the second

from the left (right) expression ~riable etc.

2.3. To recognize a term kE 0l as a left side kEP~ means to

recognize E0 as EP.

3. Refal Machine.

The Refal machine is an abstract device which executes algo

rithms written in Refal. It consists of two potentially infinite

stores, which are called the memory-field and the vie~-field,

and a processor. At every moment in time the memory-field con

tains a finite sequence of sentences, and the view-field contains

a workable expression.

The Refal machine works by steps. Having fulfilled a step,

the machine proceeds to execute the next one, provided that the

former has not led to a normal or abnormal stop. Execution of

the step begins with the search for the leading sign k in the

view-field. If there is no sign k, the Refal machine comes to

a normal stop. On finding the leading sign k the Refal machine

examines the term which begins with it; it is called the cctive

term, and we say that the starging sign k became active.

9

3 .1. If the active term is k/BR/(N)Ejl,where N and E are some

expressions, the machine writes down a new sentence

k/DCV N ,.. E

into the memory field, putt.ing it before the first sentence.

The active term is removed from the view field, and the step

is completed.

3.2. If the active term is k/DG/Nl, the Refal machine finds

in the memory field the first sentence of the form

k/DG/N ,.. E

with the same N, removes it from the memory field and substitutes

E for the active term, thus finishing the step. If there is

no such sentence, the active term is merely removed.

3.3. In other cases the Refal machine compares the ~ctive

term with the consecutive sentences in thememory-field,beginning

with the first one, searching for an applicable sentence, by

which we mean such a sentence, that the act~ve term can be

recognized as its left side. Recognition is performed from 1 eft

to right if the reversion indicator is empty, and from right to

1 eft if it is (R) . Having found the first applicable sentence,

the Re fal rna:: hine copies its right side, replacing the variables

by the values they have taken in the process of recognition.

The workable expression thus formed is substituted for the active

term, and the step is finished. If there is no applicable

sentence, an abno~mal stop occurs.

4. External Functions.

In real implementations of Refal, as distinct from the

abstract Refal machine described above, one more action is taken

at each step before using the sentences: the examination of

whether the active term is or is not an exte~nal function call.

By exte~nal we mean those functions which are not described

in Refal. Some symbols must be specified in every implementation

as external function determiners. If the c:.ct::_-_-e term has the

form kFEl, where F is such a determiner, control goes to a

program (or whatever) that performs t~e concretization. It may

result in the replacement of t':1e act:~ve term by some

10

work able expression, and may produce. any effect in the environ

ment. After it is over, the current step is finished and control

goes back to tre Refal machine.

The functions whim provide input-output facili t.ie s clearly

must be external. In all implementations a function IPRI is

availa'.Jle, v.hic'.1 is defined so that when a termkiPRIEl becomes

active, the expression E is printed and the term is trans-

forrre d into E. Another function, IP I, prints the arg~ nt

and deletes the activ= term.

ve do not introduce into the formal description of Ie fal

the coocept of number, but in implementations it is possili le to

code positive integer nunb ers in a certain range (e.g. for

ES EVM up to 231-l) as compound symbols of a special kind.

Tl'E arithmetic or:erations on them are perforrred wit~ the aid of

appropriate external functions.

A compound symbol which enters a symbol variable as a

specifier may also represent an external function.

1. 3 Representations and Hetacodes

In written and printed representations, variable indexes

are lowered. T'le sign # may be omitted in v.hich case each

sentence must begin in a new 1 ine. If the deterrnirer in a

sentence rer:eats t'1at of the preceding sentence, it may be

omitted together with the iniitial sign k. 'hus the abo\e

cefini tion of the function IFIRSY.M/ could be written as fallows:

k 1 FIRS YMI s1 e 2 ~ s 1

(e l) e 2 ~ kiFIRSYMie 1e 2j_

It is also possible to use the shoPthand notation, in

which Greek letters are introduced as representing combinations

of a sign k and a function determiner. Additionally we agree

that if a concretization point paired with a k-sign impl. icit

in a Greek 1 e tt er closes a subexpre ss ion it may 'J e omitted

11

(because concretization points closing subexpressions can be

unambiguously restored). Therefore, the definition of /FIRSYM/

may also take the form:

a = k/FIRSYM/

as 1 e 2 ~ s 1
a(e1)e 2 ~ ae1 e 2

a ~

At last we introduce one more facility into the shorthand

notation: uppe~ indexes can be used without any further defini

tions. If a is defined as above, then aa means k/FIRSYMA/ and

a 25 is equivalent to k/FIRSYM25/ • An upper index used with an
1 object sign turns it into a compound symbol. So, F is equiva-

+-lent to /Fl/, and R to /R+-/.

To write in Refal algorithms dealing with algorithm3

written in Refal itself we have to represent sentences by object

expressions, therefore, we need a special code for this purpose.

It will be called metacode A. We further need a code to input

Refal programs into a computer, which will be called metacode B.

It is convenient to represent object signs in Refal by bytes

in a computer, and it is convenient to treat each byte as an

object sign. Since in I/O operations we are dealing, after all,

with sequences of bytes, Refal sentences, and all possible Refal

objects, for that matter, must be represented in metacode B by

object st~ings (strings of object signs). In metacode A, Refal

objects will be represented by object exp~essions -- for there

is no need to destroy their tree structure.

So, metacode A is a mapping of the set of all Refal objects

(that is programs and expressions) on the set of all object

expressions. Metacode transformation will be designated by

adding an asterisk as a superscript to the designation of a

~efal object. If Z is a Refal object, z* is its metacode-A

transformation, z** its double transfor~ation, etc.

Naturally, the metacode transformation and the reverse must be

unique, but there is no need to require that each object expres-

12

sion could be interpreted as the metacode of some Refal object.

It would be convenient if the metacode of an object expression

were always identical to the expression itself, but this is,

obviously, impossible because of the required uniqueness of the

inverse transformation. (Indeed, let t be an expression, which

* is not an object expression. Then E is an object expression.

If its metacode transformation E** must be identical toE*,

then the inverse metacode transformation, when applied to E* ,

must give both E and E*, which do not coincide by the defini

tion of E.) Nevertheless, it is desirable to define metacode A

in such a way that the subset of those object expressions E0 for

which E~ ~ E0 is minimized.

We define a metacode A by the following rules.

o The metacode of a sequence of objects is the sequence of the

metacodes of these objects. The metacode of (E), where E is an

expression, in (E*>. This rule applies also to specifiers.

o The asterisk * is a special S~'rnbol. Its metacode is *V.

All the other symbols are transformed by the metacode into them

selves.

o A variable type sign V is transformed into *V. For example,

the metacode of s is *SX. Rest~iction: The asterisk cannot be
X

used as a variable index.
* o An expression kEl is transformed into *K(E) •

o A sentence with the left side L and the right side R is

transformed into *(<L*> = R*>, if the reversion indicator is

<empty>, and *(R(L*) = R*), if it is (R). The comments are

ignored, which may be regarded as a restriction on the unique

ness of the inverse transformation.

As an example consider the following program:

k/RPM/e1 +e2 ~ k/RPM1/e11- k/RPM/e 21

k/RPM/el ~ k/RPM1/e1J
k/RPM1/e1 (e2)e3 ~ e 1 (k/RPM/e21> k/RPM1/e 31

k/RPM1/e1 ~ e 1
which describes a function, replacing the symbol + by the symbol -

on all levels of parenthesis structure. In the metacode A it will

become the following expression:

13

*((/RPM/ *El + *E2) = *K(/RPMl/*El) - *K(/RPM/*E2))

* ((/RPM/ *El) = *K (/RPI-U/ *El))

* ((/R!?Ml/*El (*E2)*E3) = *El (*K(/RP~/ *E2)) *K(/RPi'1l/*E3))

*((/RPMl/*El) = *El)

We shall not describe metacode B here (it may vary with

implementation), we will only give an illustration. This is how

the above program will appear on the programming form:

RPM El '+' £2 = K/RPMl/El. '-' K/RPM/E2.

El = K/RPMl/El.

RPMl El(E2)E3 = El (K/RPM/E2.) K/RPM1/E3.

El = El

14

CHAPTER 2. INTERPRETIVE H1PLEMENTATION AND PROGRAMMING

2.1 Principles of Interpretive Implementation

In Chapter 4 we shall outline the p=oject of a super

compiler system which uses Refulas the metalanguage to define

programming languages, and produces compilers for these languages.

But to start using Refal and to initialize a bootstrapping

process, one needs an interpreter for Refal. The Refal

machine as defined above, is such an interpreter. However,

if it is implemented on a compu~:er , Z i tel' a Z Z y, the efficiency

will be so poor that it will be impossible to use Refal as a

programming language for serious problems. To make this possible,

we set forth the following five requirements of the implementa

tion of the Refal machine:

Rl. When a parenthesis or a concretization bracket has

been located in the view-field it must be possible to locate

the paired bracket immediately, without scanning the enclosed

expression.

R2. If a variable enters the right side of a sentence in

the same number as, or in a smaller nunilier than it enters

the left side, then it must be possible to fulfill substitu

tion of the right side without actual copying or scanning of

the values of this variable. In other words, subexpressions in

the view-field must be transposable without re\vri ting.

R3. It must be possible to locate the leading sign k

without actually scanning the view-field, which is implied in

the formal description of the language.

R4. The time needed to bury or to dig out an expression

in the view-field must be independent of its length.

RS. Having found a determiner, it must be possible to

locate the corresponding group of sentences Hithout scanning

the memory-field.

In existing implementations these requirements are met

by organizing the view-field as a symbol list structure and

maintaining a push-down store for the addresses of the conreti-

15

zation signs present in the view-field. With such an implementa

tion, Refal becomes a practical programming language, which can

be used with the same order of magnitude efficiency as LISP

or SNOBOL.

2.2 The Projecting Algorithm. Open and Closed e-Variables.

Requirement 1 concerning brackets is very important

for syntactical recognition. In the formal description this

concept was introduced from the point of view of its final

result only. But to understand the precise algorithmic mean

ing of what is written in Refal, it is necessary to take into

account the actual process of syntactical recognition, the

algorithm that is used to recognize an object expression E0
as a pattern expression E • This algorithm can be more conven

p
iently described from the opposite side -- as an algorithm of

mapping or projecting Ep on E0 • We proceed to do so.

Entries of symbols, brackets and variables will be

called elements of expressions. Gaps between elements will be

called knots (see p. 17) • The following general rules must

be observed at every stage of mapping.

Gl. If a knot K1 is positioned in Ep to the left of a

knot K2 , then its projection P1 in E0 cannot be positioned to

the right of the projection P2 of the knot K2 •

G2. Projections of parentheses and symbols must be

identical to themselves.

G3. Projections of variables must meet requirements on

their values, in particular, different entries of the same vari

able must have identical projections.

It is assumed that at the moment when syntactical recogni

tion begins, the bounding knots of E are projected on the
p

bounding knots of E0 • The mapping algorithm is described by six

rules (Pl-P6) listed below. They are meant for the left-to-right

case, the algorithm for the reversed direction being analogous.

At every stage of projecting, the rules Pl-P4 determine the

element to be projected next; thus each element gets a projecting

number.

16

The projection of the pattern expression

on the object expression

E0 =A((2 3)) B

17

Pl. After a parenthesis is projected, its paired

parenthesis bracket is projected immediately.

P2. If as a result of previous steps both ends (boundary

knots) of an e-variable turn out to be projected, this variable

is projected. Such entries are called closed e-variables. If

there are two of them, they are projected from left to right.

P3. An entry of a variable which already has a value is

called a repeated entry. Parentheses, symbols, s-variables,

t-variables and re~eated entries of all variables in E are
p

called rigid elements. If Pl and P2 are not applicable and

there are some rigid elements with at least one end projected,

the leftmost of them is chosen. If it is possible to project it

without contradicting rules Gl-G3, then it is projected, and

the process goes on. Otherwise a deadlock situation is stated.

P4. If Pl, P2 and P3 are not applicable and there are

some e-variables with the left end projected, the leftmost

is chosen. It is called an open e-variable. Initially it gets

an empty projection, i.e. its right end is projected on the same

knot as the left. Other values may be assigned to open variables

through lengthening (see P6).

PS. If all the elements of Ep are projected, the syntact

ical recognition is successfully fulfilled.

P6. In a deadlock situation the process comes back to the

last (i.e. with the maximum projecting number) open variable,

and its value is lengthened, which means that the projection of

the right end of the variable is moved in E0 one term to the right.

Thereafter the process is resumed. If the variable cannot be

lengthened because of the rules Gl-G3, the preceding open vari

able is lengthened. If there is no open variable which could

be lengthened, the recognition of E0 as EP is impossible.

Examples of Projecting.

On page 17, the variable e 1 is closed. Consider another

example (the figures over elements are their projectin~ numbers):

1 6 7 8 2 9 10 11 4 5 3

+ +

18

Here e 1 and e 3 are open variables, e 5 , e 2 and e 4 are closed.

It is easy to understand that if several main (not repeated)

entries of e-variables are present on the top bracket-structure

level of a given expression, the rightmost of them will be

closed and the others open. This rule is also applicable to

every subexpression enclosed in parentheses.

In this example:

9 10 11 2 3 5 6 4 8 1

+ * *
it may seem at first glance that the first entry of e 1 is open.

In fact is is repeated.

In the rest of this chapter we shall describe the primary

methods of interpretive programming in Refal, i.e. prcgramming

for an interpreter obeying principles Rl-RS.

2.3 Function Formats.

Suppose we want to define in Refal a function, which in a

given expression on the top level of bracket structure, removes

all repeated blanks, that is replaces each group of adjacent

blanks by a single blank. How is the problem approached?

Let us denote the required function by ¢(k-sign included!);

a blank will be represented by the sign U. As there must be

no pair of adjacent blanks in the result, we can define the

concretization as a recursive removal of one blank of every such

pair. This leads to the following two sentences:

¢ e 1 U U e 2 ~ ¢ e 1 U e 2

¢ el ~ el

The variable e 1 in the first sentence is open. Initially

it takes an empty value and then is lengthened until the first

combination U U (if any) is found. The variable e 2 is closed,

therefore the remaining part of the argument is not scanned,

and by applying the sentence one blank gets eliminated. During

the next step the projection of e 1 must be scanned again in

19

search of a pair of blanks, and this is clearly useless,

because it cannot contain any. So our algorithm is not effi

cient. We can amend it by taking e 1 out of the conretization

range in the right side. Now it takes the form:

~ e 1 U U e 2 ~ e 1 ~ U e 2

~ el ~ el

According to R2 the interchange of ~ and e 1 takes effort

which is independent of the length of e 1 • According to R3 the

conretization sign in ~ is located immediately. The part of

the argument which follows U U is not, as mentioned above,

scanned, and when we fail to find this combination, the second

sentence is applied without further examination of the argument.

Thus no unnecessary actions are implied here.

In the last example the concretization sign was used as a

pointer in scanning an expression. This was possible because

the scanned part of the expression did not participate in

concretization, and therefore it could be taken out. When it

is not, we retain the expression in the concretization range

and use parentheses as delimieters or pointers. As an example,

consider a correction function y, which in a given string of

symbols deletes a symbol if it is followed by the negation

sign I, and if there are several negation signs, deletes the

corresponding number of preceding symbols. We can describe y

in a very simple fashion by the following two sentences:

Y el ~ el

But this algorithm is not efficient. To construct an efficient

algorithm we introduce an auxiliarv function y 1 with the format
1

y (E1)E 21, where E1 is the examined part and E2 is yet unexamined:

20

A pair of structure brackets (parentheses) introduced to

isolate a part of the argument, thus avoinding unnecessary scans

(open variables), will be called a pouch. The argument of a

function may have any structure with respect to parentheses;

this structure will be called its format. The notion of the

number of arguments, so important for numerical functions, becomes

pointless for Refal functions, because any number of expressions,

say three expressions E1 , E2 , and E3 , can be brought together

into a structure, from which they are easily extractable, for

instance (E 1) (E 2) E3 , or ((E1) E2) E3 , or (E1) (E 2) (E 3). Moreover,

whatever way we choose to write down a sequence of arguments

it will be natural and convenient for the Refal programmer to

regard it as one composite argument. Accordingly, we will always

consider formally that a function in Refal has just one argument,

but when its format is explicitly specified, the subexpressions

of the argument may also be called arguments -- provided the

meaning is clear.

Let us give an example of a function with a sophisticated

argument. Suppose we are to compare two expressions and compile

the list of those terms, which have the same serial number in

both expressions and are identical. Both original expressions

must be reatined and separated by parentheses in the final result,

and the list compiled must be added at the end, also separated

by parentheses (cf. Sec. 25.). The format of the function which

does this work (we assign determiner a) will be

where E1 and E2 -- are the scanned and yet unscanned parts of the

first expression, E3 and E4 are the same for the second expres

sion, and E5 is the list of terms compiled to date. The defini

tion of the function is

a ((el) tae2) ((e3) tae4) e5

a ((e 1) t a e 2) ((e 3) tb e 4) e 5

a((e1)e 2) ((e 3)e 4)e 5

21

a((e1 ta)e 2) ((e 3ta)e4)e 5ta

a ((e 1 t a) e 2) ((e 3 tb) e 4) e 5

(ele2) (e3e4) (e5)

2.4 Scans of Different Orders

The number of open e-variables in the left side of a

sentence may be called the order of the scan implied in the

sentence. A scan of the n-th order requires, generally, a

number of elementary operations proportional to Nn, where N

is the number of terms in the expression under concretization.

This is a simple example of the second order scan. Suppose

we need to find two identical terms in an expression. This goal

can be achieved by using a sentence with the left side:

a e 1 tx e 2 tx e 3 ~

We have here two open variables: e 1 and e 2 , therefore the power of

the implied scan is 2. Let us examine the performance of the

Refal machine when it applies this sentence. First, the variable

e 1 will be assigned the empty value, and tx will become the

first term of the object expression. Then e 2 will take on an

empty value. If the second term of the object expression is not

equal to the first, the variable e 2 will be lengthened in a

search for a term, which would be identical to the first.

On coming to the end of the object expression, the Refal machine

will lengthen the variable e 1 , i.e. will choose as tx the

second term of the object expression etc. Thus, the Refal

machine will perform those and only those actions which are

necessary by the essence of the algorithm, therefore there is

no loss of efficiency concealed in our program.

Consider, however, a sentence with the left side

a e 1 A ex Z e 2 ~

It purports to discover the first from the left expression

that begins with A and ends with Z. Again this is a scan of

the second power: If the expression sought for actually is

present in the argument, no unnecessary actions will be performed

during the search and the scan will actually be of the first

power). But suppose the argument does not contain symbol Z at all.

This fact requires only N steps for its discovery (N is the number

of the terms). Meanwhile, the Refal ~achine will unnecessarily

22

lengthen the variable e 1 and perform, in the general case,

const.·N2 steps before coming to the conclusion that recogni

tion is impossible: a loss of efficiency. Surely, a sophisti

cated interpreter (semicompiler) might spot this in the pre

processing (compilation) and introduce corrections, but this

must be considered as optimization, which should not be expected

from each implementation of Refal. To guarantee efficiency we

must redefine our function so as to eliminate unnecessary scans.

First, we spot a symbol A by the sentence

where 8 is an auxiliary function, and then we search for Z by

using the following left side in the definition of 8:

(Recall that variables in Refal are local to sentences, so that

the same indexes in different sentences, though convenient as a

menomonie, should not cause confusion.)

So, we received two sentences with the first power scan

instead of one sentences with the second order scan. Generally,

it is safe to use first-order scans, because the implications

are easily seen, but some caution is needed with higher order

scans in order to avoid inefficiency. Redefinintion to elimi

nate unnecessary scans is always possible and fairly obvious.

In particular, it is possible to program in such a way that

there will be no open variables at all. In this case, all the

scans present in the algorithm will be expressed by functional

recursion.

2.5 Reproduction of Variables. Branching and Loops.

If a free variable enters the right side of a sentence

more times than it enters the left side, we will say that this

variable is reproduced. In this case the Refal interpreter

has to make one or more copies of the value of this variable

when applying the sentence. This must be taken into account in

23

programming, because unnecessary reproduction of variables may

lead to dramatic losses in efficiency. When there is no repro

duction of variables the interpreter will just rearrange the

contents of the view-field, inserting and removing only

those elements which are explicitly indicated in the sentence

as constants (i.e. symbols and brackets). If there is repro

duction of variables, the interpreter will have to make copies

of some parts of the view-field which may be very extensive.

Thus, of the following t\-10 similar sentences:

the second may require one hundred times more time to perform

than the first. Therefore, if a variable may have a long

value, it should not be reproduced unless it is needed by the

essence of the algorithm.

This consideration has a direct bearing on branching and

exchange of arguments and values between functions in Refal.

In other languages branches are usually defined through condi

tional expressions which make use of predicates (Boolean

functions). In Refal it would not be difficult to define the

semantics of conditional expression

in the usual form:

so that it could be used

c.l kiiFI(T)ITHENI(e1)1ELSEie 2 ~ el

C.2 kiiFI(F)ITHENI(e1)1ELSEie 2 ~ e2

C.3 kiiF I (e) e .. kiiF I (ke 1) ex J p X p

The first two sentences here will be used after the concretiza-

tion of the predicate into a truth-value has already been

performed. The third sentence will bring about concretization

of the predicate, should we choose to write it without embrac

ing concretization brackets. It can be translated into English

in this way: to concretize a conditional ex~ression, first

concretize the predicate.

Logical connectives would not be difficult to define either.

But programming branches in this way for a Refal interpreter would

24

be inefficient. We will show this in the following example.

Let a relation (a two place predicate), which is written

in the form:

k/FOLLOWS/(e1)/AFTER/e 2 1
be defined. This relation may be used, e.g., in algebraic mani

pulation, the variables e 1 and e 2 being very bulky. Suppose we

want a procedure of ordering a pair of expressions according

to this relation. We define it this way:

k/ORDER/(e 1) (e 2) => k/IF (/FOLLOVlS/(e 1) /AFTER/e 2)

/THEN/((e 2)(e1))/ELSE/(e1)Ce 2) 1
This definition. looks familiar to one's eye, but it leads to

senseless reproduction of variables during interpretation,

and hence to essential loss in efficiency. Each of the

variables e 1 and e 2 enters three times the right side of the

sentence, \vhile only once on the left. Therefore, the Rclal

machine will copy it twice -- only to destroy both copies

shortly afterwards. The first copy is destroyed when the predi

cate is concretized (because the argument gets lost and replaced

by a truth-·value); the second copy is destroyed in accordance

with one of the sentences C.l or C.2.

How does one avoid this difficulty?

The Refal machine is very simple and straightforward.

To program for it efficiently one has to keep track of the

"physical" rearrangements it makes in the view-field \v!'len apply

ing a sentence. It must be borne in mind that if a function

destroys a free variable the value of which still is to be used

later we will be obliged to resort to variable reproduction

before using this function. In short, to avoid unnecessary

reproduction of arguments, we must avoid unnecessary destruction

of arguments.

Let us apply this principle to predicates. Instead of the

usual predicates, which substitute a truth-value for the argu

ment(s), we shall use recursive functions which retain the

argument, and only add to it at the beginning the truth-value

25

resulting from evaluation. Such functions will be referred to

as conservative predicates. For instance, the conservative

predicate a which tells whether an expression contains two

identical terms on the top level of parenthesis structure

may be defined as

In our example, we should redefine the predicate /FOLLOWS/

in such a way that the result of concretization is either T(e 1)e2 ,

or F(e1 >e 2 • This eliminates one unnecessary copying. To elim

inate the other, we abandon function /IF/ and make up

the following straightforward definition:

k/ORDER/ (e 1) (e 2)

k/ORDER1/T(e1)e 2

k/ORDER1/F(e1)e 2

k/ORDERl/ k/FOLLOWS/(e1)/AFTER/e21 1
(e2) (el)

(el) (e2)

introducing one auxiliary functiob.

The branching of the algorithmic process is achieved here

through the syntactic analysis of the argument: whether it starts

with T or F. But the presence of more than one sentence in the

definition of a function always generates a branch controlled

by syntactic analysis, and conversely, the only way to generate

a branch in Refal is to have more than one sentence in the

definition of some function. Accordingly, the predicate3 in

Refal lose their role as the only vehicles of branching. The

differentiation of functional units into those which only analyze

and branch but do not transform, and those which transform with

out branching, becomes optional and as a general rule unnecessary.

A Refal function in a carefully written program performs t'.'7C jobs:

on the input end, it makes branchings and corresponding t~ansfor

mations; on the output end, it leaves clear syntactic indicators

to be used for branching by the function which takes up the

result of concretization. For example, as the basis for a proce

dure of ordering a sequence of terms we should take not the

predicate of order, but the procedure of ordering two terms,

:.!6

which (1) puts the terms in right order, and (2) adds Tor F

at the beginning to indicate whether they were initially in

right or wrong order.

The number of constant elements in the right sides of

sequences also must be considered in effective interpretive

programming. If the right side contains many elements which

are not present in the left side in the same order, the inter

preter will have to insert these elements in the view-field:

one by one, if there is no optimization. And if these symbols

or brackets become unne~ced at the next stage, and get removed

from the view-field, this program cannot be recognized as

fully efficient. We can amend the program by using functions

/BR/ and I I:G/ of ''b uryi..-1g" and "digging" information.

Consider this example. let conservative predicate /ORD/

defined on the set of ordered pairs of 1 etters assume value T

W1 en the letters are identical or the second appears later

in the alt::habet than the first, and value F otl1erwise. 'Ihe

simplest version of the definition is:

k/ORD/~ s 2 ~ S \ s 2 ABCDEFGHIJKL1\1lOPQRS 'l.UVWXY Z

B s 1 s 2 e xs 2e y s 1 e z ~ F 5_t s 2

B 5_t s 2 ~ T s1 s 2

This solution has the shortcoming we have just mentioned:

each time when the first sentence is used the alphabetical list

of letters will be brought into the view-field -- and thrown out

at the next step. The other solution is to perform the

concretization

k/3 R/(ALPH) =ABC0EFGHIJKLMNOPQRS TGVWXY 2, l_

at any stage before using hee predicate /ORD/ , W1 ic h we

redefine now in the following way:

k/ORD/s 1 s 2 ~s s 1 s 2k/DG/ALPd l_ _l

i3 s 1 s 2exs 2eyslez ~ F s 1 s 2k/BR/(ALPH)=exs 2eyslez j__

S ~ s 2ea ~ T \ s 2 k/3R/(ALPH)=ea l

27

Now the list as a whole is dug and buried, being represented

in the form required for the view-field. These procedures

take a small time, which is, according to implementation

principle RS independent of the length of the list. Notice,

that after using the list, one should not forget that it s~ould

be buried again immediately (this is done by function S in

this example) ; otherwise the list will be lost.

In Refal, all iterative processes take the form of func

tional recursion. However, the difference between simple loops

and the use of recursive functions, which is so noticeable in

usual programming languages (say, ALGOL 60), has its analogue

in Refal, being reflected in the structure of the right sides

of sentences. If the right side is a call of the function itself,

it is a simple loop: the configuration (see Chapter 4) of the view

field does not change, only one argument is replaced by another.

Allowing the argument to include calls of other functions, which

do not call back the original function, we get nested loops,

for example

kFl ~ kFl . . . kF 2 . . . 11
kF 2 . . . ~ kF 2 1

But if a sentence has the form

kFl ~ kF 2 1 11 . . . kF •••

each application generates a new pair of concretization brackets

-- function F 2 calls, which accumulate in the view-field and

will be taken up for concretization only after another,

nonrecursive, sentence for the function F1 has been used.

This is a recursion in the sense of ALGOL 60.

Consider the factorial function as an example. According

to its recursive definition, we can immediately write this

program which uses recursion in ALGOL:

integer procedure FACT(n);

value n; integer n;

FACT := if n = 0 then 1 else FACT(n-1) x n

28

In Refal, we must first introduce the function a perform

ing arithmetic operations. Let it have the format

where 0 is the operation sign, N1 and N2 are the operands. Then

the corresponding description of the function /FACT/ will be:

k/FACT/0 => 1

k/FACT/en => a x k/FACT/ a-en, 1 1 , en

To eliminate the recursive function call in the ALGOL

program, we can rewrite it this way:

integer procedure FACT(n);

value n; integer n;

begin integer f, m;

f : = 1;

for m := 1 step 1 until n do

f : = f x m;

FACT := f

end

The corresponding program in Refal is:

k/FACT/ en k/Fl/(1) (a+en,l) 1 1
k/Fl/ (e) (e)ef n n ef

k/Fl/(a+em,l) (en)ax ef,em 1 1
Here the first sentence corresponds to the declaration of

the local variables and the initial assignments to them, the

second and third sentences correspond to the for statement.

29

2.6 Decomposition of the Algorithm into Functions

One Refal function is usually attached to the algorithmic

problem to be solved. But in a complicated case, to define

this function we have to introduce auxiliary functions, which

may demand the introduction of new auxiliary functions, etc.

For instance, a translator from ALGOL 60 into assembler language

takes several dozen functions described, all in all, by a

few hundred sentences.

The most usual reasons to introduce an auxiliary function are:

(1) To break down an object into some parts according to

a pattern. This pattern will be reflected in the left side of

the defining sentence.

(2) To define branching by putting one sentence into corres

pondence with each particular case.

(3) To change the format of the argument, which is dictated

as a rule by the necessity of bringing a new object into the

process.

(4) Preliminary processing of the argument in order to

describe the main process in a more convenient or efficient way.

Suppose that some object is to be processed by several

functions in succe~sion. This can be achieved in two ways.

First, we can define all the functions independently, and

then define a function which applies them consecutively, for

example:

k/F/ex ~ k/F3/k/F2/k/Fl/ex 1 1 1
Second, we can define the first function in such a way that it

will call the second when it has finished processing; the

second function can call the third in the same manner, etc.

The first method has the advantage of independently defined

functions, which may be used on different occasions. On the

other hand, the second way is more convenient when the functions

are introduced ad hoc, and the choice as to what function to

apply next may depend on the form of the result.

Some functions may not exactly specify what other functions

will be called; such functions are called metafunctions, they

30

control the use of other functions, dependent on input informa

tion. For example, the function /APPLC/ ("apply consecutive! y")

defined as follows:

k/APPLC/() e
X

e
X

takes its first argument (the expression in the pouch) as a

list of function determiners and applies these functions consecu

tively from left to right to the other argummt.

In some implementations of Refal it is required t~a t each

concretization sign in the program is always followed by a

determiner, thus rendering the s ocond sentence inadmissible.

However, these implementations provide a special external

function /MU/ which works as a universal metafunction.

Specifically, the concretization of k/MU/s 1e \
X-

the same results as ks1 ex J._,.;ri th any values of s 1
'Jherefore, ~ only need to rewrite the ri<j.l t side

sertence as follows:

e
X

l j_

2.1 All-Level Scans of Bracket Structures

produces

and e •
X

of our

Remember function ¢ from Section 2.3, which eliminates

repeated blanks. It leaves unprocessed those parts of the

argument which are enclosed in parentheses. Now we want to

modify it in such a way that the argument is processed on all

levels throughout its parenthesis structure. The simplest

solution to this problem is to insert an additional sentence

between the first and the second sentences, which would

describe the procedure of entering parentheses:

¢ e1 U L: e 2 => ¢ E]_ L ¢ Ll e 2

¢ el (e2) e 3 => E1 (~ e 2) ¢ e3

Here we also had to modify the first sentence by enclosing

the variable e 1 on the right in concretization brackets

31

because it still has to be scanned in order to find out

whether it has parenthesized subexpressions. Variable e 1
in the right side of the second sentence can be taken out

of concretization brackets, for it no longer contains either

repeated blanks or parentheses.

This definition is not free of

We pr~sent two more solutions:

<P u u 1 1 <P U e 2 el e2 ~
<P el

<P el
,. ¢1 el

1
<P el(e2)e3

,. 1
el (¢e2)¢ e3

1
<P el

,.
el

and

<P U ~J e 1
,.

<P u el

<P sael
,. s <P el a

~(el)e2
,. (¢el) ¢e2

<P
,.

algorithmic inefficiencies.

leaving it to the reader to analyze the differences between

them in the algorithmic aspect.

The language Refal takes parentheses very seriously.

The Refal object is a tree written in line with the help of

parentheses and concretization brackets, and its structure

cannot be easily ignored. Whatever way we choose to describe

an algorithm in Refal, it remains to be expressed through

operations on tree structures.

Consider this 2xarnple. We want a procedure which scans

the object from left to right and of all the entries of each

symbol, keeps only the first, deleting the others. This

procedure, in fact, ignores the tree structure of the object,

it regards parentheses as symbols (but of a special kind, since

they should not be deleted). In Refal, we will have to define

this procedure as moving around a tree, but unlike the preced

ing example, we will have to transfer information from one

branch of the tree to another.
32

Let us assign determiner a to our procedure. Obviously,

we must maintain a list of symbols already discovered. Let us

put it into a pouch, which we will position at the end of the

argument. Therefore, the auxiliary function will be intro

duced as follows:

If there were no parentheses in the arguments, function a 1 would

be defined by these three sentences:

1 a s e (e1 s e 2)
p q p

a 1 s e (e1)
p q

1
a t 1

Because of the parentheses, the list of symbols accumulated

in one subexpression must be used when scanning another. This

means that we must take in this list when entering parentheses

(which is easy), and bring it out on exit (which is a bit more

difficult). The most universal way to exchange information

between any points in tree structures is to use procedures

/BR/ and /DG/. We will keep the list of symbols buried under

the name LS. On scanning each subexpression delimited by

parentheses, function a 1 will bury the up-to-date list, and it

will dig it out on the next higher level of the parentheses

structure. At the end of the work the list should be dug out

and destroyed so as not to waste space.

a e 1 => al e 1 () 1 k/DESTROY/ k/DG/LS 1 1
1 1

eq(e1spe 2) a s e (e1 s e 2) => a
p q p

1 1
a s e (e1) => s a e (e1s)

p q p q p
1 a (e1)e 2 t 5 =>

1
(a e 1 ts)

1 a e 2 (k/DG/LS 1)
1

a (es) => k/BR/(LS) = es 1
k/DESTROY/el =>

33

As an exercise, the reader may define function a without

resorting to functions /BR/ and /DG/.

Now we describe some scanning techniques that are coupled

with rearrangement of the bracket structure. The parentheses

may be removed and restored, if they are replaced by some

special symbols which are not used otherwise. Let it be /L/

for the left parenthesis and /R/ for the right. The procedure

replacing parentheses is fairly simple:

The inverse procedure, which pairs corresponding symbols

/L/ and /R/, and replaces them with parentheses, is somewhat

more complicated, but, as we shall see, requires only five

sentences to define, and no bury-dig functions. We shall give

a detailed account of the process of designing this program,

in order to illustrate the method of work in Refal.

First, some examples. If after a "quasi-bracket" /L/

immediately (not counting normal symbols) follows a quasi

bracket /R/, they can be paired and replaced by parentheses:

I I I I
A /L/ B C /R/ D ~ A (B C) D

If after an /L/ another /L/ follows, it is the second one that

will be paired with the first /R/ to appear, the first /L/ being

kept unpaired. The scanned part of the object may be:

r
A /L/ B C D E F G

The general form of the scanned part will be called a

Zeft muZtibPacket. It contains a number of yet unpaired /L/ ,

but does not contain any /R/ s. Paired /L/ and /R/ are already

replaced by "real" parentheses. How do we represent this type

of object in a Refal program? We could keep a multibracket in

its "natural" form, putting it in a pouch. But this would

require a multiple scan of the argument. The first scan, when

we are lengthening the multibracket, is, of course, inevitable.

34

Other scans are being done when we seek the last symbol /L/

to pair it with the /R/ encountered. We can avoid them if

instead of quasi-brackets /L/ which break down the multi

bracket into separate segments we use structure brackets

--parentheses! A multibracket of the form

can be represented as

or else as

The latter proves more convenient. Using it, we devise the

following definition of the pairing function, which requires

exactly one scan of the argument:

k/PAIR/ e ~ a(
X

) e
X

a(e1) /L/ e2 ~ a((e1))e2

a((e1)e2) /R/ e3 ~ a(e1 (e2))e3

a(e1)spe2 ~ a(e1sp)e2

a(e1) ~ el

The notion of a right muZtibracket can be introduced in

the same way as the left multibracket. The structure

will be represented in the form

E1 (••• E 1 (E) •••) n- n
Using these r£presentations, we can describe one more way

of performing all-level scans of bracket structures. When we

move along the pr~cessed expression, the scanned and yet

unscanned parts are left and right multibrackets. Suppose, e.g.,

that we are at the second level down in the bracket structure.

This situation may be depicted as follows:
+

35

where the arrow shows the control point. With our representa

tion of multibrackets the argument of the scanning function

will be of the form:

[((El) E2) E3] E4(E5(E6))

(For the sake of lucidity, the format parentheses are repre

sented here as square brackets.) Therefore this way of scan

ning is coupled with rearrangement of the processed tree:

the subexpression worked on is raised to the top level of

bracket structure.

There is a technical point in dealing with the above

mentioned argument which ought to be indicated: we must avoid

confusing the parentheses introduced to represent multi

brackets with "genuine" parentheses representing the original

structure of the argument, which may happen if it ends with a

right parenthesis. Suppose, e.g., that the processed expression

is

(A)BC(D)

At the moment when the control point has just passed symbol C,

the argument of the function will be

[(A)BC](D)

Suppose now that the original expression was

A(BC)D

When the control point passes C, the argument of the function

will be

[(A)BC](D)

which is indistinguishable from the first case, indicating an

amgiguity.

To eliminate this difficulty, we may add to the original

expression any symbol, e.g., an asterisk, when we call an

auxiliary function with a pouch; thus, a terminal right paren

thesis in the argument (and only it) will be always attributed

to a multibracket. In the end the asterisk should be of course

removed.

36

The above function a, which removes all repeated entries

of symbols, will be defined using this technique in the

following way:

1. FORMAT TRANSFORMATION. SECOND POUCH IS FOR SYMBOL LIST

1 ae1 ~ a () e 1 * ()

2.1. END OF JOB

1
a (e1) * ts ~ e 1

2.2. REPEATED SYMBOL

a 1 (e1)speq(e2spe3) ~
2.3. NEW SYMBOL

2.4.

1
a (e1)speq(es) ~

RIGHT PARENTHESIS

1
a ((.e 1) e 2) (e3) ts

1
a (e1sp)eq(essp)

IN ORIGINAL EXPRESSION

1
~a (e1 (e2))e 3ts

2.5. LEFT PARENTHESIS IN ORIGINAL EXPRESSION

1 1 a (e1) (e2) e 3ts ~ a ((e1)) e 2 (e 3) ts

If we have finished the work before completing an all-level

scan, the argument in the "inside-out" form

* [(••• (E l) •••) Em] E +l (••• { E) •••
r.~ n

can be brought b~ck to normal by applying the backtracking

function !3:

with the format parentheses preliminarily removed:

2.8 An Example: Translation of Arithmetic Expressions.

As an example of a more complicated program, we list the

definition of a function (/TRAREX/), which translates an

arithmetic expression into a program for the assembly language

37

of a one-addressed computer. Elementary operands are ALGOL 60

identifiers and integers. Literal constants in the resulting

program are formed with the help of an equality sign, e.g.

ADD, =36;

Intermediate results are stored in R + 0, R + 1, etc. Syntacti

cal correctness is checked and error printings are made.

Incorrect subexpressions are replaced by the identifier ERROR.

First, the argument expression is parsed into a more

convenient form for translation, which has a prefix structure

with the prefix being either an operation sign, or an asterisk

indicating an elementary operand. The parsing is done from

right to left. The pouch in the format of the function /TRANSL/

contains the displacement to store the next intermediate result.

TRANSLATION OF ARITHMETIC EXPRESSIONS

k/TRAREX/ e ~ k/TRANSL/ (0) k/PARSE/ e 1 1 a a
a. = k/PARSE/

a. + el ~ a. el
a. - el ~ a. 0 - el

1 (R) a. e 1s(+ -) e2 ~ sf (a. el)a. e2
a. e '* a.1e

f

1 1 1 2
(R) a. 1e 1 s (x /) f e2 ~ sf(a. el) a. e2

1 2
a. el ,.. a. el

(R) 2 e 1 t '* t (a. 2
el)

3
a. e2 a. e2

2 ... 3 a. el a. el
3

a. (el) ,. a. el
3 a. s/LETTER/l e 2 • k/IDENT/(s1)e2 1

a.3s/DIGIT/l e 2 • k/NUMBER/(s1) e 2 1

a. 3 e • ERROR k/P/ ERROR: e 1
X X

k/IDENT/(e1) s/LETTER/2 e 3 • k/IDENT/(e1s 2) e 3 1
(e1) s/DIGIT/2 e 3 • k/IDENT/ (e1s 2) e 3 1

38

(el) ~ * e 1

(el) e 2 ~ ERROR k/P/ ERROR: e 1 e2 1
k/NUMBER/

k/TRANSL/

(el) s/DIGIT/ 2 e3 ~ k/NUMBER/ (els2) e3 1
(el) ~ * = e 1

(el) e 2 ~ ERROR k/P/ ERROR: e 1 e 2 1
(e) sf(el) * e2 ~ k/TRANSL/ (e) el 1 n n

k/CODE/ sf 1 , e2

(e)
n s(+x)f (* el) e2 ~ k/TRANSL/ (e)

n e2

k'CODE' sf 1, e 1 ;

(en) sf(e1)e2 ~ k /TRANSL/ (en) e 2 1

STORE, R + e .
n'

1

k/TRANSL/ (k/PLUSl/en 1) e 1 1

k/CODE/ sf 1, R + en;

(en) * e 1 ~LOAD, e 1 ;

k/CODE/ + ~ ADD

- ~ SUB

X ~ MULT

I ~ DIV

t ~ POWER

The functions /LETTER/, /DIGIT/ and /PLUSl/, the meaning

of which is obvious, can be easily described in Refal, but

it is preferable to have them i:::.~plemented as external

functions.

39

CHAPTER 3. EQUIVALENT TRANSFORMATION

3.1 Strict Refal

When a formal system is developed, the first step to take

along the way of metasystem transition is to introduce a concept

of equivalence and elaborate a system of equivalent transforma

tions of formal objects. In the case of Refal it has been

discovered that a compact yet powerful system of equivalent

transformations of algorithms and functions can be formulated

([21]) if the basic version of the language is somewhat restricted.

These restrictions are:

(1) The functions /BR/ and /DG/ are excluded;

(2) t-variables are excluded;

(3) in the left sides of sentences there must be no open

variables, neither repeated entries of e-variables

(repeated s-variables are permitted).

For the sake of simplicity we shall assume later on that every

sentence has a determiner, and sentences are grouped into

function descriptions.

We call this language Strict Refal. The translation of

a program from Basic Refal into Strict Refal can be easily made

automatically. We note though, that the restrictions are not

very severe and leave the language expressive enough to conven

iently describe most complicated algorithms.

A pattern expression will be called an £-expression if

no one of its subexpressions contains more than one e-variable

not enclosed in parentheses, anu no one e-variable enters t~e

expression twice. In strict Refal the left sides of sentences

are L-expressions. From the definition of L-expression there

immediately follows

Theorem 3.1. Each subexpression of an L-expression is

an L-expression.

Examples of L-expressions:

40

ABC

/RS/(s(+-) 1 e 2 (Ae 3B))s1

(el) (e2) (e3)e4

Examples of pattern expressions which are not L-expressions:

el + e2

sl e2 (s3 e2)

Due to the absence of open e-variables the following prop

osition holds:

Theorem 3.2. Let E0 be an object expression and E~ an

L-expression. There can exist only one set of values of the

free variables in E~ such that the substitution transforms

E~ into E0 •

To demonstrate this we only need to review the projecting

algorithm in 2.2. All rigid elements are projected uniquely.

Having projected them all, we come to a situation where the

only (if any) e-variable present on each level of bracket

structure in each subexpression has both its ends projected,

and therefore, gets its value uniquely also.

3.2 Classes and Subclasses

To every pattern expression E a set corresponds, which p
comprises all object expressions syntactically recognizable as

E . We call this set a alass depiated by E , or simply a p p
alass E . A class depicted by an L-expression is called an

p
L-alass. To denote set-theoretic relations and operations on

classes we shall use the usual signs: ~ , = , n , u .
No distinction will be made between object exp~ession and the

class it depicts. Thus the relation E0 ~ Ep , where E0 is an

object expression, means that E0 is recognizable as Ep.

In the formal description of Refal the requirements 2.1.1

to 2.1.3 for the values of free variables were formulated.

Now we generalize the notion of value by allowing values to

contain free variables. Points 2.1.1 and 2.1.2 are modified in

this way:

41

2.1.1*. The value of an unspecified s-variable can be any

symbol or any s-variable. The value of an e-variable can be

any pattern expression.

2.1.2*. The value of a specified variable can be a symbol

from its specifier or a specified s-variable with a specifier

containing a subset of the set of symbols contained in the

specifier of the replaced variable.

The simultaneous substituion of expressions E. for var~-
~

ables v. , where ~ = 1,2, •.• ,n, will be written as
~

vl -+ El, v2 -+ E2 ' ... , v -+ E n n

(It will always be impl~ed that the subst~tution is legitimate,

i.e., the above mentioned requirements to the values are

satisfied.)

The result of applying a substition ~ to a pattern E
p

expression will be denoted by Ep II ~- By E II ~l II ~ 2
we mean (E II ~ 1) II ~ 2 •

Theorem 3.3. Let E be a pattern expression and ~ a sub-
' p I

stitution. Let E = E II ~- Then E c E p p p p

Proof: Let us take an arbitrary object expression E0 .

Suppose

tion ~O

E = E

it is recognizable as E'. This means that a substitu
p

exists, such that E0 = E~ II ~ 0 • Therefore

0 p II ~ II ~ 0 . It is easy to see that the composition of

two legitimate substitutions is a legitimate substitution again.

Hence, E0 can be seen as a result of applying composition ~ ~O

to E , which means that E0 is recognizable
p I

any E0 it follows from E0 ~ EP that E0 c EP.

is implied in relation E' c E .

as E . Thus for
p

This is just what

p- p
A class E' , obtained as E II ~ will be referred to as a p p

subalass of Ep; the corresponding operation will be called

the aontPaation of E thPough ~.
p

An Example. The class of expressions which begin and end

with the same letter, this letter being A or B, is depicted by

the pattern expression s(AB) 1 e 2 s 1 • Through the substitution

s 1 -+A, e 2 -+ =(e2) we contract it to the subclass A= (e2)A.

42

We note, that a subclass of an L-class is not, generally,

an L-class. For instance, any class is a subclass of the L-class

el.

We now take up the question of finding the union and inter

section of classes. The union of two classes may or may not be

a class. For example, the union of classes s(l2)a and s(34)b

is class s(l234) . On the other hand, the set of all terms a
is the union of two classes: s 1 and (e1) , and it cannot be

represented as a class. The best representation for this set

is the union s 1 u (e1). The intersection of two classes also

may not be a class. We put the problem of representing the

intersection of two classes in the form of a union of classes.

The solution of this problem will be given for the special case

when at least one of the two classes is an L-class. To perform

equivalent transformations, this case will suffice, which, of

course, reflects the fact that in strict Refal the left sides

of sentences are L-expressions.

Thus, let E~ be an L-expression, and Ep an arbitrary

pattern expression. We can see the inters0-ction Ep n E~

as the set of all those object expressions E0 from EP which are

recognizable as E~. The problem, therefore, is a generalization

of the problem of syntactical recognition. In particular, if E p
happens to be an object expression, then Ep n E~ is either Ep

itself, in the case when Ep is recognizable as E~ , or empty

when this is not the case. The answer here may be obtained

by using the algorithm of projecting (mapping) E~ on Ep.

In the general case we also will find a solution by projecting

E~ on Ep , but we must keep in mind that Ep represents now

a set of object expressions, not a single one; in the process

of projecting we shall contract this set, excluding from it

subsets of those elements (object expressions) which certainly

are not recognizable as E~.

Those terms of which an expression is by definition a

sequence will be referred to as its constituent terms. If

object expressions E1 and E2 are identical, their first

constituting terms must also be identical. Of all constituting

43

terms of E~ only the e-variable may be transformed by a

substitution into an expression consisting of several (or no)

terms; other terms are always transformed into exactly one term.

Therefore, if E~ can be represented in the form T~E~ , where

T~ does not have the form eZ , the term T~ can be projected

on the first constituting term of E separately, and if this p
latter one is T , a legitimate substitution must exist for

p
successful recognition, which transforms T~ into Tp. For such

a substitution to exist, we will sometimes have to make contrac

tions in T , and therefore in E •
p p

Analogous considerations are applicable, of course, to the

last (rightmost) constituting term. In defining the projecting

algorithm, there is a freedom of which constituting term, the

leftmost or rightmost, to choose at each step. The final

result will of course be the same independent of the strategy

taken, but the length of the process may be very different in

some cases. The simplest version is to move left to right until

an e-variable is met, and then start from the right end back to

this variable. This version will be used in the examples below.

We proceed now to describe the generalized rules of

pro~ecting. Contractions in ~ will be written as substitutions

V --). f • W1 en a variable from E takes a value, this will be

writ ten as an assignment V + f • Clearly, this is also a subs ti

tution, Which produces a contraction, but in E~ , and not in EP.

We use arrows qirected in different sides to S1 ow where the

contraction is made. This is important, because a variable from

E may occasionally be identical (syntactically) to a variable
p

from E~. 'lb avoidconfusion we will sometimes denote the empty

expression (and the class consisting of the empty expression)

by <empty>. The empty set (which is not a class) W"ill be denoted

as¢. For the sake of brevity, we will assume that all s-variables

have specifiers. An unspecified s-variable can be interpreted

as havi:rg all possible symbols in its specifier.

~e following points cover all possible cases which may

arise in projecting. By X , Y , Z and Y. (with any i) \'.e
..{.

s1all denote arbitrary indexes, by Sand Si- acy syP\bols, am

by P, Q , a rd R -- any specifiers.

44

1. E~ is empty. Recognition is possible if Ep is either empty

or has the form

• • • eY
n

where some indexes Y. may coincide. In the latter case,
~

contraction

eY1 ~<empty>, eY 2 ~<empty>, ••. , eYn ~<empty>

is needed. Otherwise, recognition is impossbble, i.e. not a

single object expression from Ep is recognizable as E~.

2. E~ is eZ. Recognition is possible with any Ep. As a result,

the variable eZ takes the value E which fact is depicted as
p

eZ : = Ep

In all the following points E~ takes the form of either
I I

T~E~ , or E~T~ , where T~ is any term which is not an e-variable.
I

In the first case we represent E in the form T E , in the second
I p p p

case -- in the form E T , where T is any term. If this is p p p
impossible (that is E is empty) then recognition is impossible.

p
We formulate the rules for the first case (leftmost constituting

term) , the rules for the other cases are analogous and will be

referred to by the same pair of nurnbe~with an added asterisk,

such as 3.1*. On applying one of the rules 3.1* - 6.4*, we

take into account the contractions and assignments indicated

in the rule by making appropriate substitution in Ep and E~ ,
after which we proceed to project yet unprojected parts of the

original E~.

3. T~ is s.
3.1. Tp is s1 •

to S·

This holds for all points 3.n with any n.

Recognition is possible only if s 1 is identical

3.2. rp is s(Q)y. If s enters Q we make the contraction sy ~ S
and continue projecting, otherwise recognition is impossible.

3.3. T is (Ei). Recognition impossible.
p p

3.4. rp is eY. Let us divide the class EP into two suhsets: the

first subset will be the subclass obtained by applying to Ep the

substitution eY ~ <empty>, the second will be the complement,

45

including all the remaining object expressions. We cannot

state anything concerning the first subset, we will just

continue to project E~ on this subclass. In the second sub

set (which is not a subclass) recognition can be possible only

if the leftmost term of the value of eY is S, that is, only in

the subclass of E formed by the substitution eY ~ SeY. To
p

sum up, we form two subclasses of E by the substitutions
p

eY ~ <empty>

eY ~ SeY

and continue the process of projecting in each of these,

independently of one another.

4. T~ is s(P)Z.

4.1. Tp is S1 . Recognition is possible if S1 enters P.

In this case sZ takes the value s1 .

4.2. T is s(Q)Y. The needed contraction is sY ~ s(R)Y
p

where R is the intersection of the sets P and Q (if R is empty,

recognition is impossible). The variable sZ is taking s(R)Y as

a value. Now we face a problem. We have to make the corres

ponding substitution in E~, but we do not want to mistake the

variable sY from Ep for one of the variables in E~. To resolve

the conflict, we will introduce a new type of element, the

alien s-variable, with the variable type sign a instead of s.

In our case the substitution will amount to replacing all entries

of s(P)Z in E~ by a(R)Y. The projecting of a-variables will

be described in point 6. Since E~ now has references to the

variables from E , a contraction of E may demand some modifi-
p p

cation of E~. Specifically, when a contraction of the form

s(P)Y ~ E is made in f. , we must replace all the alien vari-
p

ables with the index Y in E~ by the value E in which the variable

type sign s, if present, is changed to a.

4.3. Tp is (E~). Recognition impossible.

4.4. T is eY. Two subclasses of E are generated by the con-
p p

tractions:

46

eY -+- <empty>

eY-+- s(P)Y 1 eY

Here s(P)Y 1 is a new variable with an index Y1 differing from

all other indexes.

5. TR. is 1
(ER.).

5.1 & 5.2. T is
p

S1 or s(Q)Y. Recognition impossible.

5.3. T

Ef.
p

as

is (Ei) .
p

Therefore

Recognition is possible

we proceed to project E~
if E~ ~s
on E1

p'

recognizable

and for

those subclasses on which the projection is possible continue
I I

the process by resuming projection of En on E • The contrac-
x- • p .

tions and assignments made in projecting E~ on E~ must be

taken into account when we resume projecting on the main level

of bracket structure.

5.4. T is eY. Two subclasses of E are generated by the
p p

contractions

eY -+- <empty>

eY -+- (eY 1) eY

where eY1 is a new variable with index Y1 differing from all

other indexes.

6. TR. is an alien variable a(P)Y.

6.1. T is S. If S enters P then we make the contraction sY -+- S
p

(which means, incidentally, that if there are other entries

of the same alien variable in ER., they will be replaced by S,

see Rule 4.2). Otherwise, recognition is impossible.

6.2. T is s(Q)X. Let R be the intersection of P and Q.
p

If it is empty, recognition is impossible. If R is not empty, we

make the contraction in E through the following simultaneous
p

substitution:

s(Q)X-+- s(R)Y 1 s(P)Y-+- s(R)Y

(in ER. 1 the al1en variable aY will be replaced by a(R)Y).

We note that index X may be identical to Y.

47

6.3.

6.4.

T is p
T is

p

(E~). Recognition impossible.

eX. Two subclasses of E are generated
p

substitutions:

eX ~ <empty>

eX~ s(P)Y eX

by the

As we mentioned above, when the term being projected

T~ is the rightmost, the rules are analogous, and the

formulations differ only if an e-variable from E is involved.
p

For example, instead of 6.4, we will have:

6.4*. T is eX. p Two subclasses of Ep are generated by the

substitutions:

eX ~ <empty>

eX~ eX s(P)Y

In the process of projecting, the variables of E~ take

some values, which may contain some variables from E and may,
p

therefore, alter when contractions take place. In order to

get the correct list of the values of variables in the end

of the projection, we must update this list when each new

contraction is made by making the substitution in the values.

Applying these rules step by step, we generate a branch

ing process, each branch corresponding to one subclass of the

original class E . Some of these branches may be terminated
p

by the verdict "Recognition impossible", others may come to

a successful end through the use of rules 1 or 2. Obviously,

the process of projecting will always be finite. Thus we

obtain the following theorem:

Theorem 3.4. The Generalized Projecting Algorithm (GPA),

when applied to the projection of an L-expression E~ on an

arbitrary pattern expression E , provides a representation
p

of the set E~ n Ep in the form

E1 u E2 u •.• u En
p p p

where Ei are subclasses of the class E and n is a finite
p p

number, which may be in particular equal to zero (E~ n EP= ¢).

48

Let us consider several examples of generalized projecting.

For the sake of brevity, we will introduce the following conven

tions. To indicate the rule used at each step, its number

designation will be placed at the beginning of the line. Period,

comma and equality signs will be used as delimiters; to avoid

confusion, these will not be used as object signs in Refal

expressions. In branching, we will always first take up the

subclass generated by the substitution eY ~ <empty>. Having

finished the whole tree which is produced by this branch,

we come back to the remaining alternative. To note this, we

mark each branching point by placing its sequential number

in parentheses immediately after the rule's designation. Thus

each sequential number will appear exactly twice.

1) Let us find the intersection of the following classes:

3.1.

Et = A s 1 (e2) e 3 s 1 A

EP = A sa (C + eb) ec

The sign A is projected on the identical sign in E .
p

I I

4.2. s 1 := sa , Et = (e 2) e 3 aaA. Now Et takes on the role

of Et. Therefore in the following we shall not

distinguish between them and use Et as the notation.

5.3. E~ = e 2 , E! = C + eb. We enter the parentheses.

2. e 2 := C + eb. Return to the main level of the bracket

structure.

3.4*. (1) e -c

3.4*. (1) e ~

c

3.1*. Et = e3 a
a

6.4*. (2) e ~

c

6.4*. (2) e ~

c

2.

<empty>.

e A c

, E =
p

<empty>.

e 5 c a

e

E = e
p c

Recognition impossible.

c

Recognition impossible.

49

Return to

Return to

(1) .

(2) •

Recognition attained. Collecting all the substitutions

made, we find that E~ n EP is the subclass of EP , obtained

by the substitution

that is the class

A s (C + eb) e s A . a c a

It can be recognized as E ~ if the free variables take the values:

5 1 a

2) The second example. Let

E~ = sl (e2)

Ep = el + e2

(In the following we shall use

e3 54 A

the notation

"Recognition impossible. Return to n" .)

4.4. (1) el -+ <empty>

4 .1. sl:= +, E~ = (e2) e3 s 4 A I E p

5.4. (2) e2 -+ <empty>, X (2)

5.4. (2) e2 -+ (e3) e2

2. e2:= e3

E~ = e3 s 4 A I E = e2 . p

3.4*. (3) e2 -+ <empty>, X (3)

3.4*. (3) e2 -+ e 2 A

4.4*. (4) e2 -+ <empty>, X(4)

4.4*. (4) e2 -+ e2 54

4.2*. 54:= 54

2. e3:= e2

X (n) meaning:

= e2 .

Recognition attained. We have received the subclass

El = + (e3) e2 54 A p

Return to (1) .

50

4. 4. (1) el -+ s3 el

4. 2. sl:= s3

E~ = (e2) e3 s 4 A , E = el + e2 .
p

5.4. (5) el -+ <empty>, X (5)

5.4. (5) el -+ (e4) el

2. e2:== e4

3.4*. (6) e2 -+ <empty>, X (6)

3.4*. (6) e2 -+ e2 A

E~ = e3 s4 E = el + e2 . p

4.4*. (7) e2 -+ <empty>

4.1*. s4:= +

2. e3: = el

Recognition attained. We have received the subclass

2
(e4) E = s3 el + A

p

Return to (7) •

4.4*. (7) e2 -+ e2 ss

4.2*. s4:= ss

2. e3:"" el + e2

Recognition attained. We have received the subclass

3
(e4) E = s el + e2 s 5 A p 3

and finished the process of projecting. Thus

E~ n E = El u £2 u £3
p p p p

The three subclasses which resulted from the application

of the GPA in this case are overlapping. Thus, the object

expression +(A)+A belongs to the first two classes, the

expression +(A)++A belongs to all three classes.

3) Consider an example of generalized projecting which

involves specified symbol variables.

51

ER. = s4 (e2 s(ABC)l) s4 s (ABC) l

E = s (AB) l (BCex s (AB) l)ez s(BC) 2 p

4. 2. s4 := s(AB)l

ER. = (e2 s(ABC) 1)a(AB)l s(ABC)l

5.3. Ei s(ABC)l
i

X s(AB)l = e2 ' E = Bee R, p

4.2*. s(AB)l-+ s(AB)l ' s(ABC)l := s(AB)l

2. e 2 := BC ex

The projection inside the parentheses is completed.

The values assigned to the variables s 1 and e 2 must be

substitut7d into the remaining part of ER.' and the contrac

tion in E~ (in this case trivial) must be expanded on the

whole of E • As a result we get: p

Ep = ez s(BC) 2

6.4. (1) e -+ <empty>
z

6.2. s(BC) 2 -+ s(B)l

ER. = a(AB)l E = <empty>, X (1)
p

6.4. (1) e -+ s(AB)l e
z z

ER. = a(AB)l E = e s(BC) 2 p z

6.4. (2) e -+ <empty>
z

6.2. s(BC) 2 -+ s(B) 1 ' s(AB)l-+ s(B)l

Recognition attained. We get the sublcass

1
E p = s (B) l (BC ex s (B) l) s (B) l s (B) l

If the specifier of a symbol variable consists of one

symbol, we can replace the variable by this symbol:

El = B(BC e B)BB
p X

Now we return to the branching (2).

6.4. (2) ez-+ s(AB) 1 ez

ER. = <empty>,

Recognition impossible. Hence, the subclass E1 is equal to
p

the intersection E~n E .
p k

As we could see above, the classes E resulting from the
p

use of the GPA may generally overlap. But if E is also an
p

L-expression, these classes will be nonoverlapping.

Theorem 3.5. The intersection of two L-classes obtained through

the use of the GPA is the union of nonoverlapping L-classes.

Proof: The subclasses Ek are obtained from the L-expression
p

E by the substitutions listed in the rules of generalized
p

projecting 1 to 6.4*. In these substitutions symbol variables

never generate expression variables, and expression variables

may generate a new expression variable only confined by

parentheses (Rules 5.4 and 5.4*). Therefore, an L-expression

may only generate an L-·expression.

More than one subclass may be generated by the application

of one of the b~anching rules: n.4 and n.4* with n eaual to

3, 4, 5 or 6. These rules provide substitutions for e-variables

in E . If E does not contain e-variables, the GPA will
p p

never give more than one subclass. If on the main (top) level of

bracket structure, the expression E does not have an e-variable,
p

all the generated subclasses will be identical on the main level,

so that to compare two subclasses we must comp~re their subexpres

sions confined by parentheses. By induction, we see that now we

only have to consider the case of an e-variable eZ on the main

level of bracket structure.

Let us denote by n the number of constituting terms in E
p

without the term eZ. Application of any legitimate substitution

to any other constituting term will not alter the number of

constituting terms in E • Consider the first branching. When
p

we schoose the first alternative, i.e. eZ ~ <empty>, we receive

a subclass, each element of which consists of exactly n consti

tuting terms. When we choose the second alternative, we receive

a subclass, each element of which consists of at least n+l

constituting terms. Consequently, these two subclasses, and

any pair of subclasses which may be obtained from them through

subsequent substitutions, will not overlap. The same consideration

53

is true for the second and all subsequent branchings, which

proves the theorem.

The following theorem, which is a generalization of

Theorem 3.5, i~central for equivalent transformations:

Theorem 3.6. Let L1 and L2 be L-expressions, and Ep an

arbitrary pattern expression, which may contain only those

free variables which are present in L1 • Let <~k~with k = 1,2, •.. r

be the set of

L2 on Ep. (*)

substitutions in E generated by projecting

Then L 1 I I ~ k , wher~ k = 1 , 2, ... , r, are non-

overlapping L-classes.

To prove this theorem we only need to note that the

demonstration of theorem 3.5 remains valid if the substitutions

applied to the L-expression Ep (which becomes L1 in Theorem 3.6)

are obtained by rrojecting Et (which becomes L2 in Theorem 3.6)

not necessarily on itself, but on any pattern expression (E
p

in Theorem 3. 6) •

3.3. Algorithmic Equivalence

We shall make a distinction between algorithmic and

functional equivalence. By algorithm we mean the ordered set

of sentences in the memory-field of the Refal machine. An

algorithm A' will be called strictly equivalent to an algo

rith~ A, if the replacement of A by A' in the memory field

will not change the result of any step, performed by the

Refal machine with any contents of the view-field.(**) This

means that if the result is recognition impossible in one case,

then it also must be recognition impossible in the other,

and if the step is successfully performed, the resulting view

field must be the same in both cases.

(*) When new~ariables are introduced in the process of project
ing, they must be different from all variables entering L1 ,
not only E •

(**) p
Instead of "contents of the view-field" we shall say later on
just "view-field". 54

If A' is strictly equivalent to A, then the domain of A',

i.e. the set of all those view-fields which do not lead to an

abnormal stop (recognition impossible) after any number of steps

of the Refal machine, is equal to the domain of A. It is useful

to weaken this requirmment. We shall call an algorithm A' just

equivalent(*) to A, if the results of executing one step of

the Refal machine with A' and with A. in the memory-field are

related in the following way: if A does not lead to an abnormal

stop, then A' produces the sane new view-field as A; if A leads

to an abnormal stop, then A' may produce any result. Therefore,

the domain of the algorithm may be expanded when we transform

A in to A'.

For the algorithms which never lead to an abnormal stop,

the notions of (nonstrict) equiv~ency and strict equivalency

are coextensive. It is not difficult to write algorithms in

Refal in such a way that abnormal stops become impossible.

For this end, ore has only tD s re that for each function F,

the union of all classes in the left sides of the sentences

is the complete set of object expressions. In particular,

ore may add to the description of the function F a sentence

wit.:1 the left side

k F E]_

thereby expanding the domain as is deemed convenient. However,

it may lead to an unwarranted lengthening of the program.

Suppose, for example, that we need a function, which would

remove the first symbol of its argument. Suppose, furthermore

that all calls of this function are such that the argument in

fact begins with a symbol. Then we need only one sentence to

define this function (to which we attach, say, the determiner a):

~ e
2

The algorithm which uses the function a may have the domain

equal to the complete set, although the description of the

function a has a narrower domain. No matter how we expand

(*) or nonstPictly equivalent.

55

the domain of the function a, this will not change the algo

rithm as a whole. Thus a nonstrictly equivalent traDsfor

mation of some parts of an algorithm may turn useful even if

\ve are interested in a strictly equivalent transformation of

the whole algorithm.

We formulate ~~ the following five rules of algorithmically

equivalent transformation.

Al. At the end of the description of a function F an arbitrary

sentence with the same determiner F can be added.

(This rule is the result of our definition of equivalency,

which allows expansion of the domain.}

A2. If the intersection of the left sides of two adjacent

sentences is empty, these sentences can be transposed.

A3. If a sentence with the left side L1 precedes a sentence

with the left side L2 , and L2 ~ L1 , then the second sentence

can be eliminated.

A4. Suppose that for a pair of adjacent sentences

k L1 ~ R1

k L2 ~ R2

a substitution 6 exists, such that L1 = L2 II 6, and R1= R2 II 6.

Then the first sentence can be eliminated.

AS. Let L and R be the left an<1 right sides of a sentence,

and 6 - a substitution. Then a new sentence

k L II 6 ~ R II 6

can be inserted inrnediately before the original sentence.

Notice that all we need to apply these rules is

the GPA. Relation L2 ~ L1 takes place when L2 n L1 = L1 , i.e.

in projecting L1 on L2 , no contractions are needed in L2 for

recognition to be possible.

An Example. Suppose we have the following definition of a

recursive predicate a:

56

.1 CL sl ~ F

.2 CL sl s(+ -}
2
~ F

.3 CL sl 52 ~ F

.4 CL s(+ -)1 52 ~ T

• 5 CL sl 52 53 ~ F

.6 CL sl 52 53 54 ~ B e 5

The sentence .4 will never be used because it is screened

by sentence .3 (Rule A3}. Therefore we eliminate it. Now,

the sentence .2 is submerged by the sentence .3 in accordance

with Rule A4, and we eliminate it too. It is easy to see

that all the sentences left are transposable (Rule A2),

thus we can rewrite the algorithm in this manner:

a s 1 52 53 54 e ~ B
5 es

a s 1 ~ F

a sl 52 ~ F

CL s 1 52 53 ~ F

Using Rule Al, we add at the end one more sentence:

a e 1 ~ F

which expands the domain of the function CL by including the

cases when its argument is either <empty>, or contains paren

theses. But it was not this domain expansion that we aimed at.

It became possible now to submerge (Rule A4) the preceding

three sentences into the last. As a result the algorithm

is greatly simplified:

a s 1 s 2 s 3 s 4 e 5 ~ B e 5
CL e 1 ~ F

It should be stressed that unlike Rule A3, rule~ A2 and A4

are applicable only if one of the sentences is i~mediately

followed by the other. For example, in the algorithm

B A ~ T

B s 1 ~ F

B sl e2 ~ T

57

the first sentence cannot be submerged by the third.

The system of five rules Al-AS is not complete; it

only gives the most useful tran2formation rules. The incomplete

ness of this system can be seen from the following example.

Consider this definition:

a s e ~ A
a 1

a (e1) e 2 ~ B

a ~ c

a ex ~ D

The fourth sentence will never be used, because every

expansion begins with either a symbol or a parenthesis, or

else is empty. Therefore, this sentence may be eliminated,

but this cannot be done using rules Al-AS only. In Section

4.3 we shall present an algorithm which performs transforma

tions of this kind.

3.4 Functional Equivalence.

By the domain of a function F we mean the set M of those

object expressions E0 , for which the process of concretiza

tion of the expression k F E0 1 will be brought by the Refal

machine to a normal end. Note the difference between this

definition and the definition of the domain of an algorithm.

Speaking of an algorithm, we mean the process itself

irrespective of whetherit is finite or not, hence the only

reason for an expression E0 to be outside the domain

is to result in an abnormal stop (recognition impossible).

Speaking of a function, we mean ~he result of a process,

thus if the concretization will never end, the expression

E0 is outside the domain.

Let an algorithm A define inter alia a function F. We

shall say that an algorithm A' is functionally equivalent to

A with respect to the function F if for every E0 from the

domain of F, the concretization of k F E0 1 with the alga

right A' leads to a normal end and gives the same result as

58

with the algorithm A. We shall speak of strict functional

equivalency, if this relation holds for any object expression

E0 , and the two domains, therefore, are identical. As in

the case of algorithmic equivalency, we will be interested

in and formulate the rules for simple (nonstrict) func

tional equivalence. It should be noted that nonstrict

equivalence (both algorithmic and functional) is not a

relation of equivalency in the sense the term is used

in mathematics, because it is not symmetric. But it is

reflexive and transitive: a quasi-ordering relation.

Clearly rules Al-AS of algorithmic equivalence are

applicable for functionally equivalent transformations.

Two additional rules, Fl and F2, specific for func-rional

equivalence, will be formulated below. We shall call them

the rules of driving. Their main idea is to execute one or

more steps of the Refal machine in a situation where the

expression under concretization is not completely defined,

but contains free variables. The expressions containing

free variables are taken, of course, from the right sides of

the sentences; we are as if "driving" som;:: expressions from

the right sides through the left sides in order to execute

one step of a Refal machine in a general form -- hence the

nickname of the operation.

Fl. (Rule of driving) Let one of the sentences defining a

function F be of the form:

F.X k F Lf ~ C1 k G Ep l C2

where Ep is a pattern expression. c1 is a left and c2 a right

multibracket, and G is the determiner of a function which is

defined by the sentences:

G.l k
1 1

G Lg ~ Rg

G.2 k 2 2
G Lg ~ Rg

.
G.n k G

n n
Lg ~ Rg

59

Using the Generalized Projecting Algorithm we find n sets
i i of substitutions <~ 1 , ... ,~ >, i=l,2, ... ,n, which specify n r.

intersections 1

n
E

p
n Li = u E II~~

g j=l p J
i=l,2, ... ,n.

Then we can replace the sente;.ce F. X by r 1 + r 2
sentences of the form

k L£ II ~~ ~ {C1 II ~~} R!j {C 2 II ~~}

+ . • • + r
n

which are arranged in the order of increasing i . Here Rij
i g

are obtained from R through the ~eplacement of the free

variables by those ~alues they ta~e when E II ~~ is recognized
. p J

as L1 • We note that if for some i the number of subclasses

r i~ one, and substitution ~i is trivial (which means that

En c Li) then by virtue of Rule A3, all the sentences with
p - g '

greater i can be omitted.

Proof: As a result of the application of the sentence F.X

in the process of concretization, a term of the form

will enter b~e view-field of the Refal machine as on•: of its

subexpressions. Here E0 is some object expression. Until

the concretization sign k in this term becomes active, the

term, whatever it is, ~·.-ill net influence the work of the

Refal machine in any way. When ~he sign k becomes active,

~he Refal machine will start the next step by trying to

recognize E0 first as L! , then, if recognition is impossible,

as L~ , etc. We do not know E0 exactly, but we know that

E0 C E , and this is something. Using the GPA to recognize

E as p L1 we come to one of the following three cases:
p g '

E c L l Fl.l. p g
be recognized as

, therefore every E0 belonging to EP will

L1 . Consequently, we can, anticipating
g

the action of the Refal machine, replace the term k G E I in p -
F.X by the expression R11 , obtained from R1 by substituting

g g . . th f
the values (which are generully pattern express1ons w1 ree

60

variables from E) assigned to the free variables in L during
p g

the process of projecting.

Fl.2. EP n L~ = ¢. Recognition of E0 as L~ is impossible,

and we proceed to th•:> second sentence.

Fl.3. E n L1 is the union of r 1 subclasses of Ep obtained
p g 1

through substitutions~ .. Since the variables of E are
J p

defined in the left side Lf' the conditions of Theorem 3.6 ~re

satisfied, and Lf II~~ for j = 1,2, ... ,r1 , will be nonover

lapping L-classes. Using Rules AS and A2, we transform sentence

F.X into r 1 + 1 sentences:

k F Lf II ~1 '* c k G E 1 c2 II ~1 1 1 p 1
.

k F Lf II ~1 '* cl k G E 1 c2 II ~1
rl p rl

F.X k. F Lf '* c k 1
G E 1 c2 p

Now, since

E II ~~ c Ll
' for j = 1,2, ... ,r1 p J - g

we will have case Fl.l for each of the new r 1 sentences and

we can make the corresponding substitutions in the right sides.

We have isolated all the subclasses of Lf for which

any E0 belonging to Ep can be recognized as L~ , which makes

sentence G.l applicable. Therefore, sentence F.X will be used

now for those E0 only for which sentence G.l proved unapplic

able. Thus we can continue the transformation of sentence

F.X ignoring G.l and ~ta=ting the step by trying to recognize

G E as the left side of the second sentence G.2. Repeating
p

this procedure, we will come ultimately either to the case Fl.l,

which ends driving, or to the end of the definition of function

G. In the last case, the group of sentences which has resulted

from the original sentence F.X due to driving will still haVe

sentence F.X at the end. But it can be dropped now. Indeed,

this sentence will be, possibly, used with the transformed

algorithm A' for those E0 c EP only, for which no sentence

in the original algorithm A proved applicable to concretize

61

k G Ep 1 , thus bringing the Refal machine to an abnormal stop.

This means that whatever function has demanded this concreti

zation, its argument was out of its domain, and the transformed

algorithm may produce any result. We have completed toe proof of

the correctness of Rule Fl.

Widening of the domain as a result of the use of Rule Fl

will be shown in the following example. Let functions /Fl/ and

/F2/ be defined by the algorithm

F.X k/Fl/ sl sl ~ k/F2/ sl 1
F.2 k/Fl/ el ~ e

1
G.l k/F2/ A~ A

G.2 k/F2/ (el) e2 ~ el e2

Let us drive the function call k/F2/ s 1 l in sentence F.X.

Driving it through the first sentence G.l, we get one subclass,

obtained by the contraction s 1 ~A. The second sentence G.2

produces no subclasses where recognition is possible (r 2 = 0).

As a result, we receive the following definition of the

function /Fl/:

F.l k/Fl/ A A ~ A

F.2 k/Fl/ e 1 ~ e 1

and the definition of function /F2/ is not needed any more.

Now, according to F.l-2, function /Fl/ is defined everywhere

on the set of expressions. According to the original definition,

it was not defined on the set of all double symbols with the

exception of double A. If we retained sentence F.X, we would

derive the definition:

F.Xl

F.X

F.2

k/Fl/ A A ,. A

k/Fl/ s 1 s 1 ,. k/F2/ s 1 1
k/Fl/ (e1) e 2 ~ e 1 e 2

which is strictly equivalent to the original, but we would

not be able to eliminate the definition of function /F2/.

The following rule provides a generalization of Rule Fl.

62

F2. Suppose one of the sentences describing a function F

is of the form:

where E is an arbitrary (general) expression. We replace in

E every term which begins with the sign k and is not itself

situated in the range of another sign k by a new e-variable

different from all the others. If the sentence thus modified

allows the application of the rule Fl under the condition

that in all the substitutions 6~ no one of the auxiliary
J

e-variables is affected by contractions, then we can use Fl,

and afterwards replace the auxiliary e-variables by the terms

they represent and perform in these the necessary substitutions.

'lhis rule adds more to "nonstrictness" of functional

equivalence. Now the original function may lead for some

arguments to the nonstop situation, while the transformed

function will have this argument inside its cbmain. Consider

the following example:

1 • k/F/ ~ ,.. k/BEGPAR/ (k/X/e1 j) 1
2.1 k/BEGPAR/ (el) e2 ... T

2. 2 k/BEGPAR/ ~ ,.. F

3.1 k/ X/ * EJ. ... k/ X/ * 1
3. 2 k/X/ e1 ,.. ~

We can use Rule F 2 to drive the call of function /X/ in

the definition of function /F/. Then its definition reduces

to one simple sentence:

k/F/,.. T

Since the argument of /BEGPAR/ in the original sentence 1

will always begin with a parenthesis whatever the result of

concretization of the function /X/ call is, sentence 2.1

will always be used giving T as the result -- but concretiza

tion of the /BEGPAR/ call will start only after, and if,

concretization of k/X/e1 1 has been successfully finished.

If it is infinite, which occurs for the arguments e 1 begin

ning with an asterisk, function /F/, like function /X/ will be

63

undefined. Using Rule F2 we greatly simplify function /F/,

but pay the price of expanding its domain.

3.5. Iterative Usage of Driving

The problems which can be expressed in terms of symbol

strings or trees composed of such strings (expressions) can be

conveniently formulated in Refal. Repeatedly using equivalent

transformations we can find partial or complete solutions of

such problems, the leading role being played of course by the

rules of driving. We shall illustrate this by two examples.

(1) The problem is: what must the string X be in order for

the composite string ABXBX to be symmetric?

The property of a string being symmeti~ic can be defined

by the recursive predicate a:

S.l a ~ T

S.2 a sl ~ T

S.3 a sl e2 sl ~ a e2
S.4 a el ~ F

No~ ~ problem can be formulated as finding all those arguments

of the predicate a:

A a e 1 ~ a AB e 1 B e 1

for which it takes the value T. We shall transform sentence A

by using rule Fl repeatedly.

At the first step of driving sentences S.l and S.2 prove

to be inapplicable. We proceed to project the left side of S.3

on the expression to be driven (the notation will be the same

as in 3. 2) •

Et = sl e2 sl Ep = A B el B e 1
4.1 sl := A

Et = e2 A ' E = B el B el . p
3.4*. (1) el -+- <empty>, E = B B X (1)

p
3.4*. (1) el -+- el A ' e2:= B el A B el

64

Recognition is attained by isolating one subclass. This gives

us the sentence

A.l ae 1A ~ a A B e 1 A B e 1 A

which we insert before sentence A. By driving in A.l we

immediately transform it into

A.l a e 1 A~ a Be1 ABe1

Continuing driving in sentence A we transform it into

A a e 1 ~ F

Translating these two sentences into English, our first

result is: the argument e 1 must end with A. Now we drive in A.l.

E9., = sle2sl E = Be1ABe1 p

4.1 sl := B

r = e2 B E = el AB el ~9.,
,

p

3.4*. (1) el -+ <empty>,

E9., = e2 B E = AB
p

3.1*. E9., = e2 , E =
p

A ,

2. e2 := A

Recognitiol, attained. We return to (1) •

3.4*. (1) el -+ el B

3.1*. E9., = e2 E = el BAB el p

2. e2 := el BAB el .

Again, recognition is attained. Thus, we have received two

subclasses, and we insert two new sentences:

a A ,. a BAB A.l.l

A.l.2 a e 1 BA ,. a Be1 BAB e 1 B

Continuing driving in A.l we transform it into

A.l a e 1 A • F

Using the algorithmic equivalence rule A4 with respect to

sentences A.l and A we eliminate sentence A.l. Making

65

straightforward driving in sentences A.l.l and A.l.2 we

receive the following description of a:

a e 1 BA ~ a e 1 BAB e 1
a e 1 ~ F

If the definition of a predicate begins with a number

of sentences whose right sides are T the left sides of these

sentences ~efine a list of classes, which is a partial solu

tion to the problem. By now, we have obtained only one class,

consisting of the only expression A. Driving in the second

sentence we obtain this description of a:

a A ~ T

a BA ~ T

a s 2 BA ~ T

a s 2 e 1 s 2 BA ~ a e 1 s 2 BA s 2 e 1
a e 1 ~ F

We have obtained two new classes: BA and s 2 BA. One more

driving will give additional classss s 2 s 2 BA and

s 2 s 3 s 2 BA. This process can be carried on indefinitely.

The set of all object expressions E0 for which concretization

of a E0 1 gives T is not a class. It is easy to see that

the described procedure gives the exact decomposition of this

set into an infinite union of nonoverlapping classes.

(2) Let us consider the function of addition of binary

numbers defined by the following sentences:

P.l k + (e) () .. e
X X

P.2 k + () (e) ~ e y y

P.3 k + (exsl) (e
y

0) ~ k + (e) (e) l sl X y

P.4 k + (e 0) (e 1) .. k + (e) (e y> l 1
X y X

P.S k + (e
X

1) (e
y

1) .. k + (k + (ex> (1) l> (e)
y 1 0

The predicate of equality will be defined in this way:

66

E.l k = () () ~ T

E.2

E.3

k = (ex s 1)

k = e 1 ~ F

(e) 1
y

We put the question: with the first argument of the function

+ being 101, what must the second argument be for the sum to

be equal to 1011 ? The predicate a which is to be transformed

to obtain the answer to this question is defined by the sentence:

A a ex ~ k = (k + (101) (ex) 1) (1011) 1
In transforming this sentence we shall use a strategy of

driving, which may be called from without within!*)It is this.

In an attempt to make a simplifying transformation, we start

with driving the subexpression delimited by the first from the

left concretization sign in the right side of the sentence and

the conjugated concretization point. If there are no concreti

zation signs in this subexpression, or they can be ignored

according to Rule F2, we complete the driving according to Rule

Fl, and this is the end of the first ~tep of transformation. If

some of the auxiliary e-variables, fo~ed according to Rule F2,

should be found to require contraction, we take the first of them

and try to drive the corresponding subexpression, applying the

same principles as in the previous attempt. Obviously, sooner

or later we shall find a drivable subexpression: in the worst

case it will be the one deliminated by the leading concretiza

tion sign and the conjugated concretization point.

In our case, we first try to drive the call of the equality

function, and find out that it is impossible because of the k-sign

in its first argument, which is a plus function call. Therefore,

we drive on this call. Sentence P.l is applicable with the

contraction e ~ <empty>. This gives us the sentence
X

a ~ k = (101) (1011) 1
which we immediately transform into

a ~ F

In transforming predicates, it is very convenient to put,

when it is possible, the sentences with F in the right side in

the last places of the definition, through the use of the rule

(*) Also to be referred to as inside from outside, or outside-in
strategy.

67

of transposition A2. Then we add at the end of the sentence

a e '* F
X

by virtue of Rule Al, and eliminate the F sentences by using

Rule A4. In our case all new sentences will be transposable,

so we shall keep track only of the sentences with the right

side different from F.

Sentence P.2 proves to be inapplicable. Sentence P.3

generates the sentence

a ex 0 '* k = (k + (10) (ex) 1 1) (1011) 1
Using the strategy from without within for this sentence, we

drive the equality function call, which gives:

A.l a ex 0 '* k = (k + (10) (ex) 1> (101) 1
Continuing the driving of the initial sentence A, we find

sentence P.4 inapplicable, and sentence P.S gives

a ex 1 '* k = (k + (k + (10) (1) 1) (ex) 1 0) (1011) 1
Again, driving i"t inside from outside we obtain:

a ex 1 '* F

and lose interest in it.

Thus, we have obtained only one sentence A.l for further

transformation. In fact, we have performed the first step of

the usual algorithm of subtraction from right to left. Our

general strategy formulated in terms of Refal notions produced

a familiar algorithm in this particular case. If we continue

the transformation, we finally get:

a 110 '* T

a 0110 ,. T

a e '* F
X

which gives a complete formal answer to the problem in clear

form.

It is worth noting that we derived two solutions instead

of one, because we did not introduce the equivalence of numbers

which differ by leading zeros. As the problem is defined,

there are exactly two solutions. The number 00110 if added to

101 gives 01011, not 1011 •

68

CHAPTER 4. COMPILATION PROCESS

4.1. Formulation of the Problem

vfuat does it mean to define the semantics of an algo

rithmic language? The most direct definition is the interpre

tive one: to construct a machine which upon receiving a text

(program) written in that language and a work object (the set

of data the program is to be applied to), would execute the

program, step by step, according to the algorithmic intention

of its author. Thus, a metalanguage to define (semantically)

algorithmic languages should formally describe machines, i.e.

algorithms, which is to say that it must again be an algorithmic

language. The language Refal -.;as designed as such a language

which is both algorithmic and a metalanguage to deal with algo

rithms. Now we shall look into how a programming system employ

ing Refal as the means to introduce new algorithmic languages

might work.

Let A be an algorithm written in a certain language,

and E a work object. To define the language we define in Refal

a recursive function with a determiner L (identifying the

language) in such a way that the process of concretizing the

expression

(1) k L A (E) 1
could be seen as (or, will model) the application of the

algorithm A to the object E. In particular, the result of the

concretization (when it exists) should be the result of the

use of A on E. In programming terms, the program A is

interpreted here, thus the function L will be called

the interpreting function of the language. Since Refal allows

the use of any object signs, there is no restriction on the

composition of program A and work object E: the algorithmic

language to be defined is allowed to use any characters differ

ent from those depicting the specific signs of Refal. We might

69

consider A and E as arbitrary strings of object signs, but

nothing prevents us from introducing Refal parentheses into

these strings, thus making them generally object exp~essions.

If the object language uses parentheses in the way they are

usually used (to create trees), it is convenient

to identify them with the structure brackets in Refal.

When defining a language through its interpreting

function, we do not give an explicit definition of the set of

correct (legitimate) texts in that language. Instead, it is

natural to introduce the following definition: a pair of

expressions A and E is called a co~~ect text-object pai~ in

language L , if concretization of (1) does not lead to an

abnormal stop of the Refal machine (note: a nonstop situation

is allowed). Now the set of correct texts A may be defined as:

a text A is correct if the set of those work objects E that make

a correct pair with A is not empty. If we have an independent

definition of the set of correct work objects then we can give

an alternative definition of the correct text: a text is correct

if it makes a correct pair with any correct work object.

So, we have a formal description of the algorithmic lang

uage L through its interpreting function. How do we use it?

If we have a computer implementation of the Refal ma~hine

(an interpreter or a semicompiler) , we can use the language L
in the following manner. Each time that we have to execute an

algorithm A written in L, the expression to apply this algorithm

to being E, we form the working expression (1) in the view

field of the Refal machine and start it into action. l~e will

obtain the desired result in this way, but understandably this

is not an efficient way to use a programming language systemati

cally, because this is an interpretation mode. Can we improve

the efficiency by turning to a compilation mode? What is compila

tion?

Let us examine it in a very simple example of a language

with the interpreting function /L/ defined by the following

sentences:

70

L.l k/L/ e 1 ; e 2 (ea) ~ k/L/e 2 (k/Ll/e1 (ea) 1) 1
L.2 k/L/ e 1 (ea) ~ k/Ll/ e 1 (ea) 1
Ll.l k/Ll/CROSS(s1 e 2) (s 3 e 4) ~ s 1s 2 k/Ll/CROSS(e1) (e2) _l

Ll.3

Here the first sentence indicates that a text in the

language /L/ may be formed as a sequence of instructions

separated by semicolons, and the instructions are executed

from left to right, being applied each time to the result of

the execution of the preceding instruction. Function /Ll/

defines the execution of separated instructions. There are

only two kinds of instructions: CROSS and ADD. Instruction

CROSS(P) "crosses" the work object with the word P by putting

their symbols in alternation until one of the words is

exhausted (we assume that the objects which the language /L/

deals with are strings of symbols). Instruction ADD(P) adds

the word P at the end of the work object e . Here is an a
example of a program:

CROSS(CAT); ADD(DOG)

In order to execute it on the word LION as the work object (input

data), we put into the view-field of the Refal machine:

k /L/ CROSS(CAT); ADD(DOG) (LION) 1
The concretization of this expression gives:

CLAITONDOG

Now suppose we have some object machine M0 , and we want

to translate our program into the language of M0 • Let M0 have

two fields, referred to as object and result in which the

object and the result of work are stored and gradually trans

formed, and let it be able to perform certain simple operations,

which we will describe in English. What do we do to translate

the program on the basis of the interpreting function /L/

defined in Refal? We analyze the process of interpretation

71

of this program with some general, not exactly specified input

data, and describe the operation of the Refal machine in the
0 language understandable by M . Chapter 3 of the present work

provides us with the necessary apparatus. We imagine that the

following expression is put in the view-field of the Refal

machine:

k /L/ CROSS(CAT) ADD(OOG) (ex) 1
(which is, of course, impossible literally and must be under

stood as a set of view-fields) and use the rules of driving to

follow the process of concretization. Since we defined driving

for the strict Refal only, we should rewrite the definition of

/L/ in the corresponding way:

L. k/L/ e => k /LL/ e 1 X X

LL.l k/LL/ (e1) ; e 2 (ea) => k/L/e2 (k/Ll/e1 (ea) 1) 1
LL.2 k/LL/(e 1)sx e 2 (ea) => k/LL/ (e1 sx) e2(ea)

LL.3 k/LL/ (e 1) (ea) => k/Ll/ e 1 (ea) 1
(The definition of /Ll/ remains unchanged.)

A number of initial steps of the Refal machine is done

without contractions of free variables, i.e. with any input

data. This is the part of the job which is performed once

and forever at compilation time. Then we receive the

following view-field:

k /L/ ADD(DOG) (k /Ll/ CROSS(CAT) (ex) 1) 1
Contraction ex ~ siex is needed here according to Rule Fl,

which means that a conditional statement depending on unknown

input data must be added to the program for M0 . Proceeding

in this manner, we compile the following object program:

1. Object assumes its input value, result becomes empty.

2. If object begins with a symbol s 1 , it is deleted,

and cs1 is added to result, otherwise result becomes CATDOG,

and go to End.

3. If object begins with a symbol s 2 , it is deleted,

and As 2 is added to result otherwise ATDOG is added to result,

and go to End.

72

4. If object begins with s 3 , and the rest is e 4 ,

then Ts 3 e 4 DOG is added to Pesult, otherwise T object DOG

is added to Pesult. (*)

5. End.

In the general case of a language L and an algorithm A in

that language, the expression

(2)

must be driven through the Refal machine, and the goal of the

theory of compilation is to examine this process and describe

the operations performed on the argument e in the language
X

of the object machine M0 . If this theory were to be elaborated

bearing in mind one definite language L, that is drawing upon

its specific features, then the theory would result in an

algorithm of compilation from this language L. But we shall

not bear in mind any specific language, of course. As in deal

ing with equivalent transformations, the theory should be applic

able to any texts in Refal, and therefore, the goal of the

theory is to design one univePsal algoPithm to compile from

any language, had its interpreting functions been defined in

Refal. This algorithm may have variations, though. In particular,

it must vary from one object machine M0 to another.

The object machine s~ould have facilities for symbol

manipulation, since this is what the Refal machine is doing.

In addition, it may have any specific opeations, however

complicated, and these may be even undefinable in Refal, such

as generation of a random number. The only requirement is that

the universal compiler (supePcompileP) could recognize the

corresponding Refal expressions as external function calls,

and translate them into the standard notation for M0 .

In particular, M0 rnay be the Refal machine. Then as the

result of compilation we get a program in Refal again! The

T*) In fact, both alternatives in this statement lead to the same
result, but to discover it one has ·to use Rule A4, not just
Rule Fl.

73

expression (2) can be introduced as the right side of the

sentence defining a new function:

a ex ~ k L A (ex) J
Then compilation amounts to an equivalent transformation of

this function, or more exactly, the theory of compilation

provides a new class of equivalent transformations, which cannot

result from simple application of the rules described in

Chanter 3.

In our case:

a ex~ k /L/ CROSS(CAT); ADD(DOG) (ex) j

As the result of compilation (which in this particular case

is nothing more than an iterative application of Rule Fl and

algorithmic equivalency rules) we get

a e
X

~ C s 1 A T ex DOG

~ CAT ex DOG

This definition is shorter and is executed much faster

than the original definition using function /L/. Thus, optimi

zation is one of the aspects of the theory of compilation.

In the expression (2), metasymbol A represents some

definite expression, therefore the argument of the function

L is partially (but not completely, because of the variable e)
X

specified. The problem to be solved by the theory of compilation

is to eliminate the redundancy of the general definition

of the function L in the circumstances when we need it only

in a specific context. From this formulation, one can see

that the structure of the expression (2) has actually no signi

ficance; the only important thing is that it is more specific

than the general format of the function L. Also, it is of

no significance that function L has been introduced as the

interpreting function of a language; it may have any meaning.

Removing these preconditions, we get the most general formula

tion of the problem.

74

The method of solving this problem may be described

(informally, for the time being) in this way. Let there be

an algorithm given, and a general expression in the view-field

of the Refal machine. We consider this expression as a

generalized state of the ~fal machine, and map the generalized

states of the Refal machine onto the generalized states of the

b . h" 0 h o Ject mac 1ne M • W en we execute each next step of

the Refal machine, its state changes, which generates a

graph of states. We shall trace this group and model it on M0 .

That is, compile such a program for M0 , that if the Refal

machine and the machine M0 with corresponding initial states

work in parallel, then their states will remain corresponding.

4.2. Graph of States.

The workable expression in the view-field of the Refal

machine will be called its exact state, for it uniquely deter

mines all the consequent states of the Refal machine (recall

that we use strict Refal, so that digging and burying are not

allowed). A set of exact states will be called a generalized

state. Our main concept

will be a configuration,

expressions produced when

in describing generalized states

by which we mean a set of workable

the free variables of a general

Refal expression assume some values. Thus a configuration

is defined by (or as) a general expression. If the free vari

ables in this expression may assume all syntactically permitted

values, we refer to the resulting generalized state as a fuZZ

or unrestricted configuration; if the values of the free

variables are somewhow IEstricted, we call this state a

restricted configuration.

The dynamics of the Refal machine with a given memory field

may be represented by its graph of states, which is essentially

a graph of configurations. The vertices of this graph repre

sent generalized states of the Refal machine, and the arcs

(directed edges) represent basic relations between them. There

75

are three types of arcs, which we shall be introducing in

the course of exposition. The first type is a dynamia ara,

which depicts a possible transition from one generalized

state to another resulting from one or more steps of the

Refal machine. The condition when the transition occurs will

be indicated on the arc as a contraction of free variables in

the original configuration. The contractions on the dynamic

arcs of the graph of states are essentially the left sides

of Refal sentences. To model the Refal machine with the help

of a graph of states, we apply the contractions to specific

values of free variables in exactly the same way as we are

applying left sides. For example, the contraction

e 1 -+ s2 e 1

is not only a conditional statement, which determines

not the vruue of e 1 starts with a symbol, but it also

this symbol to s 2 and redefines e 1 correspondingly.

tions on the arcs in a graph serve as definitions of

ables appearing in the subsequent states.

The dynamic arcs outgoing from tre same ~ rtex

whether or

assigns

Contrac-

new vari-

are ordered in conformity with the use b:r the Refru machine

of different sentences. ve S1 all picture dynamic arcs by more

or less horizontal solid lires in the order from top to bottom.

'!he states will be numbered, and for each number the corresponding

configuration will be gi\en in the list of~ onfigurations

accompanying the graph.

A ~onfiguration may be either aative, if it includes at

lea~ one concretization sign k, or passive, if this is not the

case. Acti~ configurations will be depicted as circles, and

passive as squares, with the number of state inside.

There will be two standard designations:

D and

representing the empty configuration and the state recognition

impossibZe of the Refal machine. Each graph of states will

76

have as a starting point a fuZZ configuration; the correspond

ing state will be called the start of the graph. During the

construction of the graph of states, we will be applying the

rules of driving to some configurations, thereby exploring

their evolution in time. These configurations (more precisely,

the corresponding vertices, i.e. the states) will be referred

to as explored, and the others as unexplored, these notions

being applicable of course only to active configurations.

The formal indication that a vertex is explored is the presence

of at least one outgoing dynamic arc. If it is found for

this configuration that the recognition is impossible, we use

a dynamic arc leading to vertex [1] as mentioned above.

A finite graph of states without unexplored vertices

will be called aompZete.

Theorem 4.1. Let S be the start configuration of a

complete graph of states G. Then for every exact state from

S we can find all the subesquent states of the Refal machine

using only graph G.

At the present time we are proving this theorem for the

case when graph G consists only of vertices and dynamic arcs,

and we shall complete the demonstration later. Replace free

variables in the start configuration by their values. We shall

be able to choose uniquely one of the dynamic arcs which

originate from the start, or else establish that recognition

is impossible. In the former case we come to the next exact

state. If it is passive this is a normal stop of the Refal

machine, if it is active it is explored, and we continue to

apply the same procedure.

Our goal in the theory of compliation is to know how to

construct complete graphs of states. Let us start with examin

ing this process on the following example. The algorithm in

the memory-field is:

a e1 • 6() e1
B (e1) /PLUS/ e 2 • 8(e1 +) e 2

B (e1) s 2e 3 • 8(e1 s 2 > e 3

B (e1) • e 1
77

And the initial configuration is

(1) a A /PLUS/ e 1 /PLUS/ B l
Executing three steps of driving we get the following

graph (Figure 1):

Figure 1

with the configurations:

(2)

(3)

(4)

B() A /PLUS/ e 1 /PLUS/ B 1
B(A) /PLUS/ e 1 /PLUS/ B 1
8(A+) e 1 /PLUS/ B 1

The vertices from which only one dynamic arc without

contractions originates, such as 2 and 3 in Figure 1, will

be called transitory. A transitory vertex different from the

start vertex (this restriction is to avoid confusion with the

identification of the initial state) may be removed from the

graph of states. We shall remove transitory vertices in this

example, and will do so later on, if the opposite is not

explicitly stated.

A straightforward application of Rule Fl to our graph

transforms it into Figure 2.

e 1 -+ <empty>

e 1 -+ <empty>

Figure 2

78

The list of new configurations is:

(5) A + + B

(6) 8 (A + + el /PLUS/ B 1
(7) B (A + 52) el /PLUS/ B 1

The third arc outgoing from state 4 will never be used,

because it is screened by the first arc with the same contrac

tion. To see more clearly how the graph of states transforma

tions correlate with equivalent transformations of Refal

programs as formulated in Chapter 3, we shall at this point

start outlining the procedu~e of mapping the graph on the

Refal machine.

Each configuration of the source Refal machine M5 will

be mapped on a configuration of the object Refal machine M0 ,

which has the special form:

where n is the sequence number of the configuration, m is the

number of (different) free variables, and V. are these
1

free variables. en stands for an active, and Pn for a passive

configuration. While a configuration is yet unexplored, its

definition in Refal will consist of one sentence, the left

side of which is its notation in M0 terms and the right side

is the defining expression in M5 terms. For instance, the

starting point in our case is:

k c1 (e1) ~ a A /PLUS/ e 1 /PLUS/ B 1
Performing driving, we first of all express the right side

of the sentence in terms of M0 configurations. As a result, the

sentences de~ining an explored configuration will have both

sides expressed in M0 terms, thus representing not a condition
s 0

of correspondence between the states of M and M , but a dynamic

transformation taking place inside M0 • When there are no

unexplored configurations (a complete graph), we get a completed
0 program for M •

79

The stage of work represented in Figure 1 corresponds to

the following program

k c 1 {e1) ~ k c 4 (e1) 1
k c4 {e1) ~ B {A +) e 1 /PLUS/ B 1

At the stage of Figure 2 we get:

C4.1

C4.3

k c 1 {e1) ~ k c 4 <e1) 1
k c4 <) ~ k Ps 1

/PLUS/ e 1) ~ k c6 {e1) 1
~ k Ps 1

~A+ + B

k c6 (e1) ~ B{A + +) e 1 /PLUS/ B 1
k c7 {e1) {s 2) ~ S {A + s 2) e 1 /PLUS/ B 1

We want to make the object code in Refal as efficient

as possible, so before continuing exploration we will drive

configuration c 4 in the definition of c 1 , thus eliminating c 4

altogether. First, this reduces by one the number of steps

necessary to co cretize c 1 ; second, this has some additional

implications, which will be discussed later. Also we simplify

the definition of c 4 using the rule of screening {A3) to C4.3

and

get

{8)

{ 9)

(10)

C4.1 to eliminate C4.3.

k cl {) ~ k Ps 1
k c 1 {/PLUS/ e 1) .. k c6 {el) 1
k

1 C {s 2 e 1) ~ k c7 {el) {s 2) 1

If we execute one more step of driving in Figure 2

the graph in Figure 3, with the new configurations:

A + + + B

8{A + + +) e 1 /PLUS/ B 1
8{A + + s 3) e 1 /PLUS/ B 1

80

we

(11)

(12)

(13)

A + s 2 + B

8(A + s 2 +) e 1 /PLUS/ B 1
B(A + s 2 s 3) e 1 /PLUS/ B 1

e1-+ <empty>

e1-+ /PLUS/

e 1 -+ /PLUS/el e1 -+ s3 e1

e1 -+ <empty>

e1

e1 -+ /PLUS/ e 1

e1 -+ s3 e1

Figure 3

Mapping this graph onto the object Refa1 machine M0 ,

we again perform "M0 to Mo .. driving. Configurations c 6 and

disappear, and we receive:

k c1 () ~ k cs 1
k c1 (/PLUS/) ~ k p8 1
k c 1 (/PLUS/ /PLUS/e1) ~ k c9 (e1) 1
k c 1 (/PLUS/ s 3 e1) k 10 1 ~ C (e1) (s 3)

k
1

k P11 (s2) l C (s 2) ~

k
1

k c12 (e1) (s 2) 1 C (s 2/PLUS/ e 1) ~

k
1

~ k c13 (e1) (s 2) (s 3) C (s 2 s 3 e 1)

81

c7

1

There are as many sentences here as there are paths on

the graph, which start from c1 and end at an unexplored or

passive configuration. The left side of each sentence is the

composition of the contractions which appear on all arcs of

the corresponding path.

It is easy to see that we can proceed in this way ad

infinitum. But we need a complete graph, which is, first of

all, finite. To accomplish this, we shall use the method of

generalization. Comparing all active configurations in our

graph we perceive that with the exception of c1 , all are

of the form

B (E) e 1 /PLUS/ B 1
where E is different for different configuration expres

sions. Let us introduce a generalizing configuration

that is such a configuration that all the others could be

produced from it by substitution. For instance, c12 can be

produced from this configuration by the substitution e 2~ A+s 2+.

Note that there is a great deal of arbitrariness in this choice.

There is always the possibility of taking B ex 1 as a generali

zation. But because of the reason to be presented later, too

"sweeping" a generalization does not lead to efficient pro

grams. On the other hand, there is a more specific configuration

in our case, which could also be taken as a generalization,

namely,

B (A + e 2) e 1 /PLUS/ B 1
but the first configuration is easier to discover and it leads to

the same result with respect to efficiency.

Now we represent configuration c4 as a special case of c14 ,

i.e. configuration c14 where variable e 2 has taken the value A+.

On the graph of states, we shall draw a representation arc,

depicted by dashes, from c4 to c14 (see Figure 4). The substitu

tion expressing the values of the new configuration through the

values of the original will be indicated as an assignment

H2

statement on the arc. But instead of the usual form

e := E
X

we used earlier, we shall write this assignment in the form

E +- e
X

This fornl, which may seem strange at first glance, is in fact

very natural and convenient in the analysis of graphs of

states and permits better understanding of the relationship

between the contraction and the assignment. This notation

is a part of a consistent system of notation, based on the

following principles:

(1) In writing a substitution we always use an arrow

which is directed from the variable to be replaced to the

substitutins expression.

(2) Seen another way, a substitution may reflect a

relationship beb1een two groups of variables: those of the first

group are old variables, i.e. they are already defined (have

values), those of the second group are new, i.e. they get

defined by the substitution. We shall always put the old

valicbles on the left and the new on the right of the

substitution formula. Tl~us two types of substitution ene rge,

contractions and assignments, as presented in the following

scheme:

Con traction

Assigmnent

Old variables
(already de fined)

v

f

New Variables
(being defined)

L

v

W1-: re L is an L-a xpression incluuin g (possibly) new variables,

and E is any expression, ,.,hich may include old variables;

V is a single variable.

(3) In the notation of substitution, the variable which

is to be ~placed and the expression in ~ich the replacement

must be performed make a pair separated by the substitution

sign I I , and the arrm1 points to the substituted expression.

83

We have already used one form:

E II V-+ E'

The other form, completely equivalent from a syntactical point

of view, is

E' +- V II E

(4) When we construct a graph of states we move from

left to right defining new variables. Therefore the lists of

both contractions and assignments will be lengthened (and read)

from left to right. But because of the different directions

of the substitution arrows, the law of composition of substitu

tions will be different for contractions and assignments,

although equally easily suggested by our representation:

(V -+ L 1) (v -+ L 2) = v -+ (Ll II v -+ L 2)

(El +- V) (E2 +- V) = (El +- v II E2) +- v

A variable like e 2 in Figure 4, which is introduced by

an assignment statement, will be called a genePalization vaPi

abZe. When we model the concretization process using the

graph of states, all generalization variables will take definite

values expressed in terms of the values of free variables and

constant expressions. But in the process of exploration

(when constructing the graph) we treat them as if they were

free: hence generalization.

So, when we derive, for the first time in the process of

driving, configuration (4), we come over to configuration (14)

(see Figure 4 below). This procedure will be called submission:

we will say that we submitted c4 to c14 . Then we continue to

drive c14 , and find out that the two active configurations we
15 16

receive on the next step, C and C , also can be submitted

to c14 , thus making the graph in Figure 4 complete: there are

no unexplored states any more.(*)

(*) Somet1'mes h 11 11 we s a use a sma square D instead of

<empty>.

84

Figure 4

(15) e2 + B

(16) 8(e 2 +) e 1 /PLUS/ B 1
(1 7) 8(e2 s 3) e 1 /PLUS/ B 1

Mapping this graph on the object

returning to passive configurations

natural form, we derive:

1 k c (e1)

k cl4 (e2)

k c14 (e2)

k cl4 (e2)

()

(/PLUS/e1)

(s3el)

in

~

~

~

~

Refal machine and

the final result their

k cl4 (A+) (el) l.
e 2 + B

k c 14 (e +) (el) 1
14 2

k c (e 2s 3) (el) 1
Hurrah! We have brought our first process of compilation

to a successful end. Let us evaluate the result. It is fairly

good. In the original program, the string to be processed

consisted of three parts: A /PLUS/ was the first, e 1 the

second, and /PLUS/ B the third. Only the second, middle

part was unknmm; the other two (which might have been much

longer, of course) could be processed beforehand in order to

optimize the algorithm. This is just what the compilation has

accompliseed. The new algorithm stores the processed first part,

then processes the unknown part, and upon completion, adds on

at the end the processed third part. The algorithm of proces

sing the unknown part is exactly the same (disregarding format

differences) as the original one.

Let us consider another example. This is the program:

~5

cp ,.

cp el 52
,. ljJ cp el 11

ljJ el
,.

and this is the initial configuration:

{1)

After several steps of driving we come to the graph of

states shown in Figure 5:

{1)

{ 2)

{ 3)

{ 4)

el -+ 0

e -+ 0
el -+ els2

ljJ cpel 11
el -+ els3

1jJ ljJ cp el 111
ljJ ljJ ljJ cp el 1111
ljJ ljJ ljJ ljJ cp el 11111

Figure 5

el -+ 0

el -+ els4

Obviously, this graph can be continued endlessly, and

it cannot be made finite by submission of configurations {2),

{3), etc., to a generalization: there is no generalizing

configuration of these configurations, because they have

different numbers of concretization signs. To represent such

situations on the graph of states we introduce the third

{and the last) type of arc: a composition a~c, which will be

depicted by a vertical "wavy" line. Using this device we

construct a graph of states shown in Figure 6:

{1)

{ 2)

{ 3)

0-

Figure 6

86

Now, with the introduction of composition arcs, the full state

of the Refal machine (exact or. generalized) is character-

ized not by a single vertex, but, generally, by a vertical row

of vertices connected by composition lines. When we proceed to

explore the lower (internal) configuration, the upper (external)

one does not go anywhere: it stays put. It is only for the

sake of convenience that we do not represent external parts

in trailing the fate of the internal parts, and this becomes

possible because the external part remains unchanged (except

for possible contractions) until the transformation of the

internal part is completed. So, the graph shown in Figure 7a

stands actually for what is depicted in Figure 7b (both graphs

are showh schematically) •

(a) (b)

Figure 7

Note that unlike external parts, all the internal parts of a

configuration do participate in the transformations, therefore

when an upper vertex is explored, the lower part disappears,

as can be seen in Figure 7b: transitions c5 to c7 and c5 to P9 •

87

Like two other types of arc, a co~position arc represents

a substitution, but this time it is the substution of the

Pesult of concPetization, for the computed vaPiable of the tail

vertex indicated at the arc (e in Figure 6). Computed vari-x
ables are absent in the original configuration. When we decompose

configuration (1) in Figure 6 into the composition of (2) and (3),

we introduce a variable, e , which, like a generalization variable,
X

is not fPee to assume any syntactically allowed value: its value

will be uniquely determined by the values of free variables in

(3) after the concretization of (3) is performed. But when we

explore tl1e extePnal (tail vertex) configuration, we treat the

computed variable as if it were free. This is why decomposition

is also a type of generalization -- the external configuration

represents a wider set of exact states than the set of those

states which are actually possible at that moment. Generaliza

tion variables and computed variables will be referred to as

Pedundant variables.

We had no choice as to how to decompose configuration (1)

into two configurations, because it contained only two concreti

zation signs. In the general case, when there are more than two

concretization signs, there is some freedom in selecting the

intePnal configuration, in other words, the subexpression to

be driven first. The most reasonable way is to use the

fPom without within strategy mentioned in Section 3.5. After

the selected subexpression has been replaced by a computed vari

able, the external configuration may again be decomposed in two,

using the same startegy. Another possibility is always to

select for driving the subexpression beginning with the leading

sign k.

Now we can complete the proof of Theorem 4.1. The rules

of construction of representational and compositional arcs, like

those of dynamic arcs, are such that the variables in the

head-vertex of a representation arc assume unique values if the

variables of the tail-vertex have taken definite values, and

the noncomputed variables in both ends of a composition arc

assume unique values if the variables of the tail-vertex of the

88

preceding dynamic or representation arc have taken definite

values.

The dynamic transition from a generalized state which

is not at the bottom of a vertical segment is, normally, condi

tional, depending on the value of the computed variable. When

we model the Refal machine with the help of the graph of states,

we will face the problem of making this conditional jump only

after the lower part of the segment has been concretized, and

therefore the computed variable has taken on a definite value.

Hence, dynamic transitions will be as unique in the case of

full states represented by vertical segments as they are with

full states represented by single vertcies. Thus, at every

step of the Refal machine we will know its exact state, which

completes the proof.

4.3. Clean Graphs

Let us sum up what the graph of states is.

--The vertices of a graph of states are (generalized) states

of the Refal machine, but not every possible state of the Refal

machine may be represented by a single vertex. Generally, a

state of the Refal machine is a vertical segment, i.e. a

sequence of vertcies connected by composition arcs.

--with each vertex a configuration is associated, which is,

generally, restricted in accordance with the location of the

vertex in the graph. Each vertex is identified by its number.

More than one vertex may be characterized by the same configura

tion.

-~enerally, a graph of states is not a tree, but it is

convenient to represent it as a tree, some terminal vertcies

of which may be identical to (have the same number as) a non

terminal (explored) vertex. We assume now that the graph of

states will always be represented in the form of a tree(even if

it is pictured with loops), because this simplifies dealing

with graphs. We shall call a path in a graph a sequence

v 1A1V2A2 ••• vk-lAk-lvk , whose terms are alternately vertcies

89

V. and arcs A.
1 1

such that k > 1 and for 1 < i < k the arc A.
1

leads from v. to v. 1 ,
1 1+

and all the vertices are distinct from

each other.

--There are arcs of three types in the graph of state~.

Dynamic and representation arcs will be occasionally called

horizontal, as opposed to vertical composition arcs. vertices

may be called active or passive, corresponding to the configura

tion they belong to. From an active vertex either one represen

tation arc or several dynamic arcs must originate. Dynamic arcs

are ordered. From a passive vertex no horizontal arcs may origi-
.I

nate. Independently of horizontal arcs, one vertical arc may

or may not originate from a vertex. In a vertical segment, a

horizontal arc may lead only to its topmost vertex.

--Dynamic arcs bear contractions, representation arcs bear

assignments. Assignments are, at the same time, generalizations.

Let assignment E ~ V be borne by an arc leading from en to em.

Then variable V in em has the full scope of values, i.e. repre

sents the set of all syntactically allowed values. Those

variables which are not indicated in the right side of one of

the assignments have the same meaning as in the preceding con

figuration. Contractions and assignments define new variables

or redefine old ones. The variables defined by assignments will

be referred to as Jeneralization variables. A computed vari

able is defined in a vertex if it is borne by the composition arc

originating from this vertex. When this configuration gets

explored, the computed variable is treated as a free variable

having its full scope of values. Free variables appearing in

the staj~configuration are, ipso facto, defined, and have their

full scopes of values. Only those variables may appear in a con

figuration which have been in some of these ways defined on the

path from the start to this configuration.

--An active vertex is explored, if on the path from it to

a terninal (in the tree representation) vertex there is at least

one dynamic arc. A graph is complete if all terminal vertices

are either passive or identical to one of the explored vertices.

90

We shall introduce now several new definitions. Input

vaPiables in a graph of states are the free variables of the

sbut configuration. Input variables, generalization variables

and computed variables will be referred to as quasiinput

vaPiabler,. An exact quasiinput state is specified when a

value of each quasiinput variable is specified. A quas&

input set is a set of exact quasiinput states. In particular,

a quasiinput set may be a quasiin?ut class; it is specified

when contractions (possibly trivial) are specified for each

quasiinput variable. A quasiinput class can be represented

by a single pattern expression if we choose a way of combining

contractions for all the variables into one expressi~n. We

shall write a quasiinput class for the case of n ordered

quasiinput variahles in the form

where L. are the right sides of contractions for the variables.
1

To each exact 0uasiinput state a tePminal path (that is

a path ending with a terminal vertex) corresponds: the one

taken by the Refal machine if the quasiinput variables are

assigned corresponding values. We shall say that the exact

quasinput state takes this path and all its subpaths (paths

which are parts of the terminal path) . To each path in the

graph a quasiinput set corresponds which comprises all exact

quasiinput states taking this path. The same set corresponds

to the vertex which ends this path. A path is called feasible

if the corresponding quasiinput set is not enpty, otherwise

it is unfeasible. A graph in which there are no unfeasible paths

will be called clean.

To refer to a specific path in a graph of states, we shall

represent it as a sequence of vertex numbers, separated by

the following sym.'Jols: a comma "," representing a dynamic arc;

an equality sign "=" representing a representation arc; a

bracket"[" representing a composition arc. If different dynamic

arcs lead to vertices characterized by the same configuration

(or just to draw attention to a specific ar~) , we may indicate

the arc by placing the contraction borne by it in parentheses

before the corresponding comma, e.g. 6(e ~ T), 8 •
y

91

------~

------->0
------~

Figure 8

In Figure 8 the path leading to vertex 11 is 1 = 2,

4 = 6 [7, 11 . In configuration (11) the following variables

may appear: e 1 and sf as input variables, indicated, to make

it clear, at the start vertex (1); e 2 defined as a generali

zation variable at the path 1 = 2 and redefined at 4 = 6; s a
defined by the contraction on the path 2, 4. Input variable e 1
is subject to two contractions, and we can combine them into

one contraction: e 1 ~ sasfe1 . This is possible because between

the two contractions there is no redefinition of e 1 • If the

arc 4 = 6 bore assignment (e 2)sa ~ e 1 , it would give back

to e 1 its fully generality, and the contraction for e 1 at

vertex 11 would be simply e 1 ~ sfe1 •

We shall join input variables into a composite expression

as shown in the argument of configuration c1 in Figure 8 adding

newly defined redundant variables in the order of their

appearance. What is the quasiinput set corresponding to the

path leading to vettex 11 ? It may seem at first glance that

it is the class (sasfel) (sf) (e 2) • In fact, it is a subset of

this class, because of the restriction on the variable s a
resulting from the position of vertex 4 in the graph: s should a
be distinct from A, otherwise arc 2,3 will be chosen by the

Refal machine. Thus, configuration (4) is an example of a

restricted configuration. Restrictions on variables may produce

unfeasible paths if they are noc taken into account during the

process of graph construction. In Figure 8 the path leading to

vertex 9 is feasible, but adding to it arc 9, 10 we get an

unfeasible path: contraction s + A is impossible because of

the above-mentioned restriction. Consider configuration (5).

It is also restricted. Variable e 1 cannot. begin \vith a symbol.

This fact may be taken into account in drawing arcs originating

from vertex 5. There is no arc corresponding to the impossible

contraction, and at the vertex 14 the only possible value for e 1
is <empty>, which should be reflected in treating vertex 14,

to simplify the graph.

Now let us discuss, using Figure 8 as an example, the

problems we encounter trying to submit a new configuration to

an already existing one. Suppose we try to submit vertex 11

to vertex 5, as shown in the figure. We must answer two ques

tions. The first is: if we consider configurations correspond

ing to vertices 11 and 5 as full configurations, is it true that

configuration 5 is more (or equally) general than 11 ? To

answer this question we have to find out whether there exists

a substitution which changes configuration 5, being applied to it,

to configuration 11. This is a more special problem than that

for which the Generalized Projecting Algorithm was designed.

We do not need to find intersections; we only \vant to know

whether one patterh expression can be recognized as the other.

The algorithm for this problem is applicable to any pair of

pattern expressions and is an obvious generalization of the

projecting algorithm in Section 2.2, in which one allows free

variables in an "object" expression and treats them as unknown

wholes.

93

If we found configuration (5) to be no less general than

(11), we must answer the second question: are not the restric

tions on the variables in the earlier vertex more severe than

the restirctions at the current point? From this point of view,

we should not unconditionally submit vertex 11 to vertex 5,

because the variable e 1 as redefined at 11 may have its full

scope of values, while at vertex 5 it is restricted. But it

may happen that for some reason we are sure that the actual

scope of e 1 is limited to what it is at 5; then the submission

will be legitimate. If we do not have such (rather extra

ordinary) information, we should either explore vertex 11 as

an independent configuration, or generalize vertex 5 by making

a seemingly trivial assignment e 1 + e 1 , and reexplore it.

If all variables in a vertex have their full scopes, this

vertex may be made the start of a separate subgraph, not connected

with the main graph (and other subgraphs) in any other way

than by submissions.

TO deal with q11asiinput sets we need some additional

means of representing sets of object expressions. Fii:st we

define eight types of the simplest contractions which will be

called elementary. They are:

(1) s (P) . -+ s where s E p
1

(2) s (P) . -+ s (Q) . where Q c p
1 1

(3) s (P) . -+ s (P) . where i "I j
1 J

(4) e. -+ <empty>
1

(5) e. -+ s!e. where s! is new
1 J 1 J

(6) e. -+ (e!)e. where e! is new
1 J 1 J

(7) e. -+ e. s ! where s! is new
1 1 J J

(8) e. -+ e. (e!) where e! is new
1 1 J J

As in Chapter 3, unspecified s-variables are considered

here as having a special "any symbol" specifier which comprises

the infinite set of all symbols. Primed variables s! and e!
J J

stand for variables which are distinct from any already intro-

duced variable. They are, in fact, generators of variables,

the index of the newly generated variable being assigned as

the value to the index of the generator variable.

94

It is easy to see that all contractions which appear in

using the Generalized Projecting Algorithm (see Section 3.2)

are either elementary or compositions of elementary contractions.

For example, a contraction

represented as

of the form e. ~ S e. can be
1 1

I (e.+s.e.) (s.~S),
1 J 1 J

where contractions are to be applied from left to right.

Theorem 4.2. A composition of any number of elementary

contractions is a contraction to an L-expression. Conversely,

any L-expression can be represented as the composition of

a number of elementary contractions applied to an e-variable.

Proof. There are no elementary contractions which would

change one e-variable into another, and only new e-variables

may be introduced. This means that no repeated e-variables

may result from a composition of elementary contractions. New

e-variables emerging due to elementary contractions are always

at a different level of parenthesis structure, therefore no

pair of e-variables on the same level may appear. So, both

requirements to L-expressions are satisfied, which proves the

first part of the theorem. To prove the second part, we only

have to notice that applying the GPA to project any given

L-expression on a single variable e 1 , one receives a represen

tation of this L-expression in the form e 1 // 6 , where 6 is a

composition of elementary contractions.

By A \ B we denote the difference between sets A and B,

that is the set of all elements of A which are not at the same

time elements of B • As usual, A\ B \C means (A\ B) \C etc.

If the definition of a function in Refal consists of sentences

with left sides L1 ,L 2 , ••• ,Ln , then the set of all object

expressions for which the k-th sentence will be used is

(1)

We call this set a restricted class; expressions L1 ,L 2 , .•. ,Lk-l'

which are negative, will be called restrictions on the class Lk.

95

It is very difficult to establish from a record of such a form

whether the set is empty or not. As the first step to amend

the situation, we replace r~strictions on the class by

restrictions on the variables. Using the GPA we find k-1

intersections:
r. j
U 1 Lk I I L\ ,

j=l
i = 1,2, ••.

where ~~ are contractions
1

of the variables in Lk. Now we

represent our restricted class

~1 \\ t-2 .•• \\~r1 1 (2) Lk \\ 1 1

in

"
the form

~1
rk-1

···''~k-1 2

k-1.

where ~~ will be referred to as restrictions on the variables
1

in Lk. To determine whether a given object expression belongs

to this restridred class we first recognize it as Lk. If we have

succeeded in that, we find out whether the values assigned to

the variables in Lk allow at least one of the contractions ~i
If it is the case, the object expression does not belong to the

set, otherwise it does belong.

Operation\\ (read: "restriction"), applicable to a set

E of object expressions and a substitution ~ , produces, like

operation II (substitution), a subset E \\ ~ of the set E, but

unlike the case of substitution this subset is not generally

a class when E is a class.

The expression

means

The operation of restriction is commutative in the sense:

E \\~1 \\ ~2 = E \\ ~2 \\ ~1

For the operation of substituting a simple rule holds

with respect to the composition of substitutions:

which is true by the definition of composition. For restriction

the corresponding rule is more complicated:

96

(RC) E \\ (<\ o2 o3 ••• on) = E \\ o1

u (E II o1) \\ o2

u (E II o1 II o2) \\ o3

We shall refer to this rule as RC (Restriction-Composition)

and use it for the case when 6. are elementary contractions.
l.

The rule permits decomposing a class restricted by any

contraction into a union of classes restricted by single

elementary contractions. Now, the following distributive law

holds, obviously, with respect to union and restriction:

(UR) (E 1 u E2 u ••• u En) \\fl = (El \\ fl) u .•• u (En\\ fl)

We shall refer to this law as Rule UR (Union-Restriction) •

It is easy to see that by algebraic manipulation based on Rules

RC and UR we can represent any restricted class (1) (represented

first in the form (2) through the use of the GPA) in the form:

~ 2 n
Lk L~ u Lk L u ..• u Lk L

where Li are compositions

i i i ai
L = a 1 a2 p

of "constrictions" (i.e. contractions or restrictions)

a~ is II 6~ or\\ 6~
J J J

where 6~ are elementarv contractions. J •

i
a . :

J

For example, let a restricted class X be written in the

form (2) as:

where

l:ll = 01 °2 °3

fl2 = 64 65

We proceed as follows (using + instead of U):

97

The set X will be the sum (union) of the following three sets:

(L \\ 61) \ \ !12 = L \\ 61 \\ 64 + L \\ 61 II 64 \\ 0-
~

(L II 61 \\ 62) \\ !12 = L II 61 \\ 62 \\ 64

+ L II 61 \\ 62 II 64 \\ 65

(L II 61 II 62 \\ 6 3) \\ !12

= L II 61 II 62 \\ 63 \\ 64 + L II o1 I I o2 \\ 63 II 64 \\

A composition product Li = ai ai
1 2 ai of constrictions

p
will be referred to as a constriction term. :.-Ihen we start

algebraic manipulation with a class E somehow restricted, all

further transformations and subset formations will produce

unions (sums) of the form

ELl u E L2 u .•• u E Ln

Therefore, in formulating the rules of manipulation we can omit

a~bitrary E and consider constriction sums

Ll u L2 u .•. u Ln

or

~1 + ~2 ~n t- t- + ••• +t-

For example, Rule (RC) may be written as

\\ (6 1 6 2 ••• 6n) = \\ 61 u II 61

+ ••• +II o1

Our task now is to develop algebraic rules for simplifica

tion of constriction terms. We note first that if a term

begins t~ith a number of "positive" contractions (contractions

proper) we can simply perform the corresponding substitutions

in E.. If we want the result not in the form of the union of

restricted classes but in the form of a constriction sum

applied to the original E, we shall remember the corresponding

contractions for each term and add them at the left side.

Thus whenever we are concerned with simplification, the term

begins with a "negative" contraction (restriction) :

98

65

(A)

Second, we notice that restrictions, unlike contractions, are

commutative. Therefore we can organize the process of trans

formation in the following way. At the beginning of the sequence

being transformed we shall always have a group of restrictions

which have been processed already:

{\\ 01 \\ 02 ••• \\ om} crm+l ••• crp

If crm+l involves a variable which is not involved in the group

of processed restrictions, then it is commutative. We either

apply a substitution om+l to E if crm+l is a contraction II om+l ,

or treat the restriction as if it were in the first place in

the sequence: case (A). In particular, no action may be taken

other than adding\\ om+l to the list of processed restrictions.

Suppose now that the replaced variable in crm+l is identical

to the variable in one of the processed restrictions\\ o • Two
X

cases are to be considered:

(B)

(C)

\ \ 0
X \\ om} I I om+l

\ \ 0 m} \ \ 0 m+ 1

In both cases we can formulate rules which involve only

ox and om+l , but in case (B) we must remember that II om+l

does not commute with\\ o generally; therefore to transfer
X

II om+l to the beginning we must compare it to all \\

ing the same variable. In case (C) it will not be an

to add\\ o 1 to the list, but again we must try all m+

o involvx
error just

possible

pairs\\ ox\\ om+l if we want a maximum of simplification.

There are three groups of rules to manipulate constric

tions, which correspond to cases (A), (B), and (C). The rules

of the first group are elimination rules; they are applicable

to a single restriction, no matter whether there are other

restrictions for the same variable or not. The rules of the

second and third groups are correspondingly applicable to pairs

restriction-contraction and restriction-restriction.

99

For our purpose it is necessary now to treat separately

the cases of a finite specifier, i.e. of a variable of the

form s(P). , and of
1

unspecified varibble

the "any symbol" specifier, i.e. of an

s. • Therefore, instead of three
1

elementary contractions involving an s-variable, we will have

six elementary contractions; this brings the full number of

elementary contractions to eleven. In what follows we describe

not only the rules of transformation, but the algorithm of

their application (with some freedom of variety). We shall

always make full lists of possible cases, and if no simplifi

cation is possible indicate this as "no action".

A rule of the form

L: 1 = L: 2 u L: 3

should be understood as: with any E

A. Elimination Rules

A.l \\ s. -+ s (Q) .
1 1

A. 2 \\ s(P).-+ s(Q.)i = II s (P) . -+
1 1

A. 3 \\ s. -+ s
1

s(P\0).
- 1

A.4 \\ s ~ P) . -+ s = II s (P) . -+ s(P\{S}).
1 1 1

A. 5 \\ s. -+ s.
1 J

A. 6 \\ s (P) . -+ s (P) .
1 J

A.7.L \\ -+ 0 Ul I
e.) u Ul e. = e. -+ s. e.

1 1 J 1 1

A. 7R \ \ e. -+ 0 = Ul e. -+ e. s ~) u Ul e.
1 1 1 J 1

A. 8 \\ e. -+ s~ e. = Ul e. -+ 0) u Ul e.
1 J 1 1 1

A. 9 \\ e. -+ (e!) e.= Ul e. -+ D) u Ul e.
1 J 1 1 1

A.lO \ \ e. -+ e. s! = Ul e. -+ 0) u Ul e.
1 1 J 1 1

A.ll \\ e. -+ e. (e!) = Ul e. -+ 0) u Ul e.
1 1 J 1 1

no action

no action

no action
I -+ (e.) e.)
J 1

-+ e. (e!))
1 J

-+ (e ~) e.)
J 1

-+ s~ e.)
J 1

-+ e. (e!))
1

I)
-+ e. s.)

1 J

Elimination rules are applied as soon as a negative term

is located. Either of the rules A.7L or A.7R may be used,

and a clever algorithm may make a guess as to which choice

will be more expedient. Also, it is possible to take

no action at all, and we shall include this possibility in

subsequent considerations.

lOO

So, after applying elimination rules we face a situation

when only five out of eleven restrictions may take the place

of 6 in (B), and both 6 and 6 +lin (C). Now, for a shorter
X X m

formulation of rules B and C, we again unite cases 5 and 6

(as listed in the Elimination Rules) into one case s(P). ~ s(P). ,
J J

and in addition consider case 3 as a special variation of

case

B.

B.l

B.2

B.3

B.4

B.S

B.G-9

1, by considering symbol S as s' (Q) . with Q =
J

{S}.

Restriction-Contraction Rules

\\ s. ~ s (Q) i II s. ~ s(Q'). = II s. ~ sCQ' \ Q) .
l. l. l. l. l.

\ \ s. ~ s (Q) . II s. ~ s. =II s. ~ s. \\ s. ~ s (Q) .
l. l. l. J l. J J J

\ \ s (P) . ~ s (P) . II s (P) . ~ s (Q) .
l. J l. l.

= Ul s (P) . ~ s (Q) . \\ s (P) . ~ s (Q) .)
l. l. J J

u (/I s (P) . ~ s (Q> i I I s (P) . ~ s (Q) j \\ s (Q) . ~ s (Q) .
l. J l. J

\ \ s (P) . ~ s (P) . II s(P)i ~ s(P)k =
l. J

if k = j then ¢ else

II s (P) .
l.

~ s (P) k \\ s (P) k ~ s (P) .
J

\\e. ~ 0 II e. ~ 0 = ¢
l. l.

\\e. ~ 0 II e. ~ E = II e. ~ E
l. l. l.

where E is one of: s!e. ,
J l.

(e!)e., e.s!, e. (e!) •
J l. l. J l. J

c. Restriction-Restriction Rules.

c.l

C.2

C.3

\\ s. ~ s (Q) . \ \ s. ~ s(Q'). = \\ s. ~ s(Q u Q').
l. l. l. l. l. l.

\\ si ~ s (Q) . \ \ s. ~ s. no action
l. l. J

\\ s (P) . ~ s (P) . \\ s (P) . ~ s (Q) i
l. J l.

if Pis "any symbol", then no action else use Rule A.2

for the second restriction; then use B.3.

)

.c. 4 \\ s (P) . ~ s (P) . \ \ s (P) . ~ s(P)k no action (k~j is implied)
l. J l.

c.s \\ e. ~ 0 \\ e. ~ 0 = \\ e.~ 0
l. l. l.

e.G \ \ e. ~ 0 \\ e. ~ s!e. = II e. ~ (e!) e.
l. l. J l. l. J l.

101

c.7 \\ e. -+ 0 \ \ e. -+ (e!) e. = II e. -+ s ! e.
1 1 J 1 1 J 1

C.8 \\ -+ 0 \\ I

II (e!) e. e. -+ e. s. = e. -+ e.
1 1 1 J 1 1 J

C.9 \ \ e. -+ 0 \ \ e. -+ e. (e!) = II e. -+ e. s !
1 1 1 J 1 1 J

'V'Jhenever in any of the rules an empty specifier appears

in a "positive" contraction, the corresponding term in the

union must be set empty.

There is one additional rule:

D. Rule of Symmetry.

D. \\ s (P) . -+ s (P) . =
1 J

\\ s(P).-+ s(P).
J 1

This rule is used for restriction\\ o , when constric
x

tion om+l has in its left side variable s(P)j.

Because of the eliminatrion rules, only the following four

types of restrictions may enter the list of processed restric-

tions:

(1) \\ s. -+ s(Q.)i
1

(2) \ \ s. -+ s.
1 J

(3) \\ s(P).-+ s (P) .
1 J

(4) \\ e. -+ 0
1

where P and Q are finite (not "any symbol") specifiers. By using

rules of groups B and C, and rule D, we ultimately represent

each restricted subclass in the form

+ + - -o = E • I I o 1 . . . I I o \\ o 1\\ ... \\ o
q 1 p q

where each of the restrictions\\ o7 is one of the four tvpes
1 ~-

above. We notice in addition that for each unspecified

s-va~iable there Qay be only one restriction (1) (because of

Rule C.l), and a number of restrictions (2). For a specified

s-variable there may be only some restrictions of type (3);

for each e-variable there may or may not be one restriction (4)

in the list. A restricted class so represented will be

reLerred to as s-PestPicted.

102

Example.

In the definition of a symmetric binary string:

.1 a ~ T

.2 a s(l0) 1 e 2 s(l0) 2 ~a e 2

.3 a e 1 ~ F

what is the set X of expressions processed by the third sentence?

This set may be represented in the form (1) as

X= e 1 \ 0\ s(l0) 1 e 2 s(l0) 1

Projecting the left sides of the first and second sentences

of e 1 , we get representation (2):

X = e 1 \\ e 1 -+ 0 \\ (e1 -+ s 3e 1) (s 3 -+ s (10) 3) (e1 -+ e 1 s 4)

• (s 4 -+ s(l0) 4) (s(l0) 4 -+ s(l0) 3)

Using Rules RC and UR we get:

x = x1 u x 2 u x3 u x 4 u x 5

(because of the composition of five contractions).

Let us transform each term now:

x1 = e 1 \\ e 1 -..- o \\ e 1 -+ s 3e 1 = e 1 II e 1 -+ (e 5)e1 = (e 5)e1

[Rule C.6]

x2 = el \\ el --!- 0 II el ~ s 3el \ \ s 3 -+ s(l0) 3

= el II el -+ s3el \\ s 3 -+ s(l0) 3 = s 3e 1 \\ s 3 -+ s(l0) 3

[Rule B.6]

x3 = el \\ e ~ 0 II el -1 s 3e 1 II s 3 -1 s(l0) 3 \\ el ~ els4 1

= s(l0) 3 e 1 \\ el -+ e 1 s 4 = s(l0) 3U s(l0) 3 e 1 (e)
y

[Rule A.lO]

x4 = el \\ e 1 -+ 0 II e 1 -+ s 3e 1 II s 3 -+ s(l0) 3 II e 1 -+ el s4 \ \

= s(l0) 3 els4 \\ s4 -+ s(l0) 4

xs = s(l0) 3 e 1 s(l0) 4 \\ s(l0) 4 -+ s(lO)._
_)

103

s 4 -+s (10) 4

Thus the set X is the union of six s-restricted classes:

X = (e 5)e1 u s 3e 1 \\ s 3 ~ s(l0) 3 u s(l0) 3 u s(l0) 3 e 1 (e6)

u s(l0) 3e 1 s 4 \\ s 4 ~ s(l0) 4 u s(l0) 3e 1 s(l0) 4 \\ s(l0) 4 ~s(l0) 3

An s-restricted class may be empty even if this is not

immediately obvious (we recall that when an empty specifier

appears, the class is removed in the course of transformation,

so in an s-restricted class no specifier may be empty). The

following is an example:

s(l0) 1 s(l0) 2s(l0) 3\\ s(l0) 1~ s(l0) 2\\ s(l0) 1~ s(l0) 3\\s(l0) 2
~ s(l0) 3

Our task now is to construct an algorithm which would

determine whether a given s-restricted class is empty or not.

We shall construct this algorithm as actually picking up one

representative of the class, if such exists. We notice that

only restrictions of the type

\\ s(P)i ~ s(P)j

may cause trouble in picking up a representative. Indeed, the

restriction

\ \ s. ~ s (Q) .
1 1

leaves us with still an infinite choice of possible symbols

The same is true with respect to a restriction of the form

s. 0

1

\\ s. ~ s.
1 J

(we can just take a new symbol for each new unspecified s-vari

able we encounter). And of course, there is no problem in

picking up a nonempty expression.

If we have a system of inequalities for a number of

s-variables with a finite specifier P consisting of p different

symbols, we construct a graph G, the vertices of which are these

s-variables, and two vertices i and j are connected by an edge

if there is a restriction \\ s (P). ~ s (P) . or \\ s (P) J. ~ s (P} .•
. 1 J 1

Then we compute (see, e.g., [27]) the chromatic number x(G),

that is the minimum number of colors needed to color verticies

104

in such a manner that no adjacent vertices have the same color.

If X(G) > p, the restricted class is empty, otherwise we can

pick up a represent•ltive, treating symbols from P as colors.

The result of our consideration may be formulated as

Theorem 4.3. For each vertex in the graph of states of a

Refal machine, the quasiinput set can be represented as a

union of nonempty s-restricted classes.

Now we know how to clean the graph of states; we remove

all vertices to which empty quasiinput sets correspond; we

also remove dynamic arcs leading to these vertices.

This gives us

Theorem 4.4. An algorithm exists which makes any graph of

states clean.

4.4. Compilation Strategy

When we have constructed a complete graph of states,

we have represented the set of all possible s·tates (with a

given start) as compositions of certain subsets configurations.

Thus constructing a graph of states produces a set of configura

tions. Conversely, if we specify, no matter how, a set of

configurations which we call basic, and if we agree that only

basic configurations may enter the graph of states, we will

to a considerable extent define the graph of states to be

constructed. Into the set of basic configurations we include

of course only active configurations: there is no point in

restricting passive configurations from entering a graph of

states. The general scheme of constructing a graph of states

is as follows. Starting with the initial configuration, we

execute driving, and every time that we receive an active

configuration we decide whether to continue driving or to

express the configuration through some explored basic configura

tions and stop driving. More specifically, the stPategy of

compilation may be defined by giving answers to the following

questions:
105

(1) How do we choose the subexpression to be driven? Two

most natural strategies would be, first, following the defini

tion of the leading concretization sign, and second, the

strategy "frorn without within".

(2) When do we start trying to stop driving? For example,

we may take as a rule never to stop on a transitory vertex,

no matter whether or not it is a basic configuration.

(3) When and how do we decompose a configuration?

(4) What should be the initial list of basic configurations,

or the initial criterion for a configuration to be basic?

(5) When and how do we expand the list of basic configura

tions, or to change the criterion?

With a compilation strategy given, the first question to

answer is: will this strategy necessarily lead to the con

struction of a finite complete graph?A question still more

fundamental: are there any strategies at all which always

lead to a successful end (complete graph)?

The answer to the last question is positive. There is

a compilation strategy, which finds itself at the extreme

interpretation end of the interpretation-compilation axis.

It may be called generalization to functions. With this

strategy the following answers are given to the five above

mentioned questions:

(1) The range of the leading concretization sign is chosen.

(2) Try to stop at every step.

(3) Always decompose a configuration which has more than

one k-sig~ separating the leading subexpression.

(4) Basic configurations are configurations of the form:

k F ex 1
with any determiner F.
(5) This criterion does not change.

Essentially, this strategy leaves the program in exactly

the same form as it has been written in Refal. The graph of

states decomposes into subgraphs corresponding to functions,

and no optimization occurs. E.g., if we discover a call of

function F1 with a specific completely defined argument:

106

k Fl A B C D 1

then instead of computing and substituting the result of

concretization, we will have to generalize to the configuration

k F1 e 1 1 and construct the complete graph of states for

this configuration, that is reproduce the definition of F1 .

The choice of basic configurations determines the depth

of compilation. The more specific the basic configurations

are, the deeper the compilation process will go, and when the

basic configurations are more general, the resulting program

will retain a higher level of interpretation. Thus, the character

ization of a program in terms of interpretation versus compila

tion, familiar to every programmer, becomes more comprehensible

and receives a formal definition: it is the generality of the

configurations chosen as basic in constructing the graph of

states.

The strategy of generalization to functions can be

considerably improved by excluding transitory configurations

and including into the ba3ic configurations the foPmats of

functions. We shall illustrate this strategy (genePaZization

to foPmatted functions) by the following example. Let function

F1 with the format

(GFF)

be defined by the sentences:

k F1 (e1) (e 2) s 3e 4 =>

k F 1 (e1) (e2) =>

k Fl (el) (t::2s3) e4 1

(el) (e2)

using the strategy of generalization to formatted functions

we take expression (GFF) as a basic configuration. This will give

us the graph of states represented in Figure 9a. Let us

compare it with the graph in Figure 9b, which is the result

of generalization to unformatted functions for the same Refal

program.

107

Figure 9a

Figure 9b

According to Figure 9b, the argument e 1 should be split

into three subarguments e 1 , e 2 and e 3 , whereafter symbol

variable s4 is separated (if possible) from e 1 . After

exchanging symbol s 4 , the three subarguments are mce

again united into one argument --all this being repeated at

each step of the Refal machine. According to the version of

Figure 9a, the start configuration has three arguments. At

each step, a symbol s4 is separated from the third argument

and passed to the second. The first argument is not involved

at all. Obviously, the graph in Figure 9a, when mapped on

the object machine (a real computer), will provide an essenti

ally higher efficiency than the other graph: there is no need

to decompose and then recompose the argument with the help

of parentheses during each cycle of the loop. Our second

strategy is more compilative than the first, because the format

parentheses are included in the basic configuration, ~aking it

more specific. The parentheses are now absent from the object

program; they have been dealt with in the process of comp}.la

tion. Seen from the other side, the first strategy is more

interpretive, because the argument of the function F 1 is

interpreted at run time as an expression of the form (e 1) (e 2)e 3 •

108

The process of compilation may be controlled by

includi~g some specific configurations into the set of basic

configurations, or, on the contrary, stating that configura

tions of a certain kind should not become basic by any means

(and therefore they will never be recipients of dynamic arcs,

which means that they can be excluded, if necessary, from the

final graph of states). Changing the compilation strategy,

and varying the level of compilation thereby, we may receive

different programs from the same initial definition of the

problem in Refal. For an example let us go back to section 4.1,

where the language /L/ was defined and the start configuration

(1) k /L/ CROSS(CAT); ADD(DOG} (ex} l

given.

If the set of basic configurations is declared empty,

which means the maximum depth of compilation (and in this case

leads to a finite graph because a solution without loops

exists}, we receive the following graph of states (Figure 10}:

-+- s'e
1 X

e -+- 0
X

Figure 10

-+- s'e 2 X

e -+- 0
X

where the configurations are:

(2} k /L/ ADD(DOG} (k /Ll/ CROSS(CAT} (ex} l } l
(3} k /L/ ADD(DOG} (C 51 k /Ll/ CROSS(AT} (ex} 1
(4} CATDOG

(5} k /L/ ADD(DOG} (C 51 A s 2 k /Ll/ CROSS(T} (ex}

(6} c s 1ATDOG

(7} Cs1As 2Ts 3exDOG

(8} Cs1As 2TDOG

109

l

1) 1

When mapped on the object machine, this graph will

become an efficient program. But imagine that instead of

"CAT" in the formulation of the problem we have a word of 100

letters. Then the graph of states will contain 100 branching

points, and the resulting object program will be quite bulky.

We may desire as a tradeoff between space and time

parameters -- to make the program more compact at the expense

of retaining a level of interpretation. We declare as basic

the configuration

(9} k /Ll/ CROSS(e } (e } I y X!-

The following graph will be constructed as the result of

the compilation process (Figure 11}:

(10}

(11}

(12}

(13}

Figure 11

k /L/ ADD(DOG} (e1 } 1
e 1 DOG

sasbe2

eyex

}(e-+ s.'e}
X !) X

We see here an example of mixed strategy: decomposition of

the text in the language /L/ into statements and execution of

the first statement are done at compile time, but the second

statement-- the procedure of "crossing", which of course could

have a longer word than "CAT" as the first argument -- is

interpreted.

110

The notion of compilation strategy provides us with a

key to the notion of a normal form of a Refal program. Suppose

we have a graph of states and consider various ways to map it

onto the object Refal machine. Differences in Refal programs

stemming from different ways of mapping are clearly nonessential;

a question of form. So let us fix a definite way of mapping -

say, that described in Section 4.2. Now we choose a compila

tion strategy. If it is generalization to functions, then

compilation of the original Refal program for any function

with a subsequent mapping will give us a new Refal program

which is a representation of the original in a standard normal

form. When we change the compilation strategy, we receive

functionally equivalent Refal programs which may be referred

to as normal forms, each normal form being defined by the

corresponding compilation strategy. Differences between various

normal forms of the same function may be huge and are "essential",

not "formal"; they reflect the differences in the strategies

they have resulted from.

4 .5. Perfect Graphs.

A walk in a graph of states is a sequence of alternate

vertices and arcs v1A1v2A2 ••• Vk-lAk-ll\ which "might be"

followed (passed) by t~e Refal machine with some definite

values of the input variables (i.e. the Refal machine in a

definite exact input state). When we say "might be" here, we

mean that the actual existence of an exact input state which

forces the Refal machine to make this walk is not presupposed;

a walk exists if certain rules are observed in its construction.

These rules are as follows:

(1) If only horizontal arcs are outgoing from a vertex Vi

in the walk, then any of them can be taken as A.. For a concise
1

representation of a walk, as in the case of a path, it is con-

venient to write outcnly the numbers of vertices and separate

them by special signs indicating the nature of the connecting

arc: it will be a comma "," for a dynamic arc and an equality

lll

sign "=" for a representation arc. (If needed, the contrac-

tion on the arc may be specified in parentheses before the

comma.}

(2} If there is a vertical arc outgoing from v. , it must be
l.

taken as A. when we first encounter v. ; this downward passage
l. l.

of a vertical arc will be denoted in our concise notation by

a left bracket"[". When we come to a passive terminal

configuration v. , we look for the latest unpaired left bracket
J

and return to the vertex preceding this bracket. This upward.

shift is depicted by a right parentheses"]" after v. , which
J

becomes paired, of course, with the last left bracket. A pair

of corresponding brackets will be referred to as a functional

loop.

(3} After a right bracket closing a function loop, a hori

zontal arc must be taken if there are any.

(4} When we come to a passive terminal vertex, without a

composition arc or after closing the functional loop, and there

are no unpaired left brackets, the walk cannot continue. It

is concluded.

An input set is a set of exact input states. In particular,

an input set may be an input class; it is specified when con

tractions (possibly trivial} are specified for each input

variable. To each exact input state either a concluded or

an infinite walk corresponds: the one taken by the Refal

machine from this initial state. To each walk (finite: a walk

is finite if the opposite is not stated} an input set corres

oonds, which comprises all exact input states from which the

Refal machine will make this walk. A walk is called feasible

if the corresponding input state is not empty, otherwise it is

unfeasible. A graph of states in which all possible walks are

feasible will be called perfect.

The graph in Figure 4 is perfect. We can easily find a

corresponding input set for each possible walk in it, and this

set will not be empty. For instance, for the walk

1, 4 = 14, 16 = 14, 17 the restricted input class

112

/PLUS/ s 3 e1 \ \ s 3 -+- /PL t£/

corresponds to it, and for the concluded walk 1, 4 = 14, 17 = 14,

17 = 14, 16 = 14, 15 the corresponding input set is

s 3 s 4 /PLUS/ \\ s 3 -+- /PLUS/ \ \ s 4 ·+ /PLUS/

If there are no redundant variables in a graph of states,

or they are never subject to contractions (which is the case

for Figure 4), and if the input variables have the same range

of values on both ends of each transformation (submission) arc

(which again is the case for Figure 4), then a clean graph of

states will be also perfect.

Here is an example where a redundant (transformation)

variable is subject to contraction, but the graph of states,is,

nevertheless, perfect. We choose to define the procedure of

deleting asterisks from a string of symbols in this bizarre way:

a ex • a 1ex(END)

1 1
a •e • a e

X X

1 - 1 a s 1ex a exsl

a 1 (END) ex • ex

The following graph of states corresponds to this (Figure 12),

which as can easily be seen is perfect:

Figure 12

A perfect graph (or the program in Refal represented by

this graph --we will not distinguish these) cannot be improved

by a compilation process. Compilation is consequential when

113

there is a margin of generality in the original program: the

definitions of functions are more general than is really

needed, and walks exist in the graph of states which in fact

cannot be actualized under any input assumptions. A perfect

graph of states has no margin of generality, and all the

tests implied by the dynamic arcs in such a graph must be

actually performed at every step of the computation process.

This does not mean that there may be no functionallyequivalent

graph which woUld work more efficiently than a perfect graph,

i.e. our term "perfect" does not mean that it is perfect in

any sense of the word. E.g., the following function, which

only scans its argument without doing anything:

8 sl e2 .. s 1 8e 2

8 (el) e2 ~ (8e1) 8e2

8 ~

has a perfect graph of states, but it is functionally equivalent

to:

This example shows us the limits of the compilation process:

compilation is essentially computation in a general form, but

it does not include the application of the principle of mathe=

matical induction. This is why the transformation of the

function 8 as indicated above is beyond our capability at the

moment. The inclusion of induction into the system of formal

transformations of Refal programs will be done later in

Section 4.6.

So, a perfect graph is a graph which cannot be improved

by a straightforward compilation process. But even by a

straightforward compilation process we can achieve a very

impressive level of optimization -- to be more exact, we can

eliminate most typical efficiency losses resulting from

automated, straightforward construction of algorithms from

some "building blocks". We demonstrate it by giving three

114

types of optimizations as examples.

The first and most obvious type of optimization is,of

course, executing at compile time all calculations which are

possible to do without knowing the input data. An example

was given in Section 4.2, where the initial function

k c1 (e1) ~ a A /PLUS/ e 1 /PLUS B 1

where function a was defined on page 77, was transformed into

the efficient definition represented on page 85, which has

a perfect graph of states. The graph of the initial defini

tion is not, obviously, perfect: it contains an element,

reproduced in Figure 13, where only the walk 1, 2, 4 is

feasible, but not the walk 1, 2, 3, nor the walk 1, 2, 5.

Note that the paths 1,2,3 and 1,2,5 are feasible, so that

the graph is clean.

(1)

(2)

1
k C (e1) .1
B (e 2)e3 j_

Figure 13

The second type of optimization, "loop cleansing", will

be illustrated in an example discussed by E. w. Dijkstra

(see [28], p. 23-24). Consider the following two programs:

(1)

and

(2)

if B2 then

begin while Bl do Sl end

else

begin while Bl do S2 end

while Bl do

begin if B2 then Sl else S2 end

115

Here Bl and B2 are boolean expressions, and Sl and 52 are

statements. It is supposed furthermore that B2 is constant,

i.e. unaffected by the execution of either Sl or 52, and

there are no side effects of the evaluation of the boolean

expressions. With these presumptions, programs (1) and (2)

are equivalent. Comparing them, E. W. Dijkstra writes:

"I can establish the equivalence of the output of the computa

tions, but I cannot regard them as equivalent in any other

useful sense. I had to force myself to the conclusion that

(1) and (2) are 'hard to compare•. Originally this conclusion

annoyed me very much."

The notion of the perfect graph of states makes it

easy to compare these programs, for the graph of states of

the first program is perfect, while that of the second is not.

To see this clearly, we will trans!. ate ALGOL-60, in which

the programs are written, into Re fal, i.e. we wil 1 map the

Algol machine onto the Refal machine. The state of the Algol

IllGChi re is determined by the position of the control point and

the values of the variables. nLfferent positions of the control

point correspond to different configurations of the Refal

machine. ALGOL-60 is an instru::tion language. I£ we were to

define its semmtics in Refal, the simplest way to do so wodd

be by using the configuration

k I ALGOL/ (E1) E 2 1

where ~ and E 2 together always make a program in ALGOL,

a rrl the right parenthesis serves as the control point,

the currently executed fnstruction being p.. aced immediately

after it. (Compare the language /L/ in Section 4 .1) • So, the

start configuration in the case of program (1) will be:

(1) k /ALGOL I () if B 2 then. • • etc. 1
After the branching according to B2 has been executed, the

configuration will be either

(2) k /N...GOL/ (if B2 then) begin while Bl ••• etc. j_
or

(3) k /ALGOL/ (if B2 then begin ••• en::i else) begin while ••• etc._l_

arrl so forth.
116

Let us consider the variables now. We must separate the

value of the boolean expression B2 from the others, because

it is independent of the other variables and remains constant.

Let us denote it by eb. The other variables will be repre

sented by a variable e , which may consist of any number of
X

subarguments. The expression Bl depends on ex. The state-

ments Sl and 52 are supposed to change the value of e •
X

lOw program (1} caneasilybe translated into the follow
! ing program for the starting cx:mfigura tion k C (eb} (ex} _L:

kd- ('I} (ex} ~ k c 2 (ex} _L
k cl (F) (e }

X
~ k c3 (ex} _l

k c2 (e } ~ k c 4 (k B1 (e } j_} (ex} 1 X X

k c4 (T} (e } ~ k c 2 (k~(e >1} l X

k c4 (F) (e } ~ e
X X

k c3 (e } ~ k c6 (k B1 (e } .1> (ex} _I
X X

k c6 (T} (ex} ~ k c3 (k s 2 (ex} J.>J.

k c6 (F) (ex> ~ e
X

Program (2} will be translated into:

k
1

C (eb} (e) ~ k 2 1
C (kB (ex>l> (eb} (ex)1

k c 2 (T} (eb} (ex}~ k 3
C (eb} (ex} 1

k c2 (F) (eb} (ex}~ e
X

k c 3 (T} (e > ~ k c1 (T} (ks1 (e) 1> 1 X X

k c3 (F) (e } ~ k C1 (F} (kS 2 (ex>l> 1 X

The graphs of states for programs (1) and (2} are

represented in Figures 14a and 14b

complete, for configurations B1 , s 1

But we can apply to such graphs the

respectively. They are not
2

and S are not explored.

concepts pePfeat and

impePfeat in the sense: an incomplete graph is perfect, if

there are some definitions of the unexplored configurations

for which the completed graph proves perfect: it is imperfect

117

e -+ F
c

e -+ T
c

Figure 14a

(e -+ T) (T +- e)
b b

e -+ T
c

Figure 14b

if for any definitions the completed graph will be imperfect.

In this sense the graph in Figure 14b is imperfect: the walk

1 1 1 2 1, 2 [B] , 3 (eb -+ T) , 1 [S] , 2 [B] , 3 (eb -+ F) , 1 [S]

is not feasible, as are all the walks(an infinite set of them)

which include both dynamic arcs originating from c3

If we are given program (2) as the definition of the
algorithm, we can improve itand make the graph of states perfect

118

by using the compilation process. Almost any compilation strategy

which is deeper (farther from interpretation) than the generali

zation to (formatted} functions will do the jot. It comes very

naturally, but it is interesting to note, that the resulting

graph of states, although perfect, will be different from

Figure 14a. It is represented in Figure 14c and is obtained

in the following way.

We start with configuration c1 , and until we have come

to configurations c3 and c4 we are just copying Figure 14b,

because there is actually no other choice. Driving c3 we get

two configurations:

and

kC 1 (F) (ks 2 (e } 1> 1
X

1 2 We have to decompose them, separating configurations S and S ,

because they are not specified and cannot be explored. Therefore

w~ have configurations:

(5}

(6)

kc 1 (T) (ex} 1
kC 1 (F) (e } 1

X

If we generalize them to configuration c1 , we will get

Figure 14b. But why should we? These configurations result

from substututing some specifid values into an already existing

configuration c1 . To keep and continue to explore such config

urations at their first appearance, is a safe strategy,

because there may be only a finite number of ways to select

variables for substitution.
5 Driving C we get, after an inevitable decomposition,

configurat-.ion

(7} kc 2 (e } (T) (e >l
C X

It produces a branching with one arc leading to a passive config

uration, and the other to the configuration

kC 3 (T} (e >1
X

which is transitory and therefore will not be considered as a

119

possible stop. Then we come to c5 once more and this time

of course stop the process. Configuration c6 is treated

correspondingly.

Figure 14c

e -+ T
c

The program we have come to (Figure 14c) is efficient:

there are no unneeded tests of boolean variable B2 in the

loop. It is a bit more compilative (and a bit larger) than

the equally efficient program (1) (Figure 14a). But this bit

of compilation does not come without a benefit: if boolean

variable Bl is false from the very beginning, our program,

unlike program (1), will not even ask for the value of B2.

This may be very valuable in further optimization.

As the third example of optimization let us consider

the following definitions:

a kF Ae1 => B kFae1 1
a a

1 kF s 1e 2
,. s 1 kF e2

kFa ..
kFbBe1 ~ C kFb e 1 1

b b 1 kF s 1 e 2 ~ s 1 k P e2

kFb ~

120

And let the initial configuration be

(1)

The corresponding graph of states is represented in

Figure 15.

0----
e + 0

b

Figure 15

The configurations in the graph are:

(2) k Fb eb 1
(3) k Fa el 1
(4) B ez

(5) s2 ez

(6) C ez

(7) s3ez

This graph of states is far from being perfect, in any

sense of the word. For example, the following set of walks is

unfeasible:

121

1=2[3,4[3W3]1,7[2W2]

where 3W3 and 2w2 are any walks staring with vertcies 3 and 2,

correspondingly. Still worse, any walk of the form

where the number of arcs in the walks 3w3 and 2w2 are not

equal, is unfeasible. This is the reflection of the organization

of the procedure as a double passage of the argument.

Let us however apply the compilation process with the

strategy of driving from without ~·Jithin On the first step,

the call of Fa will be driven, and we receive three new config

urations:

(2}

(3}

(4}

kFb B kFa e 1 1 1
kFb s2 kFael l 1

kFb 1

Now the external call can be driven in all the three con

figurations, and in the result we come to the starting configura

tion (1}. Thus we see that the graph is complete and stop the

process. The graph is represented in Figure 16, and the passive

configurations are:

Figure 16

122

This graph of states is perfect. It can be further

simplified by excluding

program in Refal is

the vertex 3. The corresponding

1 kC (Ae1) * c kC1 (el) 1
1 kC (Be1) ~ c kc1 (e1) 1
1 1 1 kC (s 2e 1) ~ s2 kC (e1)

kCl () ~

So, in the resul t of compilation we have transformed a

double-pass procedure into a one-pass procedure: an essential

optimization and an important one.

4.6. Generalization and Induction

A generaZization of a set of expressions S is any

expression G such that for any expression E, if E E s, then

E c G. If G is an L-expression, we call it an L-generaZization.

The same terms will be used with respect to cZasses (we recall

that when it is a question of syntactic recognition,

pattern expressions and classes may not be distinguished);

one may also consider generalization of restricted classes,

and allow generalizations to be restricted classes too.

Speaking of restricted L-classes (or of pattern L-expressions

with restrictions) we shall assume that they are s-restricted.

(see Section 4.3 and Theorem 4.3). We shall be interested

mostly in L-generalizations.

An L-generalization L will be referred to as tight, if

there exists no L-generalization L' such that L' c L •
The following example shows that a tight L-generali-

zation is not unique. Let

{XXX, XX}

be a set of two (object) expressions (in examples like this, the

comma will be used as separator, and therefore not allowed to

enter expressions). The following three expressions are tight
123

L-generalizations:

e 1xx

xe1 x

xxe1

Indeed, consider any of the three expressions. If it is not

tight, then a tighter generalization exists, which can be

produced by a contraction. The variable e 1 may be contracted

either into an empty expression, or into an expression which

has at least one term. In the first case, the expression XXX

from the original set will not be covered, in the second case

the expression XX will not be covered. Therefore all three

generalizations are tight.

Moreover, the operation of taking any possible tight

L-generalization of two expressions is not associative in the

following sense. Let a tight L-generalization L of two expres

sions E1 and E2 be found, and let L' be a tight L-generalization

of L and E3 • Then, L' will not necessarily be a tight generali

zation of the set {E1 ,E 2 ,E 3 }. To give an example, again let

E1 be XXX and E2 be XX. Let E3 be X(Y)X. We take e 1xx as the

generalization L. Generalizing L and E3 we obtain e 1x, which

is not a tight generalization for the set {E1 ,E 2 ,E 3 }. The tight

generalization will be xe1x. Ergo: when we need a tight

L-generalization of a set of expressions, we should consider

them all together.

Notwithstanding these unpleasant properties of tight

L-generalizations, they are extremely useful for the theory of

compilation. The following property of L-generalization is

crucial for certain applications:

Theorem 4.5. In a universe with a finite number of symbols,

any class has only a finite number of L-generalizations.

To prove it we will first consider L-generalizations of

terms (i.e. pattern expressions which are terms and represent

terms, e.g., X, s 1 , etc.). A generalization of one or several

terms which is a term itself will be called a t-generalization.

124

If the number of different symbols is finite, then we

can write every s-variable as a specified s-variable, and

we do not need restrictions which forbid a symbol variable

to take certain values (we just exclude these values from

the specifier). Consequently, the following lemma covers all

possible cases of t-generalizations:

Lemma 1. The following propositions are true:

(1) Any t-generalization of a symbol S is either the

symbol itself, or has the form s(P). , where P includes S.
1

(2) Any t-generalization of a symbol variable s(P)i has

the form s(Q). where P c Q.
J -

(3) Any t-generalization of a class of the fo~ (E) is

a class of the form (E'), where E' is an L-generalization of E.

Three more le~mas are obviously true:

Lemma 2. An L-generalization of an empty expression is

either empty, or an unrestricted (in the sense of s-restric

tions) e-variable.

Lemma 3. If an expression has the form T E where T is a term

different from an e-variable, then its L-generalization either

starts with an e-variable, or has the form T'E' , where T' is

a t-generalization of T, and E' is an L-generalization of E. If

an expression has the formE T, where Tis a term different

from an e-variable, then its L-generalization either ends with

' an e-variable, or has the form E'T' , where T is a t-generaliza-

tion ofT, and E' is an L-generalization of E.

Lemma 4. If an expression starts with an e-variable, its

L-generalization starts with an e-variable: if an expression

ends with an e-variable, its L-generalization ends with an

e-variable: if an expression starts and ends with an e-variable,

its only L-generalization is e 1 •

125

Using these lemmas we can algorithmically construct

all possible L-generalizations of a given class. The process

will consist of a finite number of steps, and at each step

we will have a finite number of choices. Instead of giving

a formal definition of the algorithm, we shall consider an

example of its work.

We denote by <E> the set of all possible L-generalizations

of an expression E, and by <T>t the set of all t-generalizations

of a term T. The set of all those L-generalizations of an

expression E which start with an e-variable will be denoted

by <eE>; and <Ee> will mean the set of those L-generalizations

which end with an e-variable.

Let us construct the L-generalizations of the expression

xe1Y in the universe with three symbols: X, Y and z.
We start with using the first part of Lemma 3, i.e.

processing our expression from left to right (it could be

the other way around). As a result of the first step we have

two possible sets of L-generalizations:

(1) <X>t <e1Y>

(2) <exe1Y>

The number of possible t-generalizations is always finite.

In our case

<X>t ={X, s(XY) 2 , s(XZ) 2 , s(XYZ) 2}

Exploring the possibility (1), we use Lemma 3 for <e 1Y>.

The first possibility is

(1.1)

i.e.

where

126

We have obtained a set consisting of 16 generalizations,

such as

Xe1Y

xe1s(XY) 3

s(XYZ) 2e 1s(YZ) 3

etc.

If we choose the second possibility in the exploration

of (1), we get:

(1.2)

which by virtue of Lemma 4 is

<X>t el

This gives us four more generalizations.

Continuing in the same manner the exploration of the

possibility (2), we receive two more sets of generalizations:

(2.1) <exe1 ><Y>t = e 1 <Y>t

(2.2) = e 1

Generating variables in the process of generalization, we

first make all of them different, which gives us the widest

classes with respect to possible values of s-variables. Then

we consider all possible pairs of s-variables and produce new

classes by contraction, if corresponding pairs in the original

expression consisted of identical symbols or were variables

with identical indexes. We can expand this procedure

to include e-variables also. We will then receive

generalizations in which some e-variables may

occasionally coincide, but which in all other

respects are L-expressions. We shall call such expres-

sions LE-generalizations.

We have considered generalization of unrestricted classes.

If there are restrictions, we can cancel any combination of them.

We also can introduce new restrictions if it is in agreement

with the original expression. In our example, we can add the

127

restriction \\ s 2 ~ s 3 , since their projections in the

original expression X and Y were different. According to

the definition of s-restricted expressions, there are two

types of restrictions that can be used:

\\ s. ~ s.
1 J

\\ s. ~ 0
1

Since the number of e-variables and the number of pairs of

s-variables are finite, manipulation with restrictions can

give only a finite number of additional generalizations.

It should be noted that if we did not restrict general

izations with L-expressions, every expression would allow an

infinite number of generalizations. Indeed let E be an

expression which does not contain variable

Eex

Eexex

Eexexex

Then

and so on ad infinitum, will be different generalizations of E.
From the finiteness of the number of L-generalizations

it follows

Theorem 4.6. There exists an algorithm which for every set

of s-restricted classes gives the set of its tight L-generali

zations.

The algorithm, if we ignore restirctions, is as fast as

the GPA. Essentially it differs from the above algorithm

only in that we redefine t-generalization to become a unique

operation and make some pruning of the production tree. The

following rules define t-generalization on a pair of expres-

sions when possible:

(1) t
s(SlS2)i < s1 , s 2> =

(2) t s({S1 } u P) . <S 1 ,s(P)i> =
1

(3)
t s(P u Q.) • < S (p) • 1 S (Q) • > =

1 J 1

(4) t
<(El),(E2)> = {<El,E2>)

!28

Associative extension defines t-generalization on a set of

any number of expressions. When t-generalization becomes

impossible, we either change the direction of motion, or

(if we already are moving from right to left) generate an

e-variable and finish the process.

The following theorem may be useful:

Theorem 4 .7. If all of the expressions to be generalized

have an e-variable on the main level of parenthesis structure,

then their tight L-generalization is, on the main level, unique.

The proof of this theorem is left to the reader.

Using L-generalization we can formulate simple but power

ful strategies of compilation. This is the simplest one (the

points below refer to the five questions ~bout a strategy

listed in Section 4 .4) •

(1) The from without within strategy is used to

determine the subexpression to be driven.

(2) We try to stop driving at a given vertex of the

graph of states only if a contraction is necessary, and only

if there has already been, on the path to the current config

uration C, another configuration C' with the same determiner.

If C ~ C', we loop Con C', otherwise we take a tight

L-generalization G = <C,C'>, come back to the vertex C', and

redo the graph generalizing C' to G.

(3) When we loop in accordance with p. (2), and config

uration C' is a part of a larger configuration, we perform a

decomposition, separating C' as a vertex in the graph of states.

(4) There is no necessity to declare any configurations

as basic a priori. Should some be so declared, corresponding

provisions must be added to pp. (2) and (3).

(5) The list of basic configurations is not expanded

during the compilation process. When it is finished, one may

make the list of basic configurations a posteriori.

129

It is easy to see that this strategy always leads to a

finite complete graph of states in a finite number of steps.

Indeed, no path in the graph may contain more than two config

urations with the same determiner. On the other hand, only

those symbols may appear in the compilation process and must

be taken into account which appear in the original Refal program.

Therefore our universe has a finite number of difffrent symbols,

and we cannot general·ize one and the same configuration more

than a finite number of times because of Theorem4 .5.

As an example of this strategy, consider the compilation

process for the function

kFe 1
,. 1 kF () e 1 j_

1 kF1 (e2 -) 1 kF (e 2) +e1
,.

el
1 1

l kF (e2)sxel ,. kF (e 2sx) el

kF1 (e2) ,.
e2

Our starting configuration is kFe11. Immediately, it

turns into kF1 ()e1 JL. It is the first appearance of the

determiner F1 , therefore we continue driving. Next step we

obtain configuration kF 1 (-)e1 JL on the first branch. Now we

have to generalize. The only tight L-generalization for these
1 two configurations is kF (e 2)e1 JL. This is how we automati-

cally find the correct format and easily complete the compila

tion. It of course gives the original definition because it

is perfect.

The strategy we described ("L-generalization strategy")

tries to make only those generalizations which are necessary

in order to convolute an infinite graph of exact states into

a finite graph of generalized states. It tries to avoid excessive

overgeneralization. Of course it uses rather simple and crude

means for that purpose, the technique of L-generalization.

More subtle methods of generalization will lead to more perfect

(less interpretive) programs. But we have reason to expect

that even this technique will be quite adequate for a vast

number of applications. One of the features of the compilation

130

strategy described is that different calls of the same function

appearing in the different branches of the graph of states may

be generalized to different configurations. Thus we can use the

same function with a very specialized argument, and with a

general argument in the same program without being afraid of

undesirable interference. It should also be noted that although

the number of possible L-generalizations of a given configuration

C may be, according to Theorem 4.5, very large, the number of

generalization steps in the compilation process is very unlikely

to be large, and is always incomparably less than the full number

of L-generalizations. For in each step we produce a proper

generalization of the preceding configuration, so that the

maximum number of steps is the number of members in the longest

sequence of the form:

C c G c G' c G" c ... c e
X

and not the number of possible generalizations of C.
L-generalization may also be used for a direct (i.e.

without a compilation process) transformation of a function by

induction. This method is a thorough imitation of human

reasoning by incomplete induction followed by a strict proof

by mathematical induction.

consider a function definition

Let us compute

A1 , A2 , etc.

argument -value

<t> Ll • Rl

<t> L 2 => R2

the function ¢> with several specific arguments:

For each of these arguments we construct an

form:

etc.

where Z. is the concretization of <t> A. 1 for all i.
1 1

131

Now we LE-generalize these forms, and this will be our

tentative form for the function ¢. We also could start

with a generalization based on two values, then add one more

and compare the new tentative form with the preceding one,

repeating this procedure until we get a stable tentative form.

If it is not trivial, (i.e. not just (ex) = e 1), we try to

transform the definition of function S using the discovered

form. In the right side of the tentative form we turn all

free variables which do not appear in the left side into new

functions of the variables found in the left side. This is

our hypothesis.

Suppose, e.g., that the tentative form is

(e) = L¢
X

with the right side (which of course is an L-expression):

(L ¢) ABC e l s 2 (e 3)

The hypothesis is:

¢ ex 1 = ABC ~1 ex 1 ~2 ex 1 (~3 ex 1)
In the general form the hypothesis is:

¢ex 1 = L¢ II {(Vi~ ~i ex 1)}i

Now we take the first sentence defining ¢ and substitute the

hypothetical expression for all ¢-calls in the right side R1 •

If we denote ¢-calls entering R1 by ¢ Ej 1 (for a number of j),

then we get a new right side

R1 = R1 II{(¢ Ej 1 ~ L¢ II { (v. ~ ~i Ej l)} i) } .
1 J

If, e.g., the first sentence is

¢ 1 e => ABC ex 1 (¢ e 1) X X

then R1 will be

(Rl) ABC e 1 (ABC ~l ex l ~2 e 1 (~3 e l))
X X X

Now we try to recognize Rl as L¢. If we succeed

(without any contractions or restrictions), then the first

sentence is in agreement with the hypothesis. As a result

132

of the recognition process we receive a list of values assigned

to all of the variables V .• They will generally include
. . 1

function calls ~ 1 EJ 1 (and possibly calls of other functions).

We denote this as

v1. := v. ({~i Ej 1} ..)
1 1)

Since R1 is the result of one-step concretization of ~ L1 l, we

get the following sentences for each of the functions ~i:

~i Ll• Vi ({~iEjl}ij)

In our example:

~1 1 e = ex X

~2 1 ex = 1

~3 1 e = X
ABC ~1 ex 1 ~ 2 ex 1 (3

~ ex l)
If all the sentences defining function ~ allow this

transformation, we will receive a new definition of the

function~ using auxiliary functions ~i. Note that in

each of the sentences defining the new functions ~i , the left

side is identical to the left side of the corresponding sentence

in the definition of ~.

As a special case, the

any free variables at all.

tentative form may not contain

Then no auxiliary functions will

be.introduced and justification of the transfortation will consist

consist of checking the identity of Ri to L~ for all sentences

defining ~. Consider, for example, this function:

T

We perform driving and receive values for ~ 1 and for ~ s 1 1 ,
which both are T. We take their tight L-generalization, which

is also T. Thus L~ is T. For the first sentence, ~lis
obviously, T, and identical to L~. For the second sentence,

we find after making the necessary substitution, that R2 is

also T, i.e. also identical to L~. Therefore, we transform

the definition of ~ into

~ e 1 => T .

133

4.7. Mapping on the Computer

The most general principle ofmapping of the Refal machine

on a target machine {computer) is: to each configuration of the

Refal machine there corresponds a control point in the program

for the computer, and to each variable in the graph of states of

the Refal machine there corresponds a variable in the computer

program together with an information field in the computer

memory and an access method to use this information.

The linkage between the Refal machine and the computer

is established by the concept of mapped variable.

variable, then the mapped variable is

V. in M
1

If V. is a
1

where M is a mapping of this variable, i.e. an object which

encodes all directions necessary to have access to the value

of the variable. The concrete form of M depends, of course,

on convention. The access method used must be encoded, and

some specific information must be provided, such as numerical

or symbolic word addresses etc. A configuration, in which

all variables are mapped, will be referred to as a mapped

configuration. E.g., the mapped configuration

6 C {s1 in A23) {e2 in A24, A25)

may signify that when control in the computer is at the point

corresponding to configuration c6 of the graph of states of

the Refal machine, the value of the variable s 1 is stored in the

word A23 (symbolic address) , and the value of e 2 is stored

in the field beginning at A24 and ending at A25.

To start turning a graph of states into a program for a

computer we must somehow map the input configuration. In fact,

the mapping of the input configuration should be an integral

part of the exact formulation of the job. To define the final

program uniquely, one must specify not only the input {initial)

configuration, but also the way the input data is stored in

the computer. The same is true for the output configuration:

134

the program will vary depending on the representation of the

output data we choose.

A compilation task must include a program P in Refal,

and two mapped configurations: the input configuration Cin and

the output configuration Cout. We will join these two config

urations into the i/o quasisentence:

cin ~ cout

E.g., the i/o quasisentence

tion 4.1 might be

k /L/ GROSS(CAT); ADD(DOG)

for the problem considered in Sec-

(e in Rl, R2) ~ e in Rl, R3
X y

which means that the input string e should be taken from the
X

field with the boundaries stored in registers Rl and R2, while

the boundaries of the output string should be stored in Rl and R3.

The i/o quasisentence may be a useful tool even if

variables are unmapped. Like a normal sentence, it begins with

a concretization sign on the left side paired with the sign ~

which separates the two sides, and the right side is the product

of ~he concretization of the left side. But unlike the case of

a normal sentence, the variables in the right side of a quasi

sentence are different from those in the left side and Should have

differing indexes. We shall make one exception, though. We

shall use a variable in the right side with the same index

as a variable in the left side, if we know for sure that the

value of the right side variable will always be the same as the

value of the left-side variable. Another distinction of the

quasisentence is that the left side may contain nested concreti

zation brackets. A quasisentence may also be likened to a

contraction in that the former, as well as the latter, defines

the variables entering the right side through the variables

of the left side: a definition of computed vari~les.
The graph of states may have more than one passive configura

tion by which the concretization process may end. In this case we

take an L-generalization of these configurations as the output

configuration. Hence it may be necessary to add to the graph of

states some transformation arcs leading to the output

135

configuration. The arcs will bear assignments resulting

from the recognition of a given finishing configuration

as the output configuration. The recognition will always

be possible because the output configuration is a generali

zation, and will always lead to unique assignments because

it is an L-expression.

Transformation of a Refal program (or a graph of states

of the Refal machine) into a program for the target machine,

i.e. the mapping process in the general sense, includes

procedures of two types: mapping proper,which refers to vari

ables and configurations, and translation of arcs anq other

subgraphs of the graph of states (when all of the variables

are mapped) into instructions for the target machine. The main

unit in the translation process is a translation statement.

It consists of two parts separated by a horizontal bar, the top

part being an element of the graph of states, and the bottom

part being its computer equivalent (translation). ~he final

result of the mapping process, as well as intermediate results

and some prerequisites, are translation statements.

For a subgraph with mapped input and output configurations

the translation sentence is:

<i/o quasisentence>

<corresponding computer program>

If \..e make a mapping simultaneously with the compilation of the

grath of states of the R3fal machine, the configurations of i/o

quasi sentences will be expressed in terms of the original

Refal program. If \..e first compile a gratil of states and W'len

this part of the job is finished proceed to map, then configura

tions in quasisentences will appear in a standard notation

(normal form). 'lranslation of external fmction calls is also

136

performed with the aid of corresponding translation statements.

Suppose, e.g., that the target machine has an instruction for

addition which in the assembler language (serving as the

target language) is written in he form:

ADD, Al, P.2 -+ A3

(a three-addresse8 machine) . Let us use + as the determiner of

the external function perofrming the operation designated by

ADD, and let the format be

k + (Nl) (N2) 1
where N1 and N2 are the numbers to be added. (We ignore the

type of numbers they are an0 their representatnon, although

the user of cour~e should know this). The translation state

ment which would allow us to use this external function might he:

k + (e1 in Al) (e2 in A2) ~ e 3 in A3

ADD, Al, A2 -+ A3

The essence of the mapping process is: starting with the

configurations already mapped, move along the arcs and then map

yet unmapped configuratjons in such a way so as to avoid

unnecessary moves of the information in the computer. Contrac

tions are translated into co~ditional statements and definitions

of new variables, whereas assignments are translated into

assignments. Decompositions will become procedure calls.

The full state of the Refal machine is not represented,

generally, by a configuration, but by a vertical segment, i.e.

a composition of a number of configurations (a stacy of function

calls). The configurations (vertices, to ~e precise) of a

graph of states fall into nonrecurrent, which do ~ot appear in

the vertical segments gener.'tted by them, and recurrent, which

do appear there. Recurrent configurations, in turn, fall into

static and dynamic ones. A configuration is static if it

137

appears only on the top of any of the vertical segments

generated by it. Otherwise it is dynamic. Static recurrent

configurations corresponj to iteration, and should re
programmed as nonrecursive procedures. Dynamic conrigura

tions correspond to "recursion proper" and must be

programmed as recursive procedures. Analyzing the graph

of states, it is easy to break down all active configura

tions into nonrecurrent, static and dynamic.

The graph of states is a sort of flow chart of the

future program, written in a special language. This language

is rather abstract and doesn't specify some important features

of the computer program (the mapping of configurations) , so

we have some freedom of action for program optimization.

Mapping is essentially code gener«tion, with a graph of

states as the source program. Methods and techniques of

efficient code generation developed ry different authors using

different source languages can and should be used for mapping.

138

CHAPTER 5. METASYSTEM TRANSITION

5.1. Metasystem Levels.

Consider some functions defined in a certain object space.

Consider different procedures of (equivalency) transformation

of these functions. To speak of transformations we have some

representation of functional definitions. In Refal, functions

are defined by sequences of sentences. While we do transfor

mations manually, we deal with sentences as objects of a

different nature than object expressions the elements of

the object space of the functions being transformed. To

computerize functional transformations we introduce new func

tions which deal with objects representing functional defini

tions. We call these functions metafunctions with respect to

the original functions. Construction of such functions is a

metasystem transition. A metasystem transition may be repeated

unlimitedly. The original functions defined in the original

object space will be referred to as functions of the ground

(zero) metasystem level. Functions applied to transform (or

generate) these functions will be referred to as being on the

first metasystem level. Functions transforming the functions

of the first metasystem level are said .to be on the second

metasystem level, and so on.

The principal idea of the present work is to construct

a formal system, in which

the formalized operations.

language of this system.

metasystem transition is one of

Refal has been conceived as the

Since functions in Refal may be

defined only on object expressions, the representation of

functional definitions to be used in a metasystem transition

must transform sentences (and their parts: free variables,

pattern expressions, function calls) into object expressions.

139

Th~representation, Metacode A was defined in Section 1.3.

(We shall just say "metacode", for there won't be any other

metacodes used.)

The metacode is designed in such a way that a metasystem

transition does not expand the full set of symbols used (other

wise it couldn't be performed unlimitedly by the Refal machine,

whL:h doesn't generate new symbols). But it is convenient to

use special symbols for the images of free variables, as a part

of shorthand notation.

On the ground metasystem level, we have such free variables

as e 1 , sa , etc., which represent sets of object expressions.

On the first metasystem level these variables will be repre

sented as object expressions *El, *SA, etc. In shorthand

notation we will write a combination of three object signs

*El as E1 ; combination *SA will become Sa , etc. These

symbols will be called nonterminal symbols (or just nonterminals)

of the first order. On the first metasystem level, nonterminals

E1 etc. (as well as sign combinations *El etc.) are dealt with

as normal object symbols and expressions, but when we are

coming back to the ground level, we interpret them again as

sets.

Sure enough, the first metasystem level has its own

free variables, which have the usual form e 1 , sa , s 1 , etc.

When we make a metasystem transition to the second level, they

turn into first-order nonterminals E1 (i.e. *El) etc. First-order

nonterminals of the first metasystem level turn on the second

level into combinations *VEl, *VSA, etc., which will be called

nonterminal symbols of the second order and represented in

shorthand notation as Ei , s~ , etc. Generally, a nonterminal

E~ turns into E~+l in a metasystem transition. The absence
l. l.

of a superscript means the superscript 1.

The author believes that formalization and computerization

of the metasystem transition will have far-reaching consequences

because repeated metasystem transitions is the essence of

evolutionary processes and, in particular, it is a powerful

instrument of creative human thinking (see [2]). To solve a

140

problem we first try to use some standard system of operations,

rules, etc. If we fail, we start to analyze why we failed,

and for this purpose we examine the p~ocess of appLying our

rules and operations. This is a metasystem transition. We try

to construct a metasystem with respect to the ground level

system of rules and operations, which would give us some new,

more elaborate rules and operations as the instruments to

succeed in solving the problem.

If we fail once more, we analyze the processes on the

first metasystem level, which means that we make a second

metasystem transition. This time we try to create instruments

which would help us, on the first metasystem level, create

instruments to solve the ground level problem. This transition

from the use of an instrument to an analysis of its use and

creation of instruments to produce instruments may be repeated

again and again, and it stands behind the two and a half

millennia of the development of contemporary mathematics.

For a computer system to match the human being, it must model

this process.

We may construct a high tower of metasystem levels, but

our ultimate goals will stay on the earth, expressed in terms

of the ground metasystem level (the proof and use of all of

the mathematics is ultimately with such tangible things as

numbers and geometrical figures). As a complement to climb

ing up the metasystem stairway there must be some ~eduction

of higher-level constructs to lower-level constructs. The

specific rule of reduction will in each specific case be

defined by the specific goal we pursued in making the metasystem

transition. General laws and rules may also exist. This is one.

Consider classes of expressions on the first metasystem level.

The pattern expression which represents a class may include

nonterminals, e.g.

(1) E1 s 1 (A e 2)

This is a class which includes such object expressions as

141

(1 .1)

(1. 2)

(1. 3)

El A (A)

El B (A BC+

El B (A E6 El s 2 END)

etc. Each of these object expressions of the first metasystem

level can be interpreted as a class of object expressions

of the ground level by applying the inverse metacode transfor

mation. E.g. the first of these will be translated into

(1.1')

and so on. Now the question arises: what set of object

expressions of the ground level corresponds to a class (1) on

the first level? In other words, what is the union of all

classes (1.1), (1.2), (1.3), etc.?

The answer, as one can easily see, is very simple and

may be expressed by the following ~eduction ~uZe: a class of

classes is a class. To turn a class of the first metasystem

level into the corresponding class of the ground level we only

have to turn nonterminals of the first order into free vari

ables with new indexes.

5.2. Graph of States as a Production System.

On the first metasystem level the variables in the graph

of states pass into nonterminal symbols. Contractions may be

interpreted now as production rules for nonterminals. Assign

ments may also be interpretedas production rules but they are

read from right to left and obey the corresponding law of

composition (see Section 4.2, page 83). We introduce now

a new type of nonterminal symbol in order to represent all

information about an arc in the form of production rules. To

each active nonterminal vertex V. characterized by configura-
. 1

tion C1 we put into correspondence a nonterminal symbol Ki ,

which should eventually produce the set of all

possible concretizations of Ci. The transition

142

from an active vertex V. to another (active or passive) vertex
l.

by a dynamic arc is a contraction for the nonterminal symbol Ki ,

because it generally limits the set attached to (eventually

produced by) K. by changing K. into an expression which
l. l.

either is more specific already, or, at least, is closer to

the completion of concretization.

Example 1

Consider as an example (not for the first time already!)

the function which turns pluses into minuses, with the graph of

states in Figure 17.

e -+
1

Figure 17

The first horizontal arc here will be represented by

two successive productions:

(El -+ +El) (Kl -+ -Ex)

The vertical line from c2 to c1 will become

(Kl + Ex)

We can combine (informally, for the time being) these two

production sequences into one:

(1) (El -+ +El) (Kl -+ -Kl)

Analogously, the second and third horizontal arcs will

generate sequences:

(2)

(3) (Kl -+ D)

143

(Nonterminal symbol Sa in the production for E1 in (2) is

primed, as was the variable s in the corresponding contrac
a

tion. Soon we shall see why this is important and how it is

used.)

Production sequences (1), (2) and (3) are not independent,

because the arcs in the graph of states were not independent:

the quasiinput set that corresponds to each arc depends on

the preceding arcs. But we can transform the graph of states

to make all arcs independent by adding necessary restrictions

to the contracticns on the arcs. As we saw in Section 4.3,

these restrictions generally have the form of a constPiction sum:

(4) u ••• u L
n

where constPiction

reduced to the form:

tePms L· for each i = 1,2, ••• ,n may be
1

67 1r.
1

with all contractions preceding restrictions. Moreover,

restrictions\\ o~. may belong only to one of the four types
1)

described in Section 4.3, and correspond to a set known to be

nonempty (Theorem 4.3).Both qi and ri may be zero (although

not simultaneously).

If sum (4) has more than one term, we shall introduce

an additional dynamic arc for each term; each additional arc

will lead to a new (additional) vertex. Each of the additional

vertices will have to be explored, thus the graph of states may

become essentially larger as a result of this transformation.

Restrictions on free variables will pass into restric

tions on nonterminals, which we shall write immediately

after the corresponding contraction. In our example the

second arc (or path, to be exact) will change into:

(2 I) (E S 1 E) (\\ S -+ +) 1 -+ a 1 a

144

Using primary production sequences corresponding to the

paths of the graph of states we may build sequences corres

ponding to walks by mere concatenation of primary sequences.

E.g., to the walk

1,2[1,3[1,3[1,4]]]

the following production sequences corresponds:

(5)

(El + +E1) (K + -K)
l l

(\ \ s + +)
a

Essentially, this is a driving operation, hence the

primed nonterminals behave like primed variables in driving:

they generate a nonterminal with a new index, which should

be substituted for all (primed and unprimed) entries of the

original nonterminal in the primary production sequence (path).

If we perform, step by step, all the substitutions called

for in the production sequence (5), we shall see that it is

equivalent to the following production sequence:

which clearly provides the definition of our original function

for a special class of arguments.

From now on, we shall call production sequences like (5)

and (6), corresponding to walks, just walks. Equivalency trans

formation as of (5) into (6) will be referred to as normaliza

tion. Unlike our previous notation for walks, which served

only to refer to a graph of states reproduced elsewhere, our

new walks are selfsufficient objects, which are constructed

and transformed by certain rules, and have an interpretation.

Our target now is to build productions for walks so as

to examine the set of all walks. For this purpose we introduce

one more type of nonterminal, nonterminal symbols of second

order, which we shall denote as Wi (instead of the standard E~)

145

in order to stress that they generate sets of walks. To

distinguish productions of the second level (W-productions)

from productions of the first level, we shall use the double

arrow • in recording these productions.

To each active nonterminal vertex v. we put into
1

correspondence the nonterminal symbol W. , which eventually
1

generates all walks beginning at vertex V .• Now we can rewrite
1

the whole graph of states as a production system of second

order, where to each horizontal a~c exactly one W-production

corresponds. For the graph of states in Figure 17 the produc

tion system will be:

(7.1) wl • (El -+ +El) (Kl -+ -Kl)Wl

(7.2) wl • (El -+ S'El) (\\S -+ +) (Kl -+ SaKl)Wl a a

(7.3) wl • (El -+ 0) (Kl -+ D)

Production rules (7.1) and (7.2), corresponding to the

paths which lead to active vertices, end with nontermimal

W-symbols requiring continuation of the walk. Production

(7.3) corresponds to a path leading to a passive vertex and

does not have in the right side W-symbols; it consumates

the process of the production of a walk.

Production system (7) is a classical context-free

grammar, generating the set of all possible (in the given

graph of states) walks. The graph of states in the original

form is regarded as a function definition. To use it we assign

some values to the input variables, and generate in the

process of computation a unique walk, because at each branch

we must take a unique dynamic arc. Now we regard the graph

of states as a production system, and at each branch we make

an arbitrary choice as to which arc to take. ~hus we can

produce any walk. Normalizing this walk we obtain:

{1) the input set for this walk defined by contrac

tions for the input variables;

{2) the output set, i.e. the set of all possible results

of concretization of the starting configuration;

{3) the mapping of the input set on the output set,

(2) and {3) being defined through the contraction for the
146

starting K-symbol.

Therefore we receive a nonrecursive one-step subfunction of

the original function. It is identical to the original

function on the input set and undefined outside.

This is the subfunction for those arguments which take the

chosen walk in the process of computation. Its definition

by the normalized walk is essentially the same as in a Refal

sentence with no concretization signs in the right side (the

only difference is that restrictions are indicated explicitly).

Consider now the case when there are composition loops

in the graph of states. To the subgraph represented in

Figure 18 the following W-production will correspond:

c

Figure 18

Here C is the record of constrictions borne by the dynamic

arc i, i+l. Should this arc be transformational, then

assignments will take the place of C.

Thus a composition loop adds the assignment of its

starting K-symbol to the computed variable, followed by a

bracketed W-symbol for the walk representing concretizations

of the inner configuration. The bracketed nonterminal will

produce walks, therefore every walk finally produced by Wi

will not be a simple sequence of first-level productions,

but an expression (a tree) of productions. This should be

reflected in the rules of normalization. We use brackets

(instead of parentheses) to structure these expressions for

the sake of convenience only. From the formal point of view,

brackets are the same as parentheses.

147

Example 2

As a further example let us take the function of double

scanning considered (and transformed) in Section 4.5 (page 120):

a e 1 '* kFb kFa e 1 11
a kF Ae1 • a B kF e 1 1
a kF s 1e 2 '* s 1 kF a

e2 1
kFa '*

kFbBe 1 '* c kFb e 1 1
b b 1 kF s 1e 2 '* s 1 kF e2

kFb '*

The graph of states for this function is represented in

Figure 15 (page 121). The production system for it is:

(8.1) wl • (K3 +- E) [W3] (Kl -+ K2) w2 b

(8.2) w2 '* (Eb -+ BEb) (K2 -+ CK 2) w2

(8.3) w2 '* (Eb -+ S)Eb) (\\ s3 -+ B) (K2 -+ S3K2) W2

(8. 4) w2 • (Eb -+ D) (K2 -+ D)

(8. 5) w3 • (El -+ AE) (K 3 -+ BK 3) w3 1

(8.6) w3 '* (El -+ S2El) (\ \ s2 -+ A) (K3 -+ S2K3) W3

(8.7) w3 '* (El -+ D) (K 3 -+ D)

To establish the rules of the walk normalization

must give a more systematic

Walks are composed of

restrictions, and brackets.

treatment of walks.

first-order productions and

In the process of a walk

we

prcduction we are dealing also with nonterminaL waLks, which in

addition contain second order nonterminals W.. First order
l.

productions are bidirectional substitutions for first order

nonterminals E. , S. , K. • A bidirectional substitution
l. l. l.

148

consists of the antecedent, which is a nonterminal, and the

consequent, which is an expression. The antecedent may be

either on the left, or on the right side of the substitution;

it is separated from the consequent by the arrow ~ or ~ ,

its direction being from the antecedent to the consequent.

There are three types of bidirectional substitution:

contractions, assignments and Peplacements. We have familiar

ized ourselves with contractions, restrictions, and assign

ments pretty well already. Replacements have the form of a

contraction for a K-symbol, but their meaning is different.

A replacement does not define the variables entering the

consequent, as a contraction for an E-symbol does. Neither

does it restrict the input set, as contractions for both E

and S-symbols, and restrictions do. Like assignments,

replacements are used to attach a value to the antecedent,

but this is a value (replacement) for a nonterminal symbol

alPeady defined. Moreover, a replacement will be applied to

exactly one entry of the antecedent nonterminal, not to all

of the entries identical to the antecedent, as is the case

for assignments.

We call a walk tePminal, when we want to stress that

it does not contain W-symbols (is not nontePminal). A

terminal walk may be interpreted as a function definition.

The process of interpretation is the reproduction of the

steps the Refal machine will make when concretization takes

place as indicated in the walk.

By metasystem reduction, we interpret nonterminal s
and E-symbols as corresponding free variables in the graph

of states. Nonterminal K-symbols are interpreted as configura

tions of the Refal machine. The full state of the Refal machine

is given when a vertical segment is given, as well as the

values of all the variables in all configurations of the

segment. But we have only one walk, and we have no way to

derive from it the full list of all configurations in the

graph of states~ Still worse, even for those configurations

149

which appear in the walk, coded by K-syrnbols, we have no way

of knowing what their full lists of arguments are. This becomes

dramatically evident when an argument is present in the defini

tion of a function and all auxiliary functions, on whic~ nothing

actually depends. Even if we know all possible walks in the

graph of states, we shall never suspect that this argument is

present in all configurations. A more realistic case is when

an argument does have an impact on the process of concretiza

tion, but not along the walk we are examining.

In the course of interpretation, we will maintain a stack

of variables as a model of the full state of the Refal machine.

The stack of variables will be a sequence of fields, each field

being in correspondence with a configuration in the vertical

segment representing the full state. A field is a sequence of

assignemtns, in which the consequents are object expressions.

To determine the value of a variable we, as is usual with stacks,

find the last assignment for this variable, ignoring the bound

aries between fields. The procedure of interpretation is

such that a variable appears in the stack either when it is used

as an input variable, or when it is defined as a generalization

or computed variable. Before it appears in one of these two

capacities (if at all), the variable is ignored in the process

of interpretation, because it does not influence the evolution

of the configuration in the Refal machine.

Besides the stack of variables, we shall keep track of

the replacement rule, which is initially empty (nonexistent),

appears at some stage of interpretation, undergoes transformations,

and eventually provides the final result of interpretation: a

replacement

K. ~ E
1

where K. is the starting configuration, and E is the result of
1

its concretization. It is convenient to represent the stack of

variables as a column of assignments, with horizontal bars

separating fields, and with the replacement rule positioned at

the top (beginning) of the stack. In the following, the

replacement rule will be considered as a part of the stack.

150

In the process of interpretation \ole scan the walk from

left to right performing the following. (At the beginning the

stack is empty.)

(1) A contraction. If the antecedent is not defined we

declare it an input variable and obtain its value through an

input procedure. If the antecedent is defined, i.e. there is

an assignment for it in the stack of variables, we take its

value from the stack. In both cases, we then apply the contrac

tion to the value of the antecedent variable. If there are

variables in the right side (consequent) which are not defined

or redefined in the contraction, we either take their values

from the stack of variables, or, if there is no corresponding

line, declare them input variables and use the input procedure.

(We recall that an e-variable appearing in the right side of

a contraction is always (re)defined. A primed s-variable is

defined, a nonprimed one is not defined.) If the contraction

succeeds, we update the stack of values (in particular, new

lines may be added, if new variables are defined in contrac

tion). If it fails, we stop the interpretation \vith the

conclusion that the exact input state (see Section 4.5, page

111) is outside the input set for the interpreted walk.

(2) A restriction. We check the condition, using the

values of the variables from the stack. If it is not satisfied,

we stop the process. A variable on either side of the restric

tion, for which there is no line in the stack, is treated as

an input variable.

(3) An assignment. We change the last line for the ante

cedent variable in the stack if it is there, otherwise we add a

new line. The values of the variables in the consequent (left

side) are taken from the stack or through the input procedure,

as described in (1).

(4) A replacement. We replace the values of the variables

in the consequent (right side) by their values. Then we examine

all the consequents in the stack of variables (including the

replacement rule) and find the last nonterminal K-symbol with

the same index as at the antecedent of the current replacement.

151

Then we replace it with the consquent of the current replace

ment. 3y the last K-symbol we mean the last in time. 'lb find

it easily we shall mark each K-symbol appearing in the conse

quents in the stack with its sequential number written as a

superscript. If there is no K-symbol with the same index to be

found in the stack, we write the whole current replacement

as the replacement rule in the stack.

(5) A left bracket. At the end of the stack, we add a

bar separating fields.

(6) A right bracket. We eliminate the last field in

the stack.

(7) 'Ihe end of the walk. ve eliminate the assignments

am leave only the replacement rule in t'1 e stack. This is the

final product.

Let us come back to Example 1 for an illustration.

Consider the walk (5). ~ke +XY as the input value for e 1 •

Let us follow the process of interpretation.

At the first step we execute the contraction (E1 ~ +E 1).

Since the stack of values is still empty, we declare E1 in the

left side as an input variable, get the value +XY for it (input

procedure) , and start the stack of values by writing in the line

+XY + El

Immediately, we appiy the contraction, which is successful and

changes this line into

XY + El

Now we execute the second production the replacement

(K1 ~ -K1). There is no replacement rule in the stack yet,

therefore we put this replacement in the stack, which becomes

Kl ~ -Kf

XY + El

Execut.ing the third production, we once more change the

value of E1 and define a new variable sa. The stack becomes:

Kl ~ -K/

y + E
1

X + S a

152

'text we check the restriction (\\ Sa -+ +) , which holds

because the value of Sa differs from + • Executing the replace

ment (K1 -+ SaKl) , we first turn the variable Sa in the right

side to its value found in the stack: (K 1 -+ XK1). Now we find

the last (and only) symbol K1 in the consequents of the stack,
1 which is K1 , and replace it by XK 1 . The stack becomes:

2
K1 -+ -XK1

y ~ El

x ~ sa

Proceeding in this way we ultimately get the result:

Kl -+ -XY

Consider now a more complicated example, where a

function invokes itself with an argument which includes a call

of the same function.

Example 3

4> A e 1 ,. B 4> el cp el 1 l
4> el ,. el

We take AA for the argument e 1 of function cp. The follow

ing sequence of view-fields results from concretization:

The

in Figure

cf> A A 1
3 cf>Act>AlJ.
Bcf>ABcf>cf>lj_l

B\j> AB 4>11
B 4> AB 1
B B 4> B cf>B1j_
B B cp B B 1
B B B B

graph of states for the function cp

18.

153

is presented

The

wl ...
~~1 ...
w2 ...

Figure 18

corresponding production system is:

(El -+ AE1) (Kl ~ Ex) [Wl] (Kl -+ K2)

(\ \ El -+ AE1) (Kl -+ El)

(ElEx ~ El) (K2 -+ BK1) wl

B e
y

w2

one can see that the nonrecurrent nonterminal symbol

w 2 can be eliminated (we do it informally at this time), which

transforms the production system into:

w 1

w1 .,. (\\ El -+ AE1) (Kl -+ E1)

The walk which will be taken by the Refal machine with

the initial view-field ¢ A A 1 , consists of twenty productions

Below we reproduce the process of interpretation of this walk,

giving the stack of variables at each stage (after performing

the substitution).

154

1 2 3 4 5

E1 -+ AE K1 + E [E1 -+ AE1 K1 + E [\ \ E1 -+ AE1 1 X X

A + E1 A + E1 A + E1 A + E1 A + E1

K1 + E K1 + E K1 + E Ki + Ex 1 X 1 X 1 X

0 + E1 D + E1 0 + E1

K2 + E K2 + Ex 1 X 1

6 7 8 9 10

K1 -+ E1] K1 -+ BK1 E1Ex + E1 \\ E1 -+ AE1 K1 -+ E1]

A + E1 A + E1 A + E1 A + E1

K1 + E BK3 + E BK3 + E No B + E
1 X 1 X 1 X Change X

0 + E1 0 + E1 0 + E1

0 + E 0 + E 0 + E
X X X

11 12 13 14 15

K1 -+ BK1 E1Ex + E1 E1 -+ AE1 K1 + E
X

[\ \ E1 -+ AE1

K1 -+ BK~ K1 -+ BK4 K1
4

K1
4

K1
4

1 -+ BK1 -+ BK1 -+ BK1

A + E1 AB+ E1 B + E1 B + E1 B + E1

B + Ex B + E B + E K5 + Ex K5 + Ex X X 1 1

16 17 18 19 20 END

K1 -+ El] K1 -+ BK1 E1Ex + E1 \ \ E1 -+ AE1 K1 -+ E1

K1 -+ BK4
1 K1 -+ BBK~ K1 -+ BBK6

1 No K1 -+ BBBB

B + E1 B + E1 BB + E1 Change

B + E B + E B + E
X X X

155

A walk is said to be in normal form if:

(1) it has no assignments, no composition loops;

(2) it has exactly one replacement, which makes it end;

(3) there is no more than one contraction for each variable.

Any walk may be brought to a normal form -- normalized.

The normalization process is, essentially, interpretation of

the walk with an unknown exact input state. We scan the v1alk from

left to right, but instead of checking constrictions we accumu

late them at the beginning (left end) of the walk; and instead

of maintaining a stack of variables, where all their values are

kept in their final form (as object expressions) , we accumulate

assignments contain~ng free variables.

First we consider a walk without composition loops. It is

a sequence of constrictions, assignments and replacements. We

note the following.

(1) Because of the absence of composition loops, the

assignn.ents may not contain non terminal K-symbols.

(2) Nonterminal K-symbols appear in the walk exactly in

the same order they will appear in the stack during interpreta

tion. If we make it a rule that we never transpose replacements

in the process of normalizatioJ;>we can be sure that to use a

replacement we should apply it to the nearest consequent on the

left.

(3) An assignment which ends a walk may be eliminated,

because it will have no effect on the interpretation.

The principal idea of normalization is: keeping replace

ments in their positions relative to one another, move constric

tions to the left, and assignments to the right, by commuting

(transposing) them with neighboring substitutions; ultimately,

the assignments are eliminated at the right end, the constric

tions accumulate at the left end and get simplified according

to the rules of Section 4.3, and replacements, when they are

not separated any more by other productions, combine into one

final replacement.

(*)A we~ker form: those replacements which involve the same
K-symbol(s).

156

The range of a bidirectional substitution in a walk is

constituted by all those substitutions whose final effect will

be influenced by the substitution in question. It is the part

of the walk stretching in the direction opposite to the

direction of the arrow that will be influenced by a given sub

stitution. Therefore, the range of a constriction or replace

ment is to the left until the beginning of the walk, and the

range of an assignment is to the right until the end. A walk

can be thought of as something to be applied to the list of

input variables placed at the left end; this is why constric

tions and replacements constitute the final normalized

walk, and assignments are thrown away.

Let us now formulate commutation rules for bidirectional

substitutions. In the following, Vi is an s- or e-variable

(nonterminal symbol) , Ri is any expression, possibly containing

nonterminal K-symbols, Ei is any pattern expression (i.e.

not containing K-symbols), L. is any L-expression; i, as well
1

as j, x, etc. are arbitrary indexes.

Assignment-replacement

(ARP) (E.-+- V.) (K.-+- R.) • (K.-+- (E.-+- V.)// R.) (E.-+- V.)
l. l. J J J l. l. J l. l.

Assignment-contraction

(AC.D) (E.-+- V.)(V.-+- L.),. (E.-+- L.)
1 l. 1 l. 1 l.

This rule is written in a symbolic form. By E. -+- L. we m~an
l. l.

that Ei should be syntacticaZZy recognized as Li' and the

result should be represented as a sequence of constrictions

for the variables in Ei followed by a sequence of assignments

for the variables in

(9) ••• (V. -+- L.)
l.X l.X

L.:
1

. . . (\ \ V. -+- L.) • • • (E. -+- V.) •••
l.Y l.y l.Z l.Z

As a result of recognition using the GPA) we may receive

more than one class constituting the intersection Ei n Li.

Then for each of the sequences (9) we make a separate copy

of the walk and continue normalization of each walk independently.

157

Thus we see that normalization of one walk may result in

several normalized walks. Essentially, (AC.D) is the rule

of driving.

In the sequence (9) all constrictions precede all assign

ments; therefore this commutation rule, like the other rules,

takes us one step further along the way of normalization. In

some cases, though, we may retain the form E. ~ L. as a sort
l. l.

of contraction, for the sake of brevity. Like normal contrac-

tions, this form defines the values of some variables on the right

side through the variable(s) in the left side.

Consider now the case of i ~ j:

(E. + V.) (V. ~ L.)
l. l. J J

Both substitutions are placed in the range of one another;

therefore both consequents are subject to modification. But

we are going to show that it will always suffice to modify only

one consequent.

If Ei contains Vj , but Lj does not contain Vi , the

commutation rule will be:

(AC .1) (E.+ V.) (V. ~ L.) ... (V. ~ L.) (E. II (V. ~ L.) + V.)
l. l. J J J J l. J J l.

and this is a most usual case when representation E. of a value
l.

in the stack of values must be updated because a variable V.
J

present in Ei undergoes a contraction.

Consider the other possibility: when Vi enters Lj. Suppose

V. is an e-variable, e .• Then e. cannot enter L. , because it
l. l. l. J

is different from ej , but all other e-variables in Lj must

be new, hence may not be identical to e. , which has been in
l.

use before. Thus, V. is s(P) .• This is an example, when the
l. l.

assignment does influence the contraction:

(A + s 1) (s 2 ~ s 1)

Can this combination appear in an actual walk? In a walk result

ing from a production system without compositions it cannot.

Because the contraction for s 2 may appear only in the driving of the

preceding configuration. If in that configuration s 1 was

assigned the value A, it must have disappeared from the config-

158

uration (being replaced by A), thus it cannot appear as an old

variable in any subsequent contraction. But, as we shall see

later, an assignment may appear on a given level of a walk

as a result of a aontPaation made in a function loop on a

deeper level. E.g., the following sentences

<P sl s2 '* ¢1 (sl) (s2) (¢2sl 1> 1
1

<P (s 1 > (s 1 > (s 3e 4) '* .•.

will produce the combination in question.

The commutation rule for the case when the assignment

influences the contraction is:

(AC. 2) (E . + V.) (V . + L .) '* (V . + (E . + V.) I I L .) (E. + V.)
1 1 J J J 1 1 J 1 1

Can it be that both substitutions influence one another?

We have established that if the assignment influences the

contraction, V. is s(P) .• Therefore, E. is syntactically a
1 1 1

sywbol, i.e. either a specific symbol, or s(Q)x. But for the

contraction to influence the assignment, V. must enter E .•
J 1

Therefore, xis identical to j, and both E. and V. are s(Q) .•
1 J J

But since V. is an s-variable, L. must be syntactically a symbol,
J J

and since s(P). must enter it, it must be identical to s(P) .•
1 1

Our case becomes:

(s (Q) . + s (p) .)
J 1

Which of the two AC rules should be applied here? Undoubt

edly, (AC.2), not (AC.l). If the left substitution were a "real"

assignment, there could be no contraction later using s(P)i,

because it would have been replaced by S(Q)j. Therefore the

assignment is a transformed contraction, and the case should

be covered by Rule (AC.2). Applying this rule and cancelling

an identity substitution, we get the rule

(AC. 3) (s(Q). + s(P) .) (s(Q). + s(J-) .) ,. (s(Q). + s(P) .)
J 1 J 1 J 1

159

Finally, we can sum up the AC commutation rule for

different variables in the following way: if the assignment

influences the contraction, apply Rule (Ac.2) or (Ac.3);

otherwise, apply Rule (AC.l).

Assignment-restriction

Since a restriction \\V. + L. does not (re)define any
J J

variables, but only checks a condition for V. , it is
J

commutable with any substitution which does not define V .•
J

Thus for i ~ j

(AR) (E . + V.) (\ \ V . + L .) '* (\ \ V . + L .) (E . + V.)
1 1 J J J J 1 1

For i = j we formulate a symbolic rule, like we did in

the case of contraction:

(AR.D) (E. + V.) (\ \ V. + L •) ,. (\ \ E. -+ L .) (E . + V.)
1 1 1 1 1 1 1 1

Using the technique described in Section 4.3 we transform

symbolic restriction (\\ E. + L.) into a set,or several sets
1 1

of standard restrictions for the variables in E .•
1

Replacement-contraction

(RPC) (K . + R .) (v . + L .) .. (v . + L .) (K . + R . II (v . + L .))
1 1 J J J J 1 1 J J

Replacement-restriction

{RPR) (K. + R.) (\ \ V. + L.) ,. (\ \ V. + L.) {K. + R.)
1 1 J J J J 1 1

This completes the case of no composition loops. We turn

now to the general case.

A composition loop consists of an assignment for the

computed variable of the loop and a bracketed walk:

{Rx + Ex) (W]

Unlike other assignments, an assignment for a computed vari

able contains exactly one K-symbol. Hence the rule: the

position of computed var:iable assignments with respect to one

another and to replacements must not be changed. Therefore

160

other assignments should be commuted with computed variable

assignments like they are commuted with replacements:

(CM.l) (E1· + V.) (R + E) ~ ((E. + V.) / /R + E) (E. + V.)
l. X X l. l. X X l. l.

The main rule of dealing with brackets may be formulated

as the "tPanspaPency pPinciple": the left bracket is transpar

ent, and the right is not.

Assignments (not for the computed variable, of course)

enter brackets from the left,to be used in all lower-level

loops (global variables) • A copy of each assignment jumps over

the brackets, to be used on the main level:

(CM. 2) (E.+ V.)[W] ~ [(E.+ V.) W] (E.+ V.)
l. l. l. l. l. l.

Inside the brackets, assignments move to the right and ~isappear

at the right bracket together with those assignments which

were borne inside the brackets (local variables) •

Contractions borne inside the brackets are global, not

local. They move to the left, and get out through the left

bracket (the principle of transparency). A PeVePsed copy of

the contraction, i.e. an assignment which expresses the old

variable through the new ones, is put behind the right bracket:

(CM. 3) (R + E)[(V. + L.)W] ~ (R + E)(V. + L.)[W)(L. + V.)
X X l. l. X X l. l. l. l.

Restrictions born inside the brackets get out through

the left bracket. Replacements go out through the left bracket

and are applied to Rx in the computed variable assignment.

When the brackets are empty, they are eliminated At that time

R will contain no K-symbols, so that the assignment for the
X

computed variable Ex becomes a regular assignment, and normali-

zation continues.

The rules we formul~ted are enough to normalize any walk,

but to facilitate the process of normalization we introduce

one more concept: the conjunction of substitutions of the same

type but for different variables. The operation of conjunction

is represented by joining the operands with the plus sign, and it

161

means that all of the substitutions conjoined should be

applied simultaneously.

Let, e.g., variable e 1 have value X, and variable e 2 -

value Y. A sequence of two assignments, e.g.

(10)

means the composition of the constituents. As a result of

reading it from left to right, e 2 will take the value XA, and

then e 1 will take value XAB, because at the time the second

assignment is used, the value of e 2 has been changed by the

first assignment. When we use the conjunction

(11)

we form new values for all variables simultaneously. The

resulting value for e 2 will be the same (because in (10) the

first assignment is out of the range of the second anyway),

but e 1 will take a different value: YB. To represent (10) as

a conjunction (to conjoin the substitutions) we take into

account their interaction:

(12 = 10)

In general form, the rules for conjoining two assign

ments are:

(one variable)

(different
variables)

v.)
1

(E.+ V.)(E. + V.),. (E.+ V.)+((E.+ V.)//E. + V.)
1 1 J J 1 1 1 1 J J

The rules for conJo1n1ng constrictions were presented

in Section 4.3 (although we did not use this term at that time).

Replacements are never conjoined in the process of normalization,

but whenever we have a pair of adjacent replacements we immedi

ately use the composition rule:

(Ki + C lKjC 2) (Kj + Rj) ,. (Ki + C1 RjC 2)

where cl and c2 are multibrackets.

162

Conjunction is obviously associative and commutative.

It is convenient to agree that the operation + ties closer

than concatenation. The conjunction rules for a pair of

substitutions can be easily generalized to any number of

constituents by adding a sort of associativity law for

composition (concatenation) and conjunction. Thus normali

zation becomes an equivalency transformation over expressions

built of bidirectional substitutions using two operations:

concatenation and conjunction. The rules of transformation

are: commutation rules for substitutions of different type,

and conjunction rules for substitutions of the same type.

Consider an example of normalization.

tion system (8) in Example 2. Let us form a

Remember produc

walk by using

(.1), (.6), (.7), production rules in the following

(.3), (.4) • It will be:

sequence:

1 • 2 3 4 5 6
(K 3+ Eb) [(E1 -+ s 2E1) (\\s 2-+ A) (K 3-+ s 2K3) (E1-+ 0) (K 3-+ 0)]

(Kl-+ K2) 7 (Eb-+ S)Eb) 8 (\ \ S3-+ B) 9 (K2-+ S3K2) 10 (Eb-+ 0)ll(K2-+ 0) 12

(The superscripts are sequential numbers of productions for
1 2

easy reference: P , P , etc.)

First we take P 2 and P3 out of the composition loop by

the transparency principle and Rule (CM.3). Contraction P2

generates an assignment immediately outside the right bracket,

but since there is no variable E1 in its range (i.e. the

remaining part of the walk until its end), we mentally commute

it with every production, and eliminate it at the end of the

walk.

Now the beginning of the walk is

(El -+ S2El)2(\\S2-+ A)3(K3+ Eb)l[~ 3-+

Taking out replacement P 4 and substituting

transform the latter into

1
(S2K3 +- Eb)

4
S2K3) ...
it into Pl, we

while P4 disappears.

P4 , we make brackets

Treating P5 and P6 as we treated P 2 and

empty and transform the first line repre-

senting the walk into:
163

(El + 8iE1)2 (\\82 + A)3 (El + 0)5 (82 + Eb)l

Here we can conjoin P 5 and P 2 , which transforms P2 into

2
(El + 82)

and kills P5.

Now we move Pl, which became a regular assignment,

the right. It commutes with p7 and combines with P8 into

(8 2 + 8jEb)

to

by Rule (AC.D). The result of driving is two assignments:

(82 + 83)13(0 + Eb)l4

which are now to be moved to the right instead of one assign

ment P1 •

P14 combines with P11 into a trivial "contraction"

(0 + D)

and dies at the end of the walk.

By Rule (AR.D), P13 and P9 combine into

(\\ 82 + B) 15 (82 + 83) 13

Restriction P15 moves to the left, while P13 transforms P10 :

(K2 + 8 K)10
2 2

and dies too.

Now we have a sequence of replacements

(Kl + K2) 7 (K2 + 82K2)10 (K2 + 0)12

Combining them into one, we receive finally the normal form:

(El + 82) (\\82 +A) (\\8 2 +B) (Kl + 8 2)

Normalizing the walk in Example 3, we get:

164

5.3. Set Selectors.

A set selectoP is a function defined on a subset of the

full set of expressions, and such that its value is identical

to its argument when the argument is any expression for which

the function is defined. So, both the domain and the range

of a set selector are the same set of expressions, and on this

set the function returns its argument as the value. We shall

say that the selector defines this set.

Selector

a L '* L

where L is an L-expression, defines the same class as L. To

define a set which is the union of several L-classes, we write

the corresponding number of sentences: e.g., set selector

T s 1 ,.. s 1

T(e1) .. (e1)

defines the set of all terms.

A selector definition may contain "negative" sentences:

e.g., the set of all symbols different from A may be defined

by selector:

a A ,. k? 1
(l s '* 1

Here the question mark "?" is the determiner of a function which

is not defined (this simply means that no sentence in the algo

righm has "?" as the determiner). Accordingly, when the argu

ment of the selector function is A, the Refal machine will have

an abnormal stop. With any other symbol, it will return the

argument.

A selector definition may be recursive, such as

v 1 ex .. 1 v ex 1

which defines the set of all sequences of l's including the

empty sequence. If we were to exclude the empty sequence, we

165

would modify the definition in this way:

v 1 ~ 1

v 1 ex ~ 1 v ex 1
To define more complicated set selectors one may intro

duce a hierarchy of auxiliary selectors, much in the same manner

as when using the Backus normal form. It is especially easy

to transform a BNF into an equivalent selector definition

if the BNF meets certain requirements, which we will presently

formulate.

To each alternative in a BNF we can relate a aovePing

L-alass. Let us take as an example the first line in the

syntax of ALGOL-60 numbers as defined in the famous RepoPt on

the AlgoPithmia Language ALGOL 60:

<unsigned integer> ::= <digit>l<unsigned integer> <digit>

Since a digit is one of ten symbols 0123456789, we represent

the first alternative by the L-expression

s(Ol23456789)
X

For the second alternative we construct, as a rough approximation,

the L-class

e s(Ol23456789)
X y

which is obtained by replacement of a metavariable whose values

generally are expressions from the Refal viewpoint, by an

e-variable. In the general case, for an alternative which

corresponds to a set S of terminal expressions we can take as

a aovePing L-alass any L-class L such that S c L.

Suppose now that these rough approximations are sufficient

to separate the alternatives for one metavariable in the BNF.

More precisely, let it be possible to order the alternatives

and the corresponding sets s. in such a way that for each i:
1

s. n Ll = ¢
1

s. n L2 = ¢
1

s. n L. 1=¢
1 1-

166

where Lj are covering classes for sj.

Then we can define the set selector corresponding to the

metavariable in question bv making L. the left side of the i-th
- 1

sentence (i.e. parsing the argument as the covering L-class),

and applying the corresponding set selectors to define the

free variables in the right side. For unsigned integers

this gives:

k/UNSIGN-INT/ s(Ol23456789) 1

k/UNSIGN-INT/ e 1 s(Ol23456789) 2 ~ k/UNSIGN-INT/ e 1 1 s 2

Let us examine from this point of view the rest of the

syntax of ALGOL-60 numbers:

<integer> ::=<unsigned integer>l+<unsigned integer>

!-<unsigned integer>

<decimal fraction> ::= .<unsigned integer>

<exponent part> ::= 10 <integer>

<decimal number> ::=<unsigned integer>j<decimal fraction>

<unsisned number>

<number>

!<unsigned integer> <decimal fraction>

::=<decimal number>j<exponent part>

!<decimal number> <exponent part>

::=<unsigned number>j+<unsigned number>

!-<unsigned number>

The definitions of integer, decimal fraction, exponent

part and number meet our requirement, although those for

integer and number need reordering. The definitions of decimal

number and unsigned number do not satisfy the condition. But

they can be rearranged to satisfy it.

What we need of course is unsigned number which is a

string composed of three elements in fixed order: (1) unsigned

integer or empty, (2) decimal fraction or empty;

(3) exponent part of empty, with a restriction that all three

cannot be empty. Therefore, there are three stages in the

process of parsing, to which three recursive metavariable

definitions must correspond: (1) when we are inside the unsigned

integer, a decimal fraction and exponent part still may be

encoutnered, (2) when we are inside the decimal fraction, an

exponent part may be encountered, (3) when we are inside the
167

exponent part, there will be no subsequent parts. We will

assign to the first stage metavari3ble < ife>, and to the

second stage metavariable <fe>. For the third stage we can

use the already existing metavariable <integer>. This part

of the BNF becomes:

<unsigned number> ::= <digit><ife>l .<digit><fe>i 10 <integer>

<ife> ::= <digit><ife>l.<digit><fe>i 10<integer>

1 <empty>

<fe> ::= <digit><fe>i 10<integer>l<empty>

This BNF meets our criterion. Metavariables

<decimal fraction> and <exponent part> become unnecessary,

and the definition of the set selector /NUMBER/ will be:

k/NUMBER/ + e - + k /UNSIGN-NUM/ e 1 X X

k/NUMBER/ - e =>
X

- k /UNSIGN-NUM/ ex 1
k/NUMBER/ ex => k /UNSIGN-NUM/ e 1 X

k/li_'miGN-NUM/ s(Ol23456789) 1e 2 • 51 k/IFE/e 2

k/UNSIGN-NUM/ .s(Ol23456789) 1e 2=> .s1k/FE/e 2

k/UNSIGN-NUM/ 10e 1 • lO k/INTEGER/e1 1
k/IFE/ s(Ol23456789) 1e 2 ~ s 1 k /IFE/ e 2 1
k/IFE/ .s(Ol23456789) 1e 2 => .s1k/FE/e2 1
k/IFE/ lO e 1 ~ lO k /INTEGER/ e 1 1
k/IFE/ •

k/FE/ s(Ol23456789) 1e 2 • s 1k/FE/e2 1
k/FE/ lO e 1 ~ lO k /INTEGER/ e 1 1
k/FE/ =>

k/INTEGER/ + e 1 • + k /UNSIGN-INT/ e 1 1
k/INTEGER/ -e1

k/INTEGER/ e 1

~ - k /UNSIGN-INT/ e 1 1
k /UNSIGN-INT/ e 1 1

168

1
1

It is easy to build the intersection of two sets defined

through their set selectors. If selector cr1 defines set 51 ,

and selector a2 defines set 52 , then the selector defining

the intersection 51 n 52 is simply

a ex ~ crl cr2 ex 1 1
But it is impossible to define the complement and the union

of sets without reshaping the definitions of corresponding

selectors. Very often it is more convenient to deal with

classical recursive predicates as definitions of sets. Let a

predicate P be given, which takes the truth value T if and

only if the argument belongs to set 5. A selector for 5 can

be built without intervening into the definition of P. We define

a universal function £:

k £ s e - k £ 1 (ks e 1) e 1 p X p X X

k 1
£ (T) ex - e

X

Now, function a defined by

a e ... k £ P e 1 X X

will be a set selector for the set 5 defined by the classical

predicate P.

Just as we use free variables to represent classes of

expressions, we may use set selector calls to represent more

sophisticated sets. The expression a e J stands for any e
X - X

which is an element of the set defined by selector cr. We can

limit the domain of a function by applying a set selector to

the function's argument. Let ~ be a function, and a a selector

defining set 5. It may happen that we are interested in

function ~ as applied only to elements of 5. Or we may know

for sure that in some program the function ~ will be applied

only to such expressions which are again elements of 5. Then

we define a modified function
1

~ ex • ~ a ex l 1
and in the process of compilation, or making equivalence trans

formations in any other way, we use ~l instead of ~- It may

169

lead to a very significant simplification of the resulting
program.

As an example, let us consider the following theorem:
if X is a string of l's, then 1 X is identical to X 1. To
formulate it in Refal we introduce the set selector

a 1 e ~ 1 a e 1
X X

and the predicate of identity:

k=() ()~T

k = (s1 e 2) (s1 e 3) ~ k (e2) (e 3) 1
k = e ,.. F

X

Then we form the predicate which verifies the proposition
stated in the theorem:

kC1 lexJ ~ k=(l a ex1> (a exl 1)1

The theorem will be proven if we transform this definition into

kc1 (e) ~ •r
X

Let us use the compilation process. By the outside-in
strategy, we find that the first subexpression to be driven is
the second call of a ex 1 • The driving produces the follow-

ing transitions and configurations:

(1 + 2) e + 0
X

(2) k = (1) (1) 1

(1 + 3) e + 1 e
X X

(3) k = (1 1 a exl> (1 a ex 1 1) 1
Configuration c2 immediately becomes T ; configuration

c3 is also transitory and passes into c1 • Thus we obtain:

k c1 (> •

kC1 (lex) • kC1 (ex) 1
This definition is transformed by induction (see Section 4.6)
into

170

kC1 (e) ~ T
X

which proves the theorem.

Set selectors can also be used to define parametric sets,

i.e. sets depending on a parameter. A parametric set selector

has the format:

k F (P) E 1
where F is a determiner, P a parameter, and E the argument proper.

The value of this function when it exists will always be identical

to E. For instance, this is the definition of the set of all

strings built by the repetition of the same symbol (which is a

parameter) :

a (s) ~
a

a(s)s e ~ sacr(s)e 1 a a x a x

One can see that the above theorem and its proof can be

easily generalized for this set of strings.

5.4. Covering Context-Free Grammars.

The production systems we introduced in Section 5.2 are

two-leveled. As they are defined (an the second metasystem level),

they are context-free grammars producing certain objects. These

objects (walks) are productions themselves, but of a different

nature. They constitute the first metasystem level and produce

input and output expressions on the zero level. First-level

grammars are not context-free, because productions on this level

appear in groups as the result of free choice on the second

level, and once having appeared, they must be used in the process

of walk in~erpretation. But we can build covering context-free

grammars for input and output sets by "disassembling" produc

tions of the first level. We will allow combining these produc

tions freely. By doing so we certainly may only expand the set

of produced expressions. These "covering" sets will give us

first approximations to exact sets.

171

We shall discuss here onlyoutput sets. The output

expression ultimately results from performing a series of

replacements. So, as "the very first" approximation, we can

collect all the replacements scattered throughout the right

sides of the second-level production system, and ignore all the

rest. Then we change nonterminal s- and E-symbols into

s- and e-variables, and add restrictions if there are any.

In Example 2 (Section 5.2) the resulting covering grammar

will be:

Kl -+ K2

K2 -+ 0

K2 -+ C K2

K2 -+ s 3K2 \\ s 3 -+ B

This is already something significant.

To construct a better grammar we should take into

account that nonterminal symbols other than those corresponding

to input variables may (and usually do) have more restricted

ranges of values than the sets of all symbols and expressions.

Therefore we add·to our "dissassembled" system all the

assignments for these nonterminals, which can be found in the

original second-level system. In this process, we turn

assignments into productions by swapping the sides and changing

the direction of the arrow. This amounts in fact to the

following way of interpreting a walk: first we move along the

walk from left to right performing replacements; on coming to

the end we reverse the direction of movement and apply a~sign

ments, which, being read from right to left, work now as

contractions for nonterminals entering the result of conreti

zation.

What should we do with contractions in this approach?

We ignore them when moving from left to right since we are

not interested in the input set. But when we are ~oving back

wards we must remember that contractions not only limit the

input set, but also very often define new variables. If we

172

ignore it, we will not be able to ultimately reduce nonterminal

symbols to terminal elements: symbols, parentheses, and free

(input) variables.

Variables defined in the right side of a contraction are

certain functions of the variable in the left side. If we

introduce special functional designations for variables involved

in elementary contractions, we will be able to replace a contrac

tion for the left side variable by a set of assignments defining

the right-side variables. At least this is true with respect

to the four contractions which define new variable by breaking

down an e-variable into two parts. The functional designations

we choose are presented in the following table:

Contraction Eguivalent Assignments

E. -+ SjEk l.

R, r
+- Ek) (cr (E.) +- s.) (£ (E.)

l. J l.

E. -+ EkSj l.

r R,
+- Ek) {cr (E.) +-S.)(£ (E.)

l. J l.

E. -+ (Ej) Ek l.

R, r
+- Ek) {1T (Ei) +-E.)(£ (E.)

J l.

E. -+ Ek{Ej)
l.

r R,
+- Ek) (1T (E.) +-E.)(£ (E.)

l. J l.

All eight functions (which will be referred to as spLit

functions) are defined so that if the required split of the

argument is impossible then the function call has no value,

and the expression in which this function call appears is

declared to correspond to the empty set ~ (not to the empty

expression D!). A production containing such a function call

in its right side should be cancelled.

So we introduce split

sides of the productions in

But there will be no split

expressions produced by the

in the argument of a split

function calls into the right

the covering context-free grammar.

functions in any of the terminal

grammar. When all nonterminal symbols

function are replaced by terminal

elements, its value can be easily computed. This is obvious

when the argument consists of symbols and parentheses only, e.g.

crR, {ABC) = A

,f(X(YZ)) = YZ

etc. When there are free variables in the argument, one should

173

remember that in a context-free grammar they represent corres

ponding full sets of values, and not some unspecified values,

as is the case in driving. Also the value of a splitting

function is a set, and no mapping is required between the

argument set and the value set. Thus there will be no contrac

tions. Not only

= s.
1

where i is any new index, but also

R,
cr (els2) = si

etc.

Using the definition of splitting functions, we can always

transform the grammar so as to eliminate function calls from

the final product. We are helped in this enterprise by the

fact that we are after all building a covePing grammar: if

worse comes to the worst, we replace the unyielding function

call by the appropriate full set s , or e •
X X

Turning again to Example 2, we disassemble the W-production

system into the following context-free grammar:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Kl

K2

K2

K2

K3

K3

K3

Eb

Eb

s3

s2

-+ K2

-+ C K2

-+ S3K2 \\ s 3 -+ B

-+ 0

-+ B K3

-+ S2K3 \\ s 2 -+ A

-+ 0

-+ K3

r
-+ e: (Eb)

-+ crR.(Eb)

-+ crR,(e1)

174

The nonterminal symbol E1 corresponds to an input variable

and has been therefore changed into the free variable e 1 .

Production (11) is immediately transformed into

Now (6) becomes

K3 ~ s 2K3 \\ s 2 ~A

and (11) can be cancelled.

For s 3 we have only one production (10), which is non

recurrent; thus we substitute it into (3) and cancel (10).

Now let us transform the productions for Eb. Nonrecurrent

production (8) expresses Eb through K3 • Recurrent production

(9) may be cancelled. Indeed any chain of applications of (9)

will ultimately end with an application of (8). The combined

result of the last two applications will be

r
Eb ~ £ (K3)

Unfolding K3 , we use (5), (6) and (7) with the result

Eb ~ K3

Eb ~ K3
r

(The third production is annihilated, because £ (D) is ¢.)
This shortens by one the length of the chain of the applica

tions of (8). Since this procedure may be repeated any number

of times, we come to the conclusion that the effect of the two

productions (8) and (9) is exactly the same as that of one

production (8) .

Using (8) we transform (3) into

(3 I)

For the function call in (3') we obtain by unfolding K3 :

(12)

(13)

o£(K 3) ~ B

o£(K 3) ~ s 2 \\ s 2 ~ A

Combining (3') with (12) we get no production because of the

restriction; combining it with (13) we get

175

{3") K2 -+- s 2K2 \\ s 2 -+- A \\ s 2 -+- B

Production {2) can now be submerged by (3"), and we finally

get:

Kl -+- K2

K2 -+- s 2K2 \\ s 2 -+- A \\ s 2 -+- B

K2 -+- 0

The covering output set thus obtained is by the way equal to

the exact output set.

To make covering grammars still more precise, we intro-

luce check functions in addition to split functions. Check

functions have the form ~{C), where C is a contraction or

restridtion for nonterminals, e.g., ~{Sa-+- B), ~{\\s1 -+- B),

~ {E -+- 0) etc.
X

A check function has value 0 if the condition

specified by the argument is satisfied, otherwise it has no

value and the expression in which the function call appears

will correspond to the empty set ¢ of terminal expressions, as

in the case of an unfeasible split.

We use check functions to take into account constrictions

when disassembling a production system. If a path has a constric

tion C in it, we can add ~(C) to the consequent of any replace

ment or assignm.ent in this path. Consider the following example,

which will be used in Section 5.5.

Example 4

1jJ
4 B B 1)J 11 A e 3 ~ e3

1jJ
5

~ c B 1jJ 11 A e 3 e3

1jJ p6 ~

B Zex ~ Z B 8 ex 1
B sa ex ~ sa8 ex 1
8 ...

The production system corresponding to this definition is:

176

wl ... (E3 -+ 4 A E3) (Kl -+ B K2) (Kl +- Ex) [Wl l w2

wl ... (E3 -+ ASE3) (Kl -+ c K2) (Kl +-Ex) [Wl]W2

wl ... (E3 -+ P6) (Kl -+ 0)

w2 ... (E -+ Z Ex) (K 2 -+ z B K2) w2 X

w2 ... (E -+ S 'E) (\ \ S -+ Z) (K2 -+ SaK2)W2 X a x a

w2 ... (Ex -+ 0) (K 2 -+ 0)

Disassembling it into a context-free grammar for the

output set, we obtain:

(1) Kl -+ B K2

(2) Kl -+ c K2

(3) Kl -+ 0

(4) K2 -+ z B K2 z;(cr~(E) -+ Z)
X

(5) K2 -+ S K2 l;(\\s -+ Z)
a a

(6) K2 -+ 0

(7) E -+ Kl
X

(8) s -+ cr~(E)
a X

Substituting (7) into (4) and using (1), (2) and (3), we

see that the check function in (4) never says yes, therefore

we eliminate rule (4). From (8), (7) and the rules for K1
again, we obtain:

sa -+ B

sa -+ c

Therefore we receive three productions for K2 , whose right sides

are completely identical to those for K1 • Identifying K1 and K2 ,

we finally get:

K1 -+ B K1

K1 -+ C K1

Kl -+ 0

177

In equivalence transformation, covering context-free

grammars for output sets may be used in the following way.

Suppose we have a composition, e.g.

1 2
kC (kC (e1) (e 2) l) (e 3) l

Suppose we simplified the definition of c2 as we could, and

we did our best to drive the composition as a whole, yet could

not avoid the necessity of decomposition. Then we may construct
2 a covering context-free grammar for C , and define the corres-

ponding set selector a 2ex 1 . N0\'1 intead of driving the outer

configuration just as it is defined:

we will drive the configuration

1 2
kC (a exl) (e 3) 1

exploiting in this way some properties of the argument e resultx
ing from concretization of c 2 • An example of using this

technique will be given in Section 5.5.

5.5. Differential Metafunction.

Walk normalization defined in Section 5.2 applies to

terminal walks, and produces walks in normal form. We intro

duce now the function T, the equivalence transformation of a

walk, which may be applied to both terminal and nonterminal

\<Talks. Function T is such that if Wt is a terminal walk,

then T Wt l is a walk which has the same normal form as wt.

If W is a nonterminal walk, it represents a set S of terminal

walks. Then for any Wt e S, T Wt 1 shall have the same

normal form as wt. Since normalization leaves the walk invari

ant with respect to interpretation, the equivalence transfor

mation will also have this property. It will be presumed in

the following that function T is such that it makes the walk

"closer", in some sense, to the normal form. In particular,

for a terminal walk Wt the result of the concretization of T Wt 1
should always be identical to the normal form of Wt (although

178

the process of transformation should not necessarily be exactly

the same as described in Section 5.2).

We presume furthermore that there is a definition of the

function T in Refal; however, we shall deal with it informally,

appealing to our understanding of the normalization process and

generalizing it for the case when there are some nonterminal

W-symbols in the walk under transformation. There is only one

difference to mention between the equivalence transformation

we are going to use and the normalization process as described

in Section 5.2. It concerns composition loops. We recall

that a composition loop is a construction of the form

{1) {K.+E)[W.]
~ X ~

where w. is the nonterminal symbol for a walk with the head
~

K-symbol K.
~

{indexes i and x are arbitrary). In the normali-

zation process, replacements borne by w. and coming up to the
~

left bracket from inside are immediately used in the consequent

of the assignment for the computed variable E • In the equiva-x
lence transformation we shall always keep the initial form of

this assignment {changing, possibly, only the index i of the

K-symbol) • Instead, we shall add new assignments for E •
X

Specifically, let the loop become:

{ 2) {K. +E) [{K.-+ C1K.C 2) W.]
~ X ~ J . J

where c1 and c 2 are multibrackets, and j may be equal to i

or different from it. Instead of transforming it into

(3} {C1K.C 2 + E) [W.]
J X J

we shall reshape it in this manner:

{ 4) {K. ~- E) {C1E C2 + E) [W.]
J X X X J

which is equivalent to (3) provided that cl and c2 do not

contain E (if they do, a renaming procedure will be needed).
X

Since after normalization ~·J. will not contain E , we trans-
J X

pose the second assignment and transform finally (4) into

(5) (K . + E) [W.] (C 1E C 2 + E)
J X J X X

179

Let a function F be given by its graph of states G.

A set w of all walks in G corresponds to F. A function of will

be referrned to as the diffePential metafunction, or

metadePivative of F, if it is defined on the set W, and for

each walk We W, concretization ofw l gives the normal form

of W. If of is a set selector for W, then the metaderivative

will be defined by the sentence:

Consider Example 1 from Section 5.2. Function F is:

kFsael ~ sakFe1 l
kF ~

Its graph of states is in Figure 17, and the production system

defining set W is given by the rules (7), page 146. It is

easy to turn this production system into a selector definition,

because it is a context-free grammar, with the right sides

which are nonoverlapping L-expressions with respect to

nonterminal W-symbols (see Section5.3):

f
-+ +El) (Kl -+ -K)e ... (El -+ +El) (Kl

f a (E1 -+ -Kl) a e 1 1 w w

f a (E1 -+ S~El) (\\Sa-+ +) (K1 -+ SaKl)ew ~

(El -+ S'El) (\\S -+ +) (Kl -+ SaKl)
f a ew a a

f a (E1 -+ D) (Kl -+ D) ... (El -+ D) (Kl -+ D)

This gives us immediately the metaderivative of.

The argument of the metaderivative, as we have defined

it, is an exact copy of a walk before normalization. It may

l

be very long, and that is inconvenient, We now generalize the

concept of metaderivative so that it may be defined on any

set of expressions which are in one-to-one correspondence with

walks -- the codes of walks; as we shall see later, it is only

the output set of the metaderivative that matters. Let us code

180

the arcs of the graph of states which lead to active vertices

by the letter A with superscripts, the arcs leading to passive

vertices will be coded by P with superscripts. This gives us

a convenient representation of walks which we shall use in

the arguments of af and of. Let the arc in the first production

be A1 , in the second A2 , and in the third P 3 • Then function af

{which now is not, strictly speaking, a set selector, but

rather a set genePator for walks) becomes:

=> {El -+ +El) {Kl
f

-+ -K1)a ew 1

{El -+ S'El) {\\S -+ +) {Kl -+ SaKl)
f l ... a e a a w

=> (El -+ 0) {Kl -+ 0)

A fundamental property of the equivalence transformation

T is that parts of the argument may be subject to a preliminary

transformation without changing its overall result:

{6) =

where wl , w2 and w3 are walks {terminal or nonterminal, or

empty). Using the definition of of, executing one step of

driving, and using { 6) ' get a definition f which we of o ,

does not depend on
f a

#1.1 of Ale => T{El -+ +El) {Kl -+ -K) of e 11 w 1 w

#1.2 of A2e => T{El -+ S 'El) {\\ S -+ +) {Kl -+ SaKl) ofe
w a a w

#1.3 ofPl .. {El -+ D) {Kl -+ D)

Any expression from the output set {range) of function of

may be interpreted as a walk, and corresponds therefore to a

one-step subfunction of the function F. Let us introduce a

Refal function which will interpret walks. Its determiner will

be <, and the format:

{7) k <W> E l
Here W is the walk being interpreted, E is the argument of

the subfunction, and the sign > separates the walk from the

argument. We define the function < so that the result of the

181

ll

concretization will be the value of the subfunction (i.e. the

consequent of the final replacement, not the whole replacement),

which is of course identical (when it exists) to the result

of concretization of kFE 1 .
We shall use <W> symbolically as the "determiner" of

the subfunction it represents. The expression in the angular

brackets may contain function calls. We may write e.g.

< cSf pl 1 >

This may be viewed as the determiner of a function defined by

the sentence:

k< (El + D) (Kl + D)> () :$

Or we may write

Then function F1 will be defined by:

1 kF (+e1) :$ K? 1

kFl (s +) :$ s -
a a

By a variable form we mean a sequence (possibly empty)

of terms (V.), where V. is an s-ore-variable, e.g.
1 1

(el) (sa) (e2)

For each point in a walk the valid variable form is defined

which comprises all variables defined at that point. For each

walk the input variable form is defined, which comprises all

input variables and can be found as described in Section 5.2.

Functions corresponding to walks (and later, to walk sets)

will be defined in the format

k V input-variable-form 1
where V is a regular determiner, or a "determiner" as in (7).

Since a walk is essentially a replacement for the head

K-syrnbol, we can write symbolically:

(8) W. = (K. + k<W.> input-variable-form 1)
1 1 1

182

Indeed, walk W. in its normal form consists of a conjunc-
1

tion of contractions and restrictions, which may define some

new variables, followed by a replacement for the head symbol K.,
1

which may use new variables in the consequent. The right side

of (8) is a replacement for the same nonterminal K. , of which
1

the consequent is doing with a function call the same job,

as the normal form walk does with constrictions. In fact,

equality (8) is a metasystem reduction rule. We make a meta

system transition when we consider the space of walks and

functions defined in it, like T and of. To come back we

express walks through functions in the original space of zero

level expressions.

If a number of functions are defined on nonoverlapping

sets, we call the union of these functions a function which

is defined on the union of the domains, and takes a value using

an appropriate function. The metaderivative function of defines

an infinite number of one~step functions

etc., which have

F is the union of

<of Pl 1 >

<of A.J. Pl 1 >

<of A2 Pl 1 >

<of AlA2Pl1 >

nonoverlapping domains. The original function

this infinite set of functions. Symbolically

F = J < of w 1 >

w
which gave us reason to call of the metaderivative. Function of

defines the breaking down of the original function F into a

(generally infinite) set of elementary "differentials" - one-

step subfunctions corresponding to different walks (paths taken

by the computation process). The argument of the metaderivative

function is a walk in some representation. The value is the

corresponding one-step function. The full set of values - the

range of the metaderivative is a definition of the original

function as dissected into elementary pieces: one-step subfunctions.

183

The potentiality of taking metaderivative for equivalence

transformations is that these pieces may be regrouped in

different ways, bringing about different finite (recursive}

definitions of the original function.

Let us generalize our symbolism by considering arbitrary

sets of walks. If {W.} is any set of walks for the same head
l.

symbol K. , then a function will correspond to it, which is
l.

the union of all functions corresponding to the elements of

the set. Our notation for this function will be:

<{W. }> =
l. f

{W. }
l.

<W.>
l.

A set of walks may be represented with the help of free

variables, e.g.

f
<a

Rule (8} is now generalized to

(9} {Wi} = (Ki ~ k<{Wi}> input-vaPiable-foPm l }
In particular

(9 I} ofe 1 = (K. ~ kF input-VaPiable-foPm lJ w l.

Consider the transformation of the range of a metaderiva

tive function into a definition of the original function in

Example 1.

The metaderivative function of is defined by three

sentences #1.1 to 1.3. Nonterminal K1 relates to the original

function F. The first sentence contributes the set

f
T(El ~ +El} (Kl ~ -Kl}o ew 11

to the range of the function of. Using (9'} and performing

the equivalence transformation T we get:

(10.1}

The general rule of how to transform a walk into a

sentence is: treat nonterminals Si and Ei as corresponding

free variables, and apply the walk to the "skeleton" of

the sentence:

kF input-VaPiable-foPm ~ K1

184

Thus we receive:

Treating 11.2 in the same way, we get a "normalized"

nonterminal walk

(10 • 2)

It cannot be translated into a sentence because of the restric

tion, so let us regard it, for the time being, as another arc

on the graph of states with independent arcs. The thjrd arc

will be simply

(10.3)

So, we have constructed a graph of states for the function

F, which is no worse than a list of sentences. How to trans

form sets of independent arcs into sequences of sentences

where restrictions are only implied is a different problem

(which is neither difficult, nor terribly important). We might,

e.g., decompose all contractions into elementary contractions,

which would replace (E1 ~ +E1) by

(El ~ S~El) (Sa ~ +);

then "take out of the brackets" the first contraction in (10.1)

and (10.2), and then establish that the restriction (\\sa~+)

in (10.2) becomes unnecessary if the corresponding sentence is

placed after (10.1), because (10.1) includeG the contraction

(S ·~ +) •
a

In this example we did not apply any equivalence trans-

formations to the metaderivative function; we only came over

to metaderivative, and then back to the original function,

receiving the same (not counting small format differences)

definition. But the reason for introducing a metaderivative is

of course to subject it to transfomations and then return to

the zero level with a new definition of the original function.

When transforming metaderivative functions, we shall extensively

use property (6) of the function T, and its consequence:

f f
T o ew 1 1 = o ew 1

185

These properties in fact make it unnecessary to keep in the

record explicit invocations of the function 1. It is much

more convenient to skip them and keep in mind that whenever

there is a possibility to transform a walk by the function 1,

this should be done immediately.

We also introduce another technical device. It will often

facilitate equivalence transformations of walks if in the represen

tation of the walk we keep constrictions separated from the

rest of the walk. We shall achieve this by using the follow-

ing format for walks:

C(constPictions} the Pest of the ~alk

This representation will be u~ed in parallel with the unformat

ted representation, so as not to encumber the record with the

format when it is not needed. Even without any comments, we

cannot confuse one representation for another, because a

formatted walk always begins with the letter C, while an

unfor·matted walk begins with a parenthesis.

Consider Example 2 from Section 5.2. The walk space is

defined by the production system (8}. Our first task is to

code the arcs of the graph of states. In addition to horizontal

arcs leading to an active or passive vertex, which we agreed

to code by Ai and Pi respectively, we see here a composition

loop, reflected by the presence of square brackets in (8.1}.

We shall encode a combination of a horizontal arc and a composi

tion rule by a superscripted c followed by a pair of parentheses

enclosing the code of the inner walk in the loop.

This means that to formulate such a convention we need a

free variable representing the inner walk. In our case:

Cl(ew} ::= (K3 + Eb} [ew] (Kl + K2}

The rest of the conventions will be:

Al :: = (Eb + BEb} (K 2 + CK2}

A2 :: = (Eb + SjEb} (\\ s 3 + B) (K 2

p3 : : = (Eb + 0} (K2 + 0}

186

+ S3K2}

means

A4 : : = (El -+ AE1) (K 3 -+ BK3)

As : : = (El -+ SiEl) (\\82 -+ A) (K 3 -+ S2K3)

p6 :: = (El -+ D) (K 3 -+ D)

To illustrate these conventions, the code

Cl(P6)P3

To each of the nonterminals W. , i = 1,2,3, a metaderiva-
l.

tive function 6i will correspond. We are of course interested

in 61 which is the metaderivative of the original function a.

Functions 61 and 62 are metaderivatives of the respective
'1' f t' b d a T f · d t' 1 aux1. 1.ary unc 1.ons F an F • rans orm1.ng pro uc 1.0n ru es

into sentences defining metaderivatives, and ignoring function

T as explained above, we get the following definitions:

#2.1 61c1 (e.3)e 2 :$ (K 3 + Eb) [6 3e 31J (Kl-+ K2)6 2e 2 1
#2.2 62A1e 2 :$ (Eb-+ BEb) (K 2 -+ CK 2)6 2e 2 1
#2.3 62A2e 2 :$ (Eb-+ SjEb) (\\s 3 -+ B) (K 2 -+ s 3K2)6 2e 2 1
#2.4 62P3 ~ (Eb -+D) (K2 -+D)

#2.5

#2.6

#2.7

63A4e3

63A5e3

63P6

• (El-+ AE1) (K 3 -+ BK 3)6 3e 3 l
:$ (El-+ SiEl) (\\s2-+ A) (K3-+ S2K3)63e3 1
• (El -+ D) (K 3 -+ D)

·ro transform function 61 , \ole use the compilation process

augmented by the rules of the equivalence transformation T in

the walk space. Our goal is to obtain a definition, which (1)

would be interpretable on the zero level as a recursive defini

tion of the original function a, and (2) would correspond to a

more perfect graph of states than the original definition of a.

The first objective will be attained if the configuration

being interpreted is of the form

(11) L (K1 -+ C n K . C) { W . }
N J r J

187

where L is a list of contractions and restrictions, Ci and Cr

are multibrackets, {W.} is any nonterminal walk for the head
J

symbol K. , and j may be either 1 or different from 1. Using
J

rule (9) we interpret such a configuration as the arc

L (K1 -+ C i k<{Wj}> input-variabZe-form l Cr)

Therefore, to receive a self-sufficient recursive definition,

we shall try to find in the process of compilation such

configurations of the form (11), where {W.} is a configuration
J

already met previously.

The second objective is attained almost automatically,

because as we drive the metaderivative function we consider

longer and longer walks; those which are unfeasible will

be turned into D by function T.

our initial configuration is 61e 1 1 . Using #2.1 we

change it into

3 2
(12) (K 3 + Eb) [6 e 3 1] (K l -+ K 2) 6 e 2 1

(Contraction (e1 -+ c1 (e 3)e2) has been made.)

After each step of driving we use the equivalence trans

formation in the walk space, driving the invisible function T.

Whenever it is allowed by the rules of the equivalence trans

formation to move a substitution in the desirable direction

(i.e. contractions, restrictions, and replacements to the left,

and assignments to the right), function T will do it. In (12)

we have only one movable substitution --- replacement (K1 -+ K2)

(assignment (K 3 + Eb) is part of a composition loop) . To see

whether or not we can commute a substitution with a functional

loop, we mentally substitute for the bracketed nonterminal

walk its equivalent according to rule (9), in this case:

3 3
6 e 3 1 = (K3 -+ k <6 e 3 1 > (E1) 1

We see that the loop does not contain nonterminals K1 or

K2 , therefore we commute our replacement with it. Configuration

(12) is transitory and passes into

3 2
(13) (K l -+ K 2) (K 3 + Eb) [6 e 3 1] 6 e 2 1

188

Now we drive subexpression o3e 3 1 in (13). Three continua

tions are possible, according to three sentences #2.5 to 2.7.

Let us examine the arc with the contraction (e 3 ~ A4e 3), #2.5:

(14) (Kl ~ K2) (K 3 + Eb) [(El ~ AE1) (K 3 ·~ BK 3) o3e 3 ll o2e 2 1
A straightforward transformation of (14) by the rules

produces:

3 2
(15) (El ~ AE1) (Kl ~ K2) (K 3 + Eb) [o e 31J (BEb + Eb) (AE1 + E1)o e 21

The result of concretizing o2e 21 does not include E1 ,

as one can establish by analyzing #2.2 to 2.4. Therefore, we

commute assignment (AE1 + E1) with o2e 21 and eliminate it.

But we cannot move assignment (BEb + Eb) further to the right,

because o2e 21 is not independent of Eb. According to the

strategy inside from outside, function T will demand that o2e 21
be driven. Again, three continuations are possible. The one

corresponding -to #2. 2 and contraction (e2 ~ A 1e 2) produces:

(16) (E 1~ AE1) (K1~ K2) (K 3+ Eb) [o 3e 31J (BEb+ Eb) (Eb~ BEb) (K2~cK2)o 2e 21
The assignment and the contraction for Eb are annihilated,

the replacement (K 2 ~ CK 2) drifts left and gets used in the

replacement (K1 ~ K2), the result being

(17) (El ~ AE1) (Kl ~ CK2) (K 3 + Eb) Lo 3e 3 1] o2 e 2 1
Two compilation strategies may be formulated, which

will lead to a successful transformation. The more straight

forward one is just L-generalization, as described in Sec

tion 4.6. Comparing (17) with (13), we find an L-generaliza

tion

(18)

Repeating the compilatjon process for the new initial configura

tion (18) we find out that the specific part of (18), which is

common for (13) and (17):

(19)

is recurrent and self-sufficient. In the final result, the

original function a will be found identical to the function

189

corresponding to the walk set (19), for which we will have

received a recursive definition. One can see that the necessity

of introducing an auxiliary function (which is in fact identical

to the original function a) in this approach reflects the fact

that it is the configuration kFbkFae11 1 , corresponding to

the walk set (19), that is recurrent, and not function a corres

ponding to the walk set {13).

The more sophisticated strategy is to try to leave on

the right, when moving contractions and replacements to the

left, as many of the original substitutions unchanged as

possible. The purpose is to make {W.} in the form {11) as close
J

to the original function as possible. Thus instead of combining

the two replacements:

{Kl ~ K2) (K 2 ~ CK 2)

we shall commute them, transforming this composition into the

composition:

{Kl ~ CK1) {Kl ~ K2)

which is equivalent to it. {It is not difficult to formulate

algorithmically this transformation.)

Now the whole configuration (13) becomes recurrent,

Gathering all the contractions we have made, we obtain the

following sentence for function o1 :

#3.1 o1c1 (A4e 3)A1 e 2 ~ {El ~ AE1) (Kl ~ CK1)o1c1 {e 3)e2 1

There are three possible contractions for e 3 and three

possible contractions for e 2 , so we receive eight more

sentences in the same manner as we received #3.1. Some of

them will have D in the right side. E.g., if on receiving

configuration {15) we were to choose contraction (e2 ~ A2e 2)

suggested by #2.3, we would receive a walk containing the

following composition:

(BEb + Eb) {Eb ~ S)Eb) (\\s 3 ~B)

Transforming the first pair by RUle {AC.D), Section 5.2, we have:

(B + S 3) {\ \ S 3 ~ B)

which is unfeasible, so that function T turns the whole walk

190

into the empty expression.

The full definition of function o1 resulting from the

compilation process will be:

#3.1

#3.2

#3.3

#3.4

#3.5

#3.6

#3.7

#3.8

#3.9

o1Cl{A4e3)Ale2 ~

o1Cl{A4e3)A2e2 ~

o1Cl{A4e3)P3 ~

o1Cl{A5e3)Ale2 ~

o1Cl{A5e3)A2e2 ~

o1Cl{A5e3)P3 ~

o1Cl{P6)Ale2 ~

o1Cl{P6)A2e2 ~

o1Cl{P6)P3 ~

Transforming the range of this function into a function

definition, we receive four sentences for the original function a:

#4.1

#4.2

#4.3

#4.4

a{A e 1) ~ C a{e1) 1
a{B e 1) ~ C a(e1) 1

In the transformed definition of the metaderivative #3,

it is very clearly seen what the transformation is: a regrouping

of walks in the full set of walks. There are nine classes of

walks, of which five classes are found to include unfeasible

walks only, so that they may be discarded. In the remaining

four classes, all walks are feasible. And there are some

equivalence relations established between walks inside the

classes.

One might say: so what? The transformation we have

performed was also performed in Section 4.5 without introducing

a metaderivative, just by the compilation process.

191

It is true. But let us consider the following definition.

Exam:ele 5.

#5.1 a e 1 => kFb kFa () el 11
#5.2

a kF (e1)Ae2 => a
kF (e1B)e 2 1

#5.3
a

kF (e1)sxe2 => a
kF (e1 sx)e2 1

#5.4 a kF (e1) => el

#5.5
b kF Be1 => C kFbe1 1

#5.6 kFbsxel => sx kFb el 1

#5.7 kFb =>

Let us first try to transform function a by driving.

In configuration

(20)

the strategy f~om without within demands that we drive the Fa

call. The result will be three configurations, of which the

first is

(21)

In this configuration the Fa call is to be driven again.

One can see that no matter how many steps of driving an Fa

call we perform, there will be configurations like (20) and (21)

in the graph of states (and in fact their number will grow),

which do not allow driving the Fb call. Therefore, acting on

any compilation strategy we shall have to decompose (20) or its

successors, so that the new graph of states will be no more

efficient than the original.

At the same time we notice that function a is equivalent

to function a from Example 2. The difference in its definition

is only that one of the auxiliary functions, Fa, is defined

not by ~eaursion -- in the sense this term is used in programming

-- but by ite~ation. The simple method working in Example 2

does not work in this case.

Let us compute the definition of the metaderivative

function o1 :

192

#6.1 1 1 o c {e 3)e2 => {D + E2) (K 3 +
3

Eb) l o e 31] (K l -+ K2)o2e2 1
#6.2 02Ale2 {Eb -+ BEb) (K 2

2 => -+ CK) o e21 2

#6.3 o2A2e2 => {Eb -+ S J Eb) { \ \ S 3 -+ B) {K 2 -+ 2 s 3K2)o e 2 1

#6.4 o2p3 .. {Eb -+ D) {K 2 -+ D)

#6.5 o3A4e3 => {E1 -+ AE1) {E 2B + E2) 3 o e 3 1
#6.6 o3A5e3 => {El- S~El) (\\S2 -+ A) {E 2S 2 + E2)

3 o e 3 1
#6.7 o3P6 => (El -+ D) (K3 -+ E2)

We start to transform o1 the same way we did in Example 2.
. . .r3 f h (4) ~ . Dr1v1ng u e 3l or t e case e 3 -+A e 3 , r.6.5, we aga1n move

out of the brackets the contraction {E1 -+ AE1), but instead

of the replacement we had in Example 2, we now have an

assignment, which can be neither taken out, nor commuted

with o 3e 31:
3 [{E2B + E2) o e 3 1]

Therefore, the implied function T will demand a driving of o3e 3l.
This demand would be repeated infinitely should we comply

with it, which means that configuration o3e 31 must be separated

by decomposition -- just as in the case of the original function.

So, let us separate function o3 and try to transform it

into something more manageable. Compute o3 for several simple

arguments with the view of using the L-generalization technique:

{P6) C { {El -+ D)) {K3 -+ E2)

{A4P6) C { {El -+ A)) {K 3 -+ E2B)

{A SP6) C { (El -+ S~) {\ \ s 2 -+ A)) {K3 -+ E2S2)

{A4A4P6) C ({El -+ AA)) {K3 -+ E2BB)

The algorithm of L-generalization gives a generalizing

configuration

C{ec) {K3 -+ E2ex)

The induction hypothesis is:

3 C 1 X 1 (22) o e 3 l = C{I/J e 3) {K3 -+ E2 1/J e 3)

193

Substituting this into #6.5 in accordance with the

general algorithm described in Section 4.6, we have:

#6.5' k C{~c A4e 31> {K3 + E2 ~x A4e 3 1) •
C{{El + AE1)) {E 2B + E2) C{~ce 31> {K3 + E 2 ~x e 3 1)

To transform the walk in the right side, we have to

transpose the assignment for E2 : first with C{~ce3 1) , and

then with the remaining replacement. The first transposition

will not change any of the parties, because the constrictions

depend only on E1 , not on E2 • We leave it unformalized,

in order not to be buried in details. A way to formalize {by

which we always mean to perform algorithmically) this and

like transformations is to make the format of a walk still

a bit more sophisticated by including into it the list of

nonterminals on which the constrictions depend, e.g.

C((nonterminals) constrictions) the rest of the walk

Then in the process of L-generalization we would receive a

generalized form:

C{ {E1) ec)

which will enable function T to transpose it with the assignment.

Making the other transposition by rule {ARP), Section 5.2,

we change the replacement into:

{K3 + E2B B ~X e3 11
where the function B is performing the substitution //E 2B + E2 :

B E2 ex -E2 B B e 1 X

B sa ex -sa B ex 1
B ~

{In fact, ~ 3e 31 does not include symbols E2 , but the algorithm

does not yet know it.)

After merging the constrictions, which have now become

adjacent, we obtain from #6.5' the recursive relations:

~c A4 e3 • {El + AEl) ~c e3 1

~x A4 e3 ~ B B ~x e3 1
194

Processing #6.6 and #6.7 analogously, we receive the

following complete definitions of functions C X
1jJ and 1jJ :

#7.1 1/JcA4e3 ~ {El -+ AE) c 1 1 1/J e3

#7.2 1/JcA5e3 ~ (El -+ S2El) (\\ S2 -+ A) c
1/J e3 1

#7.3 1/JcP6 ~ (El -+ 0)

#8.1 1/JxA4e3 ~ B B X
1/J e3 11

#8.2 1jlxA5e3 ~ s2 B 1/Jx e3 1 1

#8.3 1jlxP6 ~

We cannot simplify the definition of 1/Jx by driving, so

we try the techniques described in Section 5.4, which makes

use of covering context-free grammars. In Example 4,

Secti•Jn 5.4, we found that the covering grammar for 1/Jx will be:

K2 -+ B K2
1 1

K2 2
1 -+ S2Kl

K2 -+ 0
1

(In Section 5.4 we used symbol C instead of s 2 to avoid confusion;

here we use K-symbols of the second metasystem level.)

This corresponds to the set selector:

We change 1jlxe31 in the right sides of the sentences into

cr 1/Jx e 3 1 1 • Now, composition Bcrex1 1 may be transformed by

driving and L-generalization into an identity function, so that

the definition of 1/Jx becomes:

#8.1' 1jlxA4e3 ~ B
X

1/J e3 1
#8.2' 1jlxA5e3 ~ s2 1/Jx e3 1
#8.3' 1jlxP6 ~

and (22) becomes the new definition 3 of o :

#6.X 3 c 1) (K3 -+ E2 1/Jx 1) o e 3 ~ C(ljJ e 3 e
X

195

Now we once more try to transform function o1 by driving.
1

The initial configuration is o e 1 1 . Using #6.1 and #6.X,

we turn it into

(23) ~c e3 1 {Kl ~ K2) (~x e3 1 + Eb) o2 e2 1
{It was taken into account here, that ~c e 3 1 depends only on

E1 and its offshoots, and o2e 21 depends on Eb and its offshoots.)

We drive now configuration (23) as we did configuration
4

(13) in Example 2. The effect of combined contractions (e3 ~ A e 3)

(see #7.1 and #8.1') and (e2 ~ A1e 2) (see #6.2) is:

C 1 X 1 2 {24) {E1~ AE1)~ e 3 (K1~ K2) (B~ e 3 + Eb) (Eb ~ BEb) (K 2~ CK2)o e 21

The clash of an assignment and a contraction for Eb

produces the assignment

(~X e3 1 + Eb) •

Taking the replacement (K 2 ~ CK 2) to the left as far as possible

and keeping old substitutions unchanged, the same way as we did

in Example 2, we obtain the recursive relation

which is exactly the same as #3.1 in Example 2. Proceeding in

this manner, we reproduce the full text of definitions #3.1-3.9.

Returning to the object space, we obtain the efficient defini

tion #4 for a.

Taking the metaderivative of a function of several variables,

we can treat some of the variables as parameters; they will

remain free variables, while all of the other variables will be

transformed into nonterminals. Thus different variables find

themselves assigned to different metasystem levels. We refer to

this procedure as a metasystem split of variables. Its importance

for the equivalence transformations will be demonstrated in the

next section in the context of taking the metaintegral. With

respect to the metaderivative, the notion of metasystem split

leads to partial differentiation. We use notation

196

to represent the most general set selector for partial meta

derivatives. Here e is the free variable which has walks as
w

its values. Function F depends on n variables e 1 ,e2 , ••• ,em'

em+l'"""'en. We treat the last n-m of these as parameters,

thereby defining a function of m variables e 1 , ••• ,em.

It is the walks in the graph of states of this function that

are values of e •
w

We do not include the equivalence trans-

formation into the definition of the partial metaderivative.

Thus the metaderivative function of which was used above

may be defined using this notation as

of e3 ~ Tk ace 3 > F{E1 > 11

5.6. Integral Metafunction.

Let us try to prove the commutativity of addition by

equivalent transformation of the corresponding recursive

predicate F:

Example 6.

#9

#10.1

#10.2

#11.1

#11.2

#ll. 3

kF { e 1) {e2) ~ k={k+{e1) {e 2)1) {k+{e2) {e1 >1) 1
k+{e1) {0) ~ el

k+{e1) {e21) .. k+{e1) {e2) ll

k= { 0) { 0) .. T

k=e • F
X

Driving the right side of #9 by the inside from outside

strategy, we come to the necessity of a split according to #10:

{cl) k = {k + {el) {e2) l> {k + {e2) {el) 1) 1
{l -+ 2) {e2 .,. 0) (Kl -+ K2)

(1 -+ 3) (e2 -+ e 21) {K1 -+ K3)

(C2) k = (e1) (k + (0) (e1) 1) 1
(C3) k = (k + (e1) (e2) 11) (k + (e2l)(e1 > l) 1

197

Configuration c 2 is easily transformed by driving and

induction:

(2 -+ D) (el -+ 0) (K -+
2 T)

(2 -+ 4) (el -+ e 11) (K 2 -+ K4)

{C4) k = {e1 1) {k + (0) {e1) 11) 1
{ 4 -+ 2) (K4 -+ K2)

·rranslating this graph of states into a Refal program,

we have:

kC 2 (0) ~ T

kC 2 (e11) ~ kc 2 <e1) 1

which by L-generalization and induction is transformed into

kC 2 (e1) ~T

Configuration c 3 , however, does not yield itself to a

transformation which would make some later stage equal to a

previous stage. Driving c 3 according to the inside from

outside strategy, we make a contraction for e 1 resulting

from

(3 -+

(3 -+

(C5)

(CG)

#10:

5)

6)

(el -+ 0) (K 3 -+ K5)

(e1 -+ e 11) (K3 -+ K6)

k = (k + (:))(e2) 1)(e2 > 1

k = (k + (e1 1) (e2) 1) (k + (e 21) (e1) 1) l

Configuration c 5 is analogous to c 2 and can be as easily

transformed into T, but a further driving of c 6 will only

lead to accumulation of ones. Attempting an L-generalization

will lead to an extremely general configuration

which cannot be shown to be always T because it is not.

We may try a more sophisticated technique of generaliza

tion. Transform configurations c 1 and c 6 by metacode. They

become object expressions:

198

*K(=(*K(-+(E1) (E 2))) (*K(+(E2) (El))))

*K(=(*K(+(E11) (E 2))) (*K(+(E 21) (El))))

Making an LE-generalization now, we get this class on the first

metasystem level:

By metasystem reduction it corresponds to the class

on the ground level, which is quite a clever generalization;

its concretization can give only T. Unfortunately, this does

not bring us closer to the solution of the problem. We express

ex through itself by simultaneous recursion by e 1 and e 2 , but

with e 2 ~ 0 we receive a configuration

k = (e 1ex) (k + (Oex) (e1 > 1) 1
which again expresses the commutativity of addition, and is no

easier to transform than c1 .

In search of a solution, let us compare our approach with

the approach of axiomatic formal arithmetic. What we express

by adding digit 1 on the right to a number is usually expressed

in formal arithmetic by adding a prime '. Variables are

represented by small letters. The axioms for addition and the

basic axioms for equality are close analogues to our recursive

definitions. Besides, there is an additional axiom for equality

(transitivity), and the axiom of induction. The syntax of formal

arithmetic leads to more compact expressions than in Refal,

which is, of course, a consequence of its narrow specialization.

We notice first of all that our transformation of configura

tion c2 is a proof of the theorem:

(Tl) 0 + X = X

We notice also that this theorem was never set as a subgoal: it

just appeared as a by-product when we were applying our general

algorithm of equivalence transformation. This exemplifies the

fundamental distinction of our method from the axiomatic proof.

199

The axiomatic method is synthetic, its working principle is

construction. Using this method, we set a goal: to construct

a demonstration, which is a certain formal object. To achieve

this goal we set subgoals, which in their turn generate

subgoals, etc. Our approach is analytic, we only examine

how configurations turn into one another.

Configuration c3 in formal arithmetic looks like

(T2) (x + y)' = y' + x

Our goal is to transform it into c1 :

(T3) X + y = y + X

If we could prove that

(T4) y'+ X = (y + x) '

then we would combine (T4) and (T2) by the transitivity axiom

into:

(TS) (x + y) ' = (y + x) '

which because of #11.2 turns immediately into (T3). Setting (T4)

as a subgoal, we prove it easily by induction, both in formal

arithmetic, and in Refal.

This course of action provides a speedy proof of commuta

tivity of addition in formal arithmetic, but guessing (T4) as

a subgoal with the subsequent use of transitivity of equality

(which for us is only one of the recursive functions!) goes

against the grain of our method. We shall try a different

approach.

We received c3 through contractions for e 2 • Let us perform

one more step of driving with the contractions for e 2 :

(3 7) (e 2 -+ 0) (K2 -+ K7)

(e 2 -+ e 21) (K2 -+ K8)

k = (e1 l)(k + (Ol)(e1) 1)

k = (k + (e1) (e 2) lll) (k + (e 211) (e1) 1) 1

200

Configuration c7 , like c2 , is easily transformed into T

by driving and induction. We may perform several more steps

of driving, and we will find that whenever we have our original

configuration F with any specific number replacing e 2 , i.e.:

kF{e1) {0) 1
kF {e1) {01) 1

kF{e1) {011) 1

which is

which is

etc., we are able to transform it into T by applying our equiva

lence transformation. Thus the idea occurs to us: by analyzing

the process of transformation of such configurations, to prove

that any of them will be reduced to T; it is equivalent to

transforming the original configuration into T.

The formalism which exploits this idea rests on the

concept of integral metafunction, or just metaintegral. In

this case we are interested in the metafunction which will

be denoted as:

k J F{El) {e2) 1
We read it: the metaintegral ofF over e 1 • This is a function

which depends only on e 2 , because E1 is just a symbol {although

nonterminal) • For any value E of e 2 , the value of this function

is an expression which can be interpreted as a full definition

of the function F1 :

kF1 {e1) ~ kF{e1) {E) 1
of one argument e 1 •

As an expression representing the definition of a function,

we shall use the list of primary walks in the graph of states

of this function, and not just the metacode of the definition.

There are two advantages to this: first, walks are independent

{i.e. interpretation of one does not depend on another); second,

it allows us to define a function given by a configuration,

without attaching to it any determiner. Consequents of all

substitutions in walks should be written in metacode. Recall

201

that by primary walks we mean walks corresponding to the arcs

in the graph of states; they may be terminal or nonterminal.

The list of all primary walks completely defines the graph of

states. Indeed, if K. is the antecedent of the first replace-
~

ment on the top level of the walk, then this arc starts from

vertex Vi; if the consequent of the last replacement on the

top level contains K. , then the arc leads to an active
. J

vertex VJ; if the last consequent does not contain nonterminal

K-symbols, the arc leads to a passive vertex (which need not

be numbered). We 3hall separate walks by commas. In addition,

we allow the taking out of parentheses of the common parts

of walks on the left, so that

is equivalent to w w1 , ••• ,w w
c c n

To give an ex~mple, the definition of addition, #10, will be:

(E 2 -+ 0) (Kl-+ E1), (E 2 -+ E 21) (Kl-+ K1 1)

This representation of a function definition is a generali

zation of the representation we used in Section5.5 for functions

defined by one terminal walk. We generalize correspondingly

the definition of the interpretation function < • From now on

it will be applicable to any function definition, and if VF

is the definition of function F, then

(2) k<VF> input-variable-form 1 = kF input-variable-form 1
We also generalize the definition of function T: it will

be applicable now not only to one walk, but to any list of walks.

Thus by T we shall mean some function which performs an equiva

lence transformation of a function definition. In virtue of

this definition:

(3) =

The full metaintegral is the metaintegral over all free

variables in a function form, e.g.,

k J F(El) (E 2) 1
where F is any function of two variables. The full integral is

a constant which represents the definition of the function, e.g.

202

(4) k J + (El) (E 2) => (E 2 -+- 0) (Kl -+- El), (E 2 -+- E21) (Kl -+- K1 1)

We assume that the full metaintegral of each used

function is given (this only means that the function is

defined). Then we can find any metaintegral by putting

before the full metaintegral assignments (e. ~E.) for those
1 1

variables over which there is no integPation, e.g.

(5) k I F(El) (e2) ... (e2 ~ E2) (k J F(El) (E 2) 1
r I (6) k J F(e1) (E 2) ... (el ~ E1) (k F(El) (E 2) 1

(7) k I F (e) (E) (e) ... (e ~ E) (e ~ Ez) (k J F (Ex) (Ey) (Ez) 1> X y Z X X Z

The metaintegral over no variables is by no means equiva

lent to the original function (there is no integPal, but meta

remains) . The function

with any specific e 1 = E has a value, which is the defini

tion of a function of no variables, whose value is defined

and coincides with the result of concretization

kF (E) 1
if and only if this concretization is possible.

If there is metaintegration over some of the variables

in the argument of a function, a metasystem split of vaPiables

occurs. Let e 1 represent the variables over which there

is no integration, and e 2 represent the integrated variables.

Then for any e 1 , the metaintegral function will give us

something which defines the value of the function with this e 1

and all possible e 2 • This is why we call this metafunction

integral. The values of the differential metafunction

define the function on certain minimal, in a sense, subsets

of arguments. The values of the integral metafunction define

the function on the full set of values of those variables

which were removed from the object space. Thus:

k J F(El) ••• (En) 1 = J k a (ew) F(El) ••• F(En) 1
ew

203

Computing a metafunction (differential or integral) takes

us one level up in the metasystem stairway; computing an

interpretation function brings us one level down. To describe

different schemes of using metasystem transition we use

MST-formuZas (MST stands for "metasystem transition") •

An MST-formula for a function F is a definition of F

in Refal, which is functionally equivalent to the original

definition, but expressed in terms of: (1) computing a meta

function, (2) making equivalence transformation of a definition,

and (3) interpreting a definition.

Our examples will be for a function of two e-variables.

The process of direct computation of a function call in the

Refal machine is described by the formula:

(9) kF(e1) (e 2) ~ k <k I F(E1) (E 2) 1> (e1) (e 2) 1
Introducing a designation

VF = k I F(El) (E2) 1
for the initial definition of function F, we put it in a shorter

form:

(9 I)

The process of interpretation of a walk dependent on the

initial values assigned to the input variables is the same as

the interpretation of this same walk modified by adding

corresponding assignments at the beginning. This applies also

to a set of walks, i.e. to a function definition. Therefore,

(9) may be also written in an equivalent form:

(9") kF(e1) (e 2) ,. k< (e1 +- E1) (e 2 +- E2) (VF) > 1
where the process of interpretation does not require any addi

tional information.

Using a metaintegral over no variables we may write the

same MST-formula in one more form:

(9'' 1) kF(e 1) (e 2) => k<k J F(e1) (e2) 1> 1

which very clearly expresses the inverse relationship between

metaintegral and interpretation.

204

The interpretation function < is the definition of the

Refal machine in Refal. It is convenient to think of this

definition as written for another copy of the Refal machine,

which is "observing" the activity of the first, pe~fo~ming

machine. Then l-iST-formulas should be thought of as written

for the observing machine and defining the use of the

performing machine. If we look into the right side of (9)

and its equivalents, we read: take the definition of function

F in Refal, assign some specific values represneted by e 1
and e 2 in the observing machine to nonterminals E1 and E2
representing free variables in the performing machine, and

start the performing machine.

Now consider a metasystem split of variables. This is

a formula for a direct interpretation of a metasystem integral

over one of the variables:

(10) kF(e1) (e 2) => k <k J F(E1) (e 2 > 1> (e1 > 1
It may be read: take a specific e 2 and put it into the defini

tion ofF; then interpret this definition with a specific e 1 .

One can see that there is no essential difference between

this plan of action and the one given in (9). It can be shown

formally. Using (5) for the metaintegral in (10), and taking

a variable inside the angular brackets as we did in passing

from (9') to (9"), we obtain:

(10 I)

which because of (1) is equivalent to (9").

For significant new results some equivalence trans forma-

tion T must be used. We may introduce T both in (9) and in

(10) ' obtaining, correspondingly:

(11) kF (e1) (e 2) ... k<-r k
1,

F(El) (E 2) 1 1> (el)(e2) 1
(12) kF (e1) (e 2) .. k<T k

J
F (E1) (e 2) 1 1> (el) 1

These MST-formulas describe the use of equivalence transforma

tion: take a function definition, apply T to it, and put the

result into the Refal machine; then obtain the values of

205

variables and start the machine. The methods of the

compilation theory, as described in Chapter 4, were all

algorithmical. They can be formalized into a Refal program

defining function T; it will be implied in the following

that T is of that kind, if the opposite is not stated.

No function T is of course omnipotent. If a function

definition is "bad in T's judgement", it will improve it.

Otherwise it will leave it unchanged as "good enough". In

the case (11) these considerations are applied directly to

the initial definition of function F. In the case (12),

however, function T processes the result of a metasystem

split of variables: the definition of a function of one

variable expressed through the function F of two variables

with the second variable taking a certain value. Thus even

if the definition of F is quite "good", the definition to be

processed by T in (12) will be normally "bad". Formula (12),

if read in more detail than above, says: take a specific

value of e 2 {an object expression), form the metaintegral,

transform it by T exploiting the fact that E2 in the defini

tion is substituted by an object expression, and then use

this definition to compute the overall result as a function

of e 1 .

For a simple example let us take function + as F. Let e 1
take value 011, and e 2 value 0111. The metaintegral in (12)

is:

(13)

For a human being it is easier to deal with configurations

than with walks. Applying T to (13) is equivalent to driving

k + (e1) (0111) 1
which gives

without any contractions. Therefore, the result of concretizing

the T call will be

206

Now we face a problem of concretizing the function < ,

which has not been formally defined. In the case when the

contents of the angular brackets is an object expression,

concretization of < is very simple: we just use the

contents as the definition of our function:

k<(K1~ E1lll)> (e1) ~ e 1111

substituting 011 for e 1 , we get the result: 011111 .

Now we make the second metasystem transition. Let us

consider the transformed metaintegral in (12) as a function

0f e 2 :

(14.1)

Hence formula (12) is represented as

(12 I)

Function /MIFl/, whose computation is an equivalent

transformation, will now be subject itself to the same

equivalent transformation by using the equivalent of (11)

for a function of one variable:

(11 I)

From (11 1) and (12 1) we receive a new MST-formula:

(14.2) kF(e1) (e2) ~ k<k<1k J /rliFl/(E2>11> <e 2> 1> (e1 > .L

which, together with (14.1), defines a new equivalence

transformation.

If function 1 is formally defined in Refal, as it should

be; we need not bother about the understanding of how formulas

(14) work; we just use them and see what happens. As it happens,

the metasystem transition largely widens the scope of function

definitions which yield themselves to significant improvement.

We will show it even for such a "good" function as + , which

is characterized by a perfect graph (this means that the effect

will not be achieved by the compilation process alone, but

generalization and induction will be used). Since we do not

have a formal definition of 1, we shall use our human under

standing of equivalence transformation.

207

Function T which begins the computation in formula (14.2)

makes the equivalent transformation of function /MIFl/

defined by (14.1). Let us see what will be happening. The

transformation will start with the compilation process. The

initial configuration will be:

For e 2~ 0 we receive a very simple passive configura-

tion:

(Kl ~ El)

For e 2 ~ e 21 we have the following sequence of configurations:

T(e 21 + E2)((E2 ~ O)(Kl ~ E1), (E 2 ~ E21) (Kl ~ Kll)) 1
T(e 21 + E2) (E 2 ~ E21) (Kl ~ K11) (V+) 1
T(e 2 + E2) (Kl ~ K1 l)(V+) 1
T (Kl ~ K1 l)T(e2 + E2) (V+) 11

(Here by V+ we denote the definition of function + which

appears in all configurations.)

We see that the initial configuration is recurrent, and

the result is the following definition:

k/MIFl/(0) • (Kl ~ E1) #12.1

#12.2 k/MIF1/(e 21) • (Kl ~ K11) k/MIF1/(e 2) 1 1
Computing several argument-value forms:

I
(0) = (Kl ~ El)

(01) = (Kl ~ E11)

(011) = (Kl ~ E111)

we make an LE-generalization

(Oe 2) = (Kl ~ E1e 2)

with no variables in the right side different from the variable

e 2 , which appears in the left side. This hypothesis checks

true against sentences #12, and this gives us the final defini

tion:

208

#13

The T function call on the second metasystem level (i.e.

in the one in (14.2)) will give as output the graph of states

corresponding to #13:

2 2
(E 2 -+ OE 2) (Kl -+ (Kl -+ E1 E2))

Nonterminals of the second order appear here as the result of

the metacode transformation; this shows cearly that we are on

the second level.

Now we just drive the MST-formula (14.2). Notice that

driving the interpretation function < can be performed by

using the same equivalence transformation function T again!

The inner configuration, if represented in a no-argument form,

is:

2 2
k<(e 2 + E2) (E 2 -+ OE 2) (Kl-+ (Kl-+ E1E2))> 1

The clash (e 2 + E2) (E 2 -+ OE 2) produces the contraction

(e2 -+ Oe 2), which goes into the argument of function F, and

the assignment (e 2 + E2), which modifies the replacement. The

value of the interpretation function is the consequent of

the final replacement for K1 , which results in the following

sentence:

Driving the second interpretation function call in the same

manner, we get the final definition of addition:

#14

We return now to commutativity of addition, function F

being defined again by #9. The metaintegral over e 1 is:

+-
#15 k/MIFl/ (e2) ~ T (K1 -+ = (+ (E1) (e 2)) (+ (e 2) (E1)) (V -) 1
We have used here a specialized metacode, which differs from

the standard by the absence of concretization brackents.

This is possible thanks to the rigid functional formats

we are using; it is assumed, of course, that function T is

modified correspondingly. Also, our representation of defini

tions is not standard: compositions of configurations are

209

written in their natural form, and not decomposed into a walk

with the help of redundant variables. By v+= we have denoted

the definition of functions + and = •
We need now more insight into the performance of function T,

in order to be able to deal with configurations involving T

without having access to its formal definition. There are two

aspects to the equivalence transformation. The first is driving,

which we already understand well enough. The second is decision

~aking and control of driving, i.e. the strategy of transforma

tion. We shall make use of two facts concerning the strategy.

The first is that function T does not keep transitory

configurations on any level of structure. Wherever a transitory

configuration appears, it is immediately transformed into its

successor, until it is either passive, or requires a contrac

tion. This may be taken into account by introducing a function,

say a, which leaves its argument unchanged if it is not a transi

tory configuration, and drives it the necessary number of steps

if it is transitory. We might then apply function a to every

configuration in the argument of T. We shall not do this

literally, in order to keep the record readable, but shall

proceed as if this were done, i.e. use driving on the first

metasystem level (with respect to E1) automatically whenever it

does not require contraction.

The second fact we need to know about the strategy is

how a recurrent configuration is discovered and what happens

next. After each step of driving, function T compares the new

configuration with the preceding one, and if they are equal,

it tries to use the principle of induction in its simplest form.

Namely, if the definition at the moment is of the form:

kCi (0) • Z

kCi(evl) ~ kCi(ev) 1

where Ci is any configuration, e is any variable, and Z is
v

any object expression, then it is transformed into

kCi(e) ~ Z
v

210

One can see that it is a very primitive strategy, but it

is sufficient for both T-calls (one on the first and the other

on the second metasyste~ level) in this example.

Bearing this in mind we set fort~ to transform function

/MIFl/ defined by #15. To avoid confusion, we shall refer

to the function T on the first metasystem level, which appears

in the right side of #15,as 1 T, while the function Ton the

second level, i.e. that which appears in the right side of

the MST-formula (14.2) and whose performance we imitate, will
2

T • be referred to as
1 Driving T we immediately split #15 into:

k/MIFl/(0) ,.lT (Kl -+ =(E1) (+(0) (El))) (V+=) 1 #16.1

#16.2 k/MIFl/(e 2l),.lT(Kl +=
-+ =(+(El) (e 2)1) (+(e 21) (E1))) (V) 1

The right side of #16.1 is something which we very well

know already: the theorem about the left addition of zero.

It is easily

computed by

#16.1'

transformed on the first metasystem level, i.e.
1

T :

k/MIFl/(0) ,. (Kl -+ T)

2
The configuration in #16.2 is, with respect to T,

transitory, because the next step of driving 1 T leads to a

split over E1 on the first level, independently of the value

of e 2 on the second level. The following configuration results:

Function 2T will at this stage demand a decomposition

to separate the recurrent subconfiguration

It is again the left addition of zero, so that it is again

easily transformed (although on the second metasystem level)

into T. The configuration to which the arc with the contrac

tion (E1 -+ E11) leads should be compared with the preceding

211

configuration (in #16.2). Thus function 1T will generate a

subfunction call:

k/EQ/(=(+(E11) (e 2)) (+(e 21) (E1))) (=(+(E1) (e 2)1) (+(e2l) (E1)))1

where function /EQ/ is a predicate checking the esuality of

expressions, not only numbers as = • By removing identical

parts it will be right away transformed into configuration:

Since driving this configuration necessitates a contraction

of e~ , and the configuration proves recurrent, function 2 T

will separate it by decomposition, and transform independently.

In fact, it is theorem (T4), but with two variables split between

two metasystem levels!

Transforming
17 (C), we should not

a in it, which cause

the function of e 2 given by configuration

forget that there are invisible functions

driving in the arguments of function /EQ/
17 so that C behaves as if pluses were function calls, i.e.

exactly as (T4):

kc17 (0) ~ k/EQ/(E1 l) (E11) ~ T

kc17 {e21) ~ k/EQ/(+(E11) (e 2)l) (+(El) {e 2)ll)

,. k/EQ/ { + (Ell) (e 2)) (+ (E l) (e 2) 1)

~kcl7(e2)1

t . 2 t f th. . t Func 1on T rans orms 1s 1n o

Since the procedure of comparison gives a positive

answer, the replacement of the second arc in (c16) will be

(K1 ~ K1). The whole configuration becomes

lT ((El ~ 0) (Kl ~ T),

(El ~ Ell) (Kl ~ Kl)) (V+=) 1

which turns into

by induction.

212

The sentence fl6.2 will now become:

#16.2' k/MIF1/(e 21) ~ (K1 ~ T)

so that we can uniteit with #16.1' into one sentence:

k/MIF1/(e 2) ~ (Kl ~ T)

Therefore, the result of concretization of ~T will be

2.
(K1 ~ (K1 ~ T))

and by driving two interpretation functions in (14.2), the

same way we did in the preceding example, we get the final

result:

kF (e 1) (e 2) ~ T

which proves commutativity of addition.

Formulas (14.1) and (14.2) define a new equivalence

transformation, constructed on the basis of transformation T.

P~t in words it is: take (14) as a new definition of F.

Obviously, it can be written as a Refal program.

5.7. Metasystem Analysis.

The use of differential and integral metafunctions,

as illustrated in Sections 5.5 and 5.6, opens a new approach

to the problems of logic, mathematics and computer science,

which we shall call metasystem analysis. In this section we

only very briefly summarize some primary ideas of metasystem

analysis, which still remains to be developed into a full

theory.

1. What in an axiomatic theory is a set of mathematical

(specific for the theory) axioms, in metasystem analysis is

a set of recursive function definitions. This set is called

a mathematical machine.

2. What in axiomatic theories is a set of logicalaxioms

and rules of inference in metasystem analysis is a recursive

function T of equivalence transformation of recursive func

tions. This function is called a logical machine, or just logic.

3. The logical machine has a mathematical machine as input,

and produces on output its model, which is another mathemati-
213

cal machine. There are three elements, of which the operation

of a logical machine is composed:

(1) concretization (computation), including driving;

(2) generalization (empirical induction) with a subsequent

proof by mathematical induction;

(3) metasystem transition.

These also are basic elements of human thinking (see ~ion 5.1).

4. Given a number of logical machines, we can unite them

into one, more potent machine, which will make use of them

all, and choose the best (in a specified sense) resulting

model.

5. Given a logical machine, we can construct a more potent

machine using an MST-formula. An example was given in Section 5.6.

We saw that while the original T could not prove the commutativity

of addition, the new T did it. In Section 5.5 we saw an example

when a transformation was achieved by taking the metaderivative.

It is our hypothesis that with a certain minimum of computa

tional and generalizational capacities, all of the complica-

tion necessary to match and transcend human thinking in a

computer may be achieved by multiple metasystem transitions.

6. Both metaderivative and metaintegral functions may be

used in MST-formulas, which can become very sophisticated. We

note that even when a function is written in a format with only

one variable, this variable can be factoPized, i.e. represented

as a pattern expression including several new variables; then

we can split these variables between two or more metasystem

levels. In particular, the metaderivative function is naturally

seen as a function of as many varjables, as many recurrent

configurations are there in the graph of states. Thus while

taking the metaintegral reduces the number of variables, taking

the metaderivative usually increases it. This provides for

many diverse MST-formulas.

214

7. Progress in mathematics is construction of more and

more mathematical machines which model mathematical machines

of lower hierarchic levels and phenomena of nonmathematical

reality. Progress in logic is construction of more and

more logical machines which are more and more potent in

producing models. No logic is supreme, because a more potent

one can always be constructed by a metasystem transition.

A system producing new logic is a metalogic. If formalized

into a deterministic or nondeterministic machine, a metalogic

may not be supreme either, and for the same reason. There

exists no ultimate criterion of the reliability of a logic

or metalogic other than proof in practice and the resulting

intuition.

8. A logical machine is called an individual logic if its

output is defined only when one specific mathematical machine

is input. The usual axiomatic logic is, from the viewpoint of

metasystem analysis, a system using only individual logics

(called proofs) and a formalized metalogic (called formal

logic).

9. Starting with Godel's theorem, metasystem transition

has been extensively used in logic and mathematics to obtain

negative results (incompleteness, insolvability, etc.). We

embark on using metasystem transition in a positive way: to

actually expand (and in the needed direction) the range of

possibilities of each specific machine, not only to show

that it has limits. Although the range of each machine remains,

of course, limited, the process of expansion itslef is unlimited

as far as we can see it now. The GOdel theorem and other

negative results set limits for those systems which do not

incorporate metasystem transition. Our theory does incorporate

metasystem transition as one of its formalized elements. This

is why it is free from GOdel's limits. What other limits it

has, if any, is not easily seen at the present time.

10. To repeat metasystem transition unlimitedly, we must have

a comprising system, which makes metasystem transition uniformly

feasible on any level. As shown in [1], evolutionizing biosphere

215

is one of the systems of that kind, called there ultrameta

systems. We use Refal as an ultrametasystem -- a sort of

characteristica universalis of Leibnitz. We try to create

in the material of symbols a self-developing, evolutionizing

system, which would model living structures. Using this

model (or theory, as models made in the material of symbols

are usually called) we shall possibly be able to better

understand the nature and the limits of evolution.

5.8. Algorithmic Impossibility of Ultimate Perfection.

Theorem 5.1. There exists no algorithm which could transform

any graph of states into an equivalent perfect graph.

We shall prove this theorem by modeling the functions

of formal arithmetic in Refal and showing that if we had an

algorithm A referred to in the theorem, we would be able to

decide any problem in arithmetic, which is impossible because

of Church's theorem.

There are three functions in formal arithmetic, which

are modeled by three recursive functions:

k = (0) (0) ... T

k = (e 1) (e 1) ... k= (e) (e) 1 X y X y
k = e ... F

z
k + (ex)(O) ... e

X
k+(e) (e 1) ... k+ (e) (e) 1 1

X y X y
k X (e) (0) ... 0

X

kx (e) (e 1) ... k+(k (ex) (ey) 1) (ex) 1
X y

Using these functions we can model any predicate

P(x1 , .•. ,xn) in arithmetic which does not include quantifiers.

For such predicates P we can prove the following lemma.

Lemma. If we have an algorithm A referred to in Theorem 4.5,

we have the decision algorithm for all formulas of the form:

(1)

and

(2)

216

Suppose indeed that we do have A. Then we form the

graph of states of the function computing P, and transform

it into a perfect graph. Consider all those passive terminal

vertices in this graph, which are on the same bracket level

as the head vertex, i.e. not a part of any composition loop.

They fall into three types:

(1) type T, comprising those configurations which always

become T after the substitutions of free variables (if any)

by their values (the input set corresponding to the vertex

being not empty, because the graph is perfect);

(2) type F, defined analogously for the truth value F

(3) type T/F,for which two sets are not empty: the set of

those exact input states for which concretization stops at

the considered vertex Vi with the result T, and the corres

ponding set for the truth value F.

There is a procedure which for each vertex Vi with con

figuration ci decides what type it is. If the vertex is T or F,

then it obviously is of the respective type (1) or (2). Other

wise, we make use of the following facts, resulting from the

impossilility for the predicate P to take on any value differ

ent from T or F:

(a) If configuration ci includes any symbol at all it

must be either T or F. The remaining part of the configuration

must in this case be a string of e-variables, which always

take only empty values, and we can therefore ignore them.

There may be no more than one symbol, nor any parentheses in

the configuration.

(b) If the configuration is a string of free variables,

then no more than one of them may be an s-variable, and at the

end of concretization exactly one variable takes a nonempty

value, which may be only T or F.

(c) Since the input variables may consist only of symbols

0 and 1, no variable resulting from contraction may enter the

output configurations, all variblles in these configurations

217

must receive their values in assignments. Moreover, the left

sides of these assignments cannot be variables defined in

contractions, for the same reason. Thus any variable entering

configuration Ci must receive its value, in the last analysis,

through an assignment of a specific symbol T or F.

Take a variable V , which enters configuration Ci.
X

With respect to this variable, we can classify each vertex in

the graph as having type T, F, or T/F, depending on whether

there is at least one walk passing through this vertex, in

which V takes a given truth value. It is easy to see that
X

by tracing the graph not more than twice we ~an label each

vertex at which V is defined with an indicator of its type.
X

This labeling affects also our vertex vi.

We label the graph with respect to each variable enter-
. i . i
1ng C • Then we determ1ne the type of C as a sort of conjunc-

tion of its types with respect to the entering variables by

the rules:

T & T = T

T & F = F & T = T/F

F & F = F

T/F & anything = T/F

The justification of these rules is based on the fact

that the graph of states is perfect, and on (b) mentioned

above. Suppose e.g. that with respect to one of the variables
i v1 , the type of V is T. This means that there is at least

one walk leading to Vi, on which v1 takes value T. Then

because of (b), all other variables that possibly enter Ci

must take empty values on this walk, and the result of substi

tution in Ci will be T. On the other hand, variable V1 is .

never F, so that in deciding whether or not configuration c1

may become F, we can discard v1 • Reasoning in this manner,

we come to the above rules.

On labeling all passive terminal vertices on the main

level of the graph according to their types, we make the

decision referred to in the lemma by this simple rule:

218

formula (1) is true if and only if all the vertices are

of type T; formula (2) is true if and only if there is at

least one vertex of the type different from F. The lemma

is proved.

To sum up, we have demonstrated that assuming the

existence of the algorithm A we can define two procedures

Da and De which give answers as to the truth of (1) and (2)

correspondingly. These procedures can be defined as recur

sive functions in Refal. Their argument will be the

definition of a given predicate P in Refal also. Thus to

decide on the truth of (1) and (2) we only have to compute

(Dl) k Da k I P(E1) (En) 11
and

(02) k De k I P(El) ... (E)
n 11

Now consider the decision problem for:

(3) (Exn+l) ••• (Exn+m) (Ax1) ... (Axn) (P(x1 , ... ,xn+m))

and

(4) (Axn+l} ••• (Axn+m) (Ex1) ... (Exn) (P (x1 , ... , xn+m))

Let us define function P 3 as

k P3 (en+l) ••• (en+m) ,. k Da k I P(El) ••• (En) (en+l) ••• (en+m)11

With any sp~cific set of arguments (en+l = xn+l) , ••• , (en+m=xn+m)

predicate P will tell us whether predicate P is true for

every set x1 , ... ,xn. Therefore, if we apply procedure De
3 toP , i.e., compute

(03) k De k I P3 (En+l) ••• (En+m) 11

we shall know whether there is a set of xn+1 , •.• ,xn+m , with

which P is true for any x1 , ... ,xn. Therefore, computing (03)

is a decision procedure for (3). Analogously,

(D4) k Dak I P4 (En+l) ••• (En+m) 11

where

k P4 (en+l) ••• (en+m} ,. k Dek I P (El} ••• (En) (en+l) ••• (en+m) 11

is a decision procedure for (4).

219

It is easy to write the corresponding MST-formula for

any alteration of universal and existential quantifiers.

Since any formula in arithmetic can be written in normal

prenex form, we have a universal decision procedure. This

is impossible, and by contradiction this proves our theorem.

This was an exercise in using metasystem transition for

traditional negative purposes.

5.9. Neighborhoods.

Let a function F be given. The set of all expiEssions

for which F is intended (not necessarily defined) constitutes

the object space of function F. We shall refer to the elements

of this set as points, and denote them by small Latin letters

in this section.

To each point a in the object space a unique walk

corresponds, which is taken by the Refal-machine when it

concretizes kF a l . By subwalks of a walk we mean parts

of it generated by some number n of concretization steps,

this number being referred to as the length of the subwalk.

Consider the starting subwalk of length n of the point a.

The set of all those points in the object space of a function

F which have the same starting subwalk of the length n as point

a is called the neighborhood of the n-th order of point a,

and denoted as £n(a). The set of all points which have the

same full walk as point a is referred to as its ultimate
• 00

ne1ghborhood £ (a). The ultimate neighborhood of a point a

includes only points for which function F is defined (including

point a itself). On the other hand, we can speak of starting

subwalks for points in which function F is not defined because

later in the walk an abnormal stop occurs, or the walk never

ends. Thus neighborhoods of a finite order may be defined

for points in which function F is not defined, and may include

such points even if the point a itself is within the domain

of function F.

220

The function which has points of the ~ject space

as its arguments, and the corresponding walks as its values,

is called the metaderivative of the second kind of function F.

The right sides of the sentences which define it are the same

as in the case of the metaderivative ("of the first kind")

introduced in Section 5.5; the left sides are the same as

in the original function F. E.g. I the function F:

kF+e1 => -kFe 1 1

kFsael => sakFe1 1
kF =>

for which the metaderivative of the first kind was given in

Section 5.5, #1, has this metaderivative of the second kind:

f
1'1 +el => T(El -+ +El) (Kl

f
-+ -Kl)/'1 el 11

f
T(El s I El) (\ \ s -+ +) (Kl

f 11 1'1 sael => -+ -+ saKl)/'1 el a a
/'lf => (El -+ D) (Kl -+ D)

(Both metaderivative functions could be defined without intra-

ducing function T into the right sides; then we would apply -r

to function calls of metaderivatives, as we did in the case of

metaintegral.) Using the metaderivative of the second kind,

we can find for each point the corresponding walk and deter

mine its input set, thus finding the ultimate neighborhood

of the point. Equally easily we find neighborhoods of finite

orders.

A neighborhood of a point is generally a union of

restricted L-classes. Picking up the class to which the

considered point belongs, we receive an L-neighborhood of the

point. Unfortunately, an L-neighborhood may not be unique,

because although in any given partition of a neighborhood

into s-restricted L-classes the classes are not overlapping,

there may be more than one way to construct the paritition.

As an example, consider a function defined by two sentences

with the left sides:

221

kF e 1

The neighborhood of the first order of a point which

chooses the second sentence will be

e 1 \ \ e 1 -+ Ae1 B

Here are two ways to represent this set (which is restricted,

but not an s-restricted L-class) as a union of s-restricted

L-classes:

First Re12resentation Second Re12resentation

(Cl)
1

0 (C2)
1 0

(Cl)
2 s2el \ \ s 2 -+ A (C2)

2 els2 \\ s 2 -+ B

(Cl)
3 A (C2)

3 B

(Cl)
4 Ae1 s 2 \\ s 2 -+ B (C2)

4
s 2e 1B \\s2 -+ A

Consider expression AC as a point. If we build its

L-neighborhood according to the first representation, it

will be C~ ; according to the second representation, it will
2

be c2 • We note that in this particular case the second

representation gives a better result, i.e. a larger neighbor-
1 2

hood, because c4 c c2 ; thus we have good reason to choose

C~ as the L-neighborhood. But consider point CD. The first

representation gives C~ , the second representation gives C~ ,

and neither is more general than the other.

Neighborhoods are useful for controlled concretization,

by which we mean a concretization process which uses knowledge

about future concretization steps. This knowledge may be

such as:

(1) concretization will never end, therefore there is no

sense in continuing it;

(2) concretization will certainly end, so that we can continue

it in a usual (uncontrolled) way; in addition we may obtain

an estimate of the number of steps required to bring it to an end.

(3) although the stage of the process we are in~ repretitive,

it cannot repeat but a finite numbe~ of times; this may encourage

222

us to continue concretization through this stage to see what

will happen next;

(4) no prediction can be made at this time.

#1.1

#1.2

Consider e.g. a function

kFAe1 ~ kFA 1

kFe1 ~ e 1

and suppose we concretize kFABC 1· After the first step we

have kFA1. We continue concretization and after the second

step receive kFA 1 in the view-field. We notice that it is

exactly the same state of the Refal machine as we had at

the preceding step, hence it will repeat itself endlessly,

and concretization will never end.

Consider another example:

#2.1 kF(e1)+ ~ kF(e1+)+ 1

#2.2 kF(e1)- ~ e 1

and we start with kF(A)+ 1 in the view field. After the

first step it will becoma kF(A+)+ 1, then kF(A++)+l, then

kF(A+++)+ 1 and so on to infinity. However we have a differ

ent view-field at each stage, and the simple criterion used

in the first example will not work.

To make predictions about the behavior of a process

becomes easier if the process is a repetitive application of

the same transformation at each step. This is the case for

a type of function, which we shall call while functions.

The definition of a while function may consist only of

sentences of two types:

(1) kFL ~ kFR 1

and

(2) kFL ~ R

Here by F we understand any determiner, L is an L-expression

and R is a pattern expression. Sentences of both types

define, essentially, a transformation of one pattern expres

sion into another:

223

(3) L ~ R

the difference between them being that type (1) causes contin

uation of the transformation, while type (2) ends it.

The graph of states of a while function has a very

simple structure presented in Figure 19.

Figure 19

The walks in this graph have no composition loops and are

concatenated as strings, not as expressions. The effect of

any walk may be discussed in terms of the transformations (3).

Although while functions in Refal are very special,

they are sufficient to define any algorithm. Any function

defined in Refal can be redefined as a while function using

a simple mechanical procedure. The essence of this procedure

is to code the whole view-field of the Refal machine as the

argument of the new function, and imitate the operation of

the Refal mach~ne, which is the same from step to step. One

of the two components of executing a step in the Refal machine

is the search of the leading concretization sign; this may

be done using the multibracket techniques of an all-level scan

described in Section 2.7. The other component, the applica

tion of sentences, may parallel very closely the original

sentences; the difference will be that it will only affect a

part of the argument.

As an example, let us present the definition of function

F of Section 5.6, expressing the proof of the commutativity of

addition (see p. 197), as a while function:

224

#3.1 kF(e1) (e 2),.. kFl((=))+(e1) (e2) ((+(e 2) (e1))*) l

#3.2 kFl((=))+(e1) (0) ex((+(e 2) (e1))*)

,. kFl((=(e1ex)))+(e2) (e1) (*) 1
#3.3 kFl((=(e1)))+(e 2) (0) ex (*) ,. kF = (e1) (e 2ex) 1
#3.4 kFl(ex)+(e1) (e 2l)ey,.. kFl(ex)+(e1) (e 2)1 ey 1

3 • 5 kF = (0) (0) ,. T

#3.6 kF=(e11) (e 21) ,. kF=(e1) (e 2) 1
#3."1 kF = e ,. F

X

(This definition is only a little longer than the original,

but what a rlifference in readability!)

Suppose we noticed in the course of a controlled concreti

zation that a subwalk W has a tendency to reproduce itself.

Let point a be the argument at the beginning of the subwalk W

(in any of its occurrences), and point a' the argument at the

end of the walk. The effect of walk W is a transformation (3)

of an input set L into an output set R. If the length of walk

W is n, the set L is the neighborhood of the n-th order of

the point a. Thus

a ,. a'

a E L

a' E R

Since immediately after the end of the considered occur

rence of W another occurrence of ~v begins (as we have assumed),

point a' must also belong to L:

a' E L

What is the relation between the sets L and R? There are three

possibilities, depicted in Figure 20:

(a)

(b)

(c)

R c L

R :J L

R :J R n L :J ¢ & IR :J L

225

(a)

(b)

(c)

Figure 20

226

Consider case (a). All points of the neighborhood L
of point a remain in the neighborhood L after transformation.

This means that after any occurrence of subwalk '-J another

occurrence of W will invariably follow, and concretization

will never end. This gives us a criterion of endless concreti-

zation. In the exanple of #2, the neighborhood L is (e1)+,

and its transformation R is (e1+)+. Therefore R c L, and

our criterion correctly predicts a nonstop computation.

Ca3e.~ (b) and (c) we shall consider assuming that L is

ones-restricted L-class. If it is a union L1 u L2 u ••• Ln

then to each L. its R. will correspond, and instead of one
~ ~

subwalk we shall have to consider n subwalks.

Both in case (b) and (c) there are points in R which lie

outside of L. Take one such point b' and consider point b

we denote the neighbor-whose transformation it is. If by L'
hood of point a corresponding to the doubled subwalk ~~, then

b must be outside of L', because if it were in L' its first

transformation should have been in L to repeat subwalk W.

Thus L' C L.

In case (b) there exists a substitution ~ such that

(4) L = R II ~

By substitution we mean here any constriction term (see Sec

tion 4 • 3) , e.g.

II~= <II e 1 ~ sael) (II e 2 ~D)(\\ sa~ A)

and it is only for the sake of brevity that we are using here

the notation sign II for "positive" contraction.

Applying substitution ~ to (3) and using (4) we have:

(5) L II ~ => L

Let us denote by In(W) the input set of the sequence of

n subwalks w. By definition, In+l(W) consists of all those

points, which first are in the input set of the subwalk W and se

cond, after being transformed, hit the set In(W). Both condi

tions are reflected in the relation:

227

which can be taken as a recursive definition (necessary and

sufficient) of the input sets In(W). For n = 1:

(6 I) r 1 (W) = L

Because of (6) we can see (5) as the definition of £ 2 (a):

(7) 2
£ (a) =

Making the substitution 6 again, we obtain

(8)

and so on to infinity: in the sense that we may write such a

formula for the neighborhood of any order n, while point a

is not specified. But with any specific a we will sooner

or later come to a contradiction. We saw that L' is a proper

subset of L, so that substitution 6, which is the same on

all steps, is not trivial. Therefore, we are building a

sequence of different s-restricted L-classes which all contain

point a. According to Theorem 4.5 there may be only a finite

number of such classes. With some n, point a will find itself

outside of the input set of the sequence of n subwalks w.
Subwalk W may not be repreated endlessly, and this is true

for any a.

Consider this simple example. Subwalk w is

sentence in the definition of function F:

the first

Here L is s 1e 2 , and ~ is e 2 • Case (b) is taking place. Since

W is the only nonterminal subwalk in the graph of states, our

criterion predicts a finite concretization process for any

argument, without actually doing the concretization.

case (c) requires a more detailed consideration, which

will not be carried out here. Our aim in this section is only

to present the basic ideas concerning neighborhoods and their

use in the analysis of algorithms.

228

There is a useful hybrid between concretization and

driving: driving of a point ~ith a neighboPhood. Consider

a pattern expression E and a substitution ~, which turns

evePy free variable present in E into an object expression.

This pair will be referred to as a point with a neighborhood,

or a "neighbored point". We shall denote a neighbored point

as E II ~ without actually making the substitution. Should

we do so, the result will be the "point": the "neighborhood"

is E.
The essence of the process is as follows. Suppose a

point, i.e. an object expression, E0 is given. For the

beginning, we convert it to a neighbored point by attaching

to it the universal neighborhood e1:

(9)

Then we start driving the neighborhood, but instead of examin

ing all branches resulting from different sentences, as in

full driving, we choose at each step only one branch: that

taken by the point. Thus each time when a contraction of a

variable in the neighborhood becomes necessary we consult the

substitutions defining the point. If the contraction, which

we shall refer to as C, does not contradict the value taken

by the variable according to the substitution, then it is

carried out, which changes both the neighborhood and the

substitution (without changing the point, naturally): the

neighborhood narrows around the point. Applying a sentence

we change, of course, the neighborhood without changing the

substitution. If contraction C is impossible, it can be so

because of two reasons. First, it may happen that the

neighborhood as a whole is such that it does not allow

contraction, i.e. no point of it will take this branch. In

this case we do not change anything but just come over to the

next sentence. Second, the neighborhood may allow contraction,

but the point lies in that part of it which does not take

the considered branch. In this case we start the process of

narrowing the neighborhood around the point performing

elementary contractions constituting C, and continue until

229

the moment when the narrowed neighborhood no longer allows

the next needed elementary contraction. Then we come to the

next sentence (branch). Acting in this fasion, we shall

have at each stage of concretization a neighborhood of our

roint, i.e. a set of points which have exactly the same

experience in being treated by the Refal machine as the

considered point E0 • It does not guarantee us though that

the set includes aZZ such points.

Driving of a point with a neighborhood may be used in

controlled concretization, and also in the coopilation process

to find generalized configurations. We shall give an example

of the latter.

Consider a function definition

#4 0 kF e 1 ~ kF()e1 1

#5.1 kF(e1)+e~ ~ kF(e1 ->e2 1
#5.2 kF(e1)sae2 ~ kF(e1sa)e2 1
#5.3

Let the initial configuration be kF 0e 1 1 (our goal is

to just reproduce the definition by driving, because it is

perfect). The algorithm of driving is dealing with metacodes

of function definitions. The metacode of the initial configura

tion is

(10)

Instead of simply applying the algorithm of driving to (10),

i.e. concretizing

k /DRIVING/ *K (F0~ 1 l 1
we are going to drive (10) as a point with a neighborhood.

The reason is to bring to light all (or at least some)

configurations which are indistinguishable from (10) in the

eyes of the driving algorithm, and merge them into one

generalized configuration. Reviewing the principles of the

theory of compilation, we find this method of generalization

230

highly adequate: on the one hand, we move towards the goal of

building a complete graph, so long as we succeed in generaliz

ing; on the other hand, we cannot lose efficiency by over

generalization and the resulting shift to interpretation,

because the individual configurations merged into one are

treated by the Refal machine the same as the generalized

configuration.

Doing driving by hand, it is more convenient to deal

with configurations in their natural form (zero metasystem

level) than in metacode, like (10); we have been accustomed

to this representation already. But neighborhoods of the points

of the first metasystem level like (10) are represented

through free variables. When we step down to the zero level,

we need some representation for these first-level free vari

ables, in ~rder not to confuse them with zero-level variables

e 1 , ex, etc., which are images of nonterminals E1 ,Ex,etc.

We shall call them metavariables and represent them as

e 1 ,ex,etc.

So we build the universal neighborhood of (10) :

(11)

and start driving. We try to apply #4. The result will

depend on the first symbol of the value of the metavariable

e1 . Thus the narrowing of the neighborhood becomes necessary:

(12) kF 0e1 1 // e1 ~ e 1

Now the whole neighborhood is driven through #4, and the new

point with a neighborhood is:

(13) ~ e
1

Each configuration which is potentially recurrent should

be traced starting with the universal neighborhood, in order

not to lose any chance of generaliz:tion. Configuration (12)

proved transitory, and we lose interest in it. We now trace

(13), starting again with maximum generalization:

231

(14)

Driving through #5.1 implies three consecutive contrac

tions for el:

(e1 + Fe1) <e1 + (e2) e 1) (e1 + + e 1)

The first two of these lead to the narrowing of the neighborhood:

(15)

The last one cannot be done in the general form, because e 1 is,

in fact, an object expression E1 (*El, to be precise), which

is not identical to + • Since in order to discover it we had

to examine the substitution in (15) this means one more

narrowing is needed:

(16)

Now we must remember that the driving of a point with a

neighborhood refers to the function /DRIVING/, not to the func

tion F. Driving will demand the contraction e 1 + +e1 , which

will generate a new configuration

(17)

By metasystem Peduation (see Section 5.1) we treat the neigh

borhood in (17) as the configuration

and compare it with the preceding configuration, resulting in

the same manner from the neighborhood in (16):

(Cl6) kF(e2) el J
We see that c17 c c16 , which allows looping, Continuing

exploration of configuration c16 , we easily reproduce the

original definition. The important thing was to find configura

tion c16 , and this was done by driving with a neighborhood.

232

5.10. Supercompiler System.

The supercompiler consists of two parts: a program which

performs the equivalence transformation T, and a program which

maps the resulting graph of states on the target machine.

The first part is by far more important; the second part only

transfers the algorithm from one machine to another (algorithmic

equivalence as compared to functional equivalence in the case

ofT), which may be accompanied by no more than a constant

factor gain in efficiency. We shall indicate that the output

of the equivalence transformation is a program for a machine

different from the Refal machine by adding the superscript

m to T; thus the supercompiler will be a Refal function Tm.

To write MST-formulas in a situation involving a target

machine different from the Refal machine, we shall use a nota

tion closely related to the interpretation function < for

the Refal machine. T:7e wrote

k· <P> A 1
to represent the work of the Refal machine applying a function

definition (i.e. a program) P to a list of arguments (input

set) A. To indicate that a different machine is meant, we

add the superscript m to the concretization sign k. Thus

km <P> A 1
will represent the process and the result of the target

machine's work when loaded with program P and input data A.

In the beginning of Chapter 4 we started reviewing

the use of languages defined in the Refal system by their

interpreting functions. Let us now complete the review

assuming that we have the supercompiler Tm for a given

target machine.

Let L be the interpreting function of a language L,

so that

(1)

is the application of a program ep in L to input data ed.

233

The most straightforward way to use the supercom p iler

and the target machine is to translate the Refal program for

L into the language of the target machine with the super

compiler and turn over the result to the target machine

for execution. This is described by the MST-formula:

(2) kL(ep) (ed) ~ km <Tm k I L(Ep) (Ed) 1 1> (ep) (ed) 1

The expression in the angular brackets (the program for

the target machine) does not depend on either ep or ed.

One can compute it only once by the Refal interpreter, based

on the definition of L, and then use it on the target machine

each time when ep and ed are given. The transition from (1)

to (2) may result in an essential gain in efficiency because

of two reasons. First, the definition of the language L in

Refal may be in a "heavy" interpretation mode, using a

hierarchy of auxiliary functions. In this case the redundancy

of the definition will be eliminated during the compilation

process, and the resulting program will be much more efficient

than direct concreti~ation of (1). This gain in efficiency

is not connected with the transi~ion from the Refal machine

to the target machine: we could achieve it inside the Refal

system using equivalence transformation T according to

the formula:

(3) kL(ep) (ed) ~ k<Tk I L(Ep) (Ed) 11> (ep) (ed) l
'1'he second source of the possible gain in efficiency is

in transition from concretization in the Refal machine (which

in practice is interpreted in a computer) to direct operation

of the target machine. As mentioned above, this may multiply

the efficiency by a constant factor.

With all that, the use of the language L according to (2)

remains interpretive, and therefore not fully efficient.

Can we produce an efficient program for the target machine

corresponding to a specific program in L (i.e. the value of e), p
when only this program, but no input data ed , is given?

Yes, we can. It is a metasystem split of variables. Consider

the partial rnetaintegral

234

(4) ki 1 (e) ~ T mk J L (e p) (Ed) 11 p

and the corresponding MST-formula:

(5) kL(e) (ed) ~ km<ki 1 (e >1>
p p (ed) l

When a program e is given, we compute function (4) on
p

the Refal machine: once and forever. It is an efficient

compiled program for the target machine, to be used with

any input data ed according to (5).

So in function I 1 (e) we have a compiler for the
p

language L. It may give high quality programs, but as it is

defined, it works itself in the interpretation mode, depend

ing on the Refal machine. Can we build a compiler which would

work fast and nice on the tarqet machine? Certainly. We

make one more metasystem transition:

(6) ki 2 ~ Tm k J Il (Ep) l 1
(7) kL(ep) (ed) ~ km <km <ki 2 1> (ep) 1> (ed) 1

Function I 2 of no variables can be computed on the Refal

machine. It is a compiled compiler for the language L.

According to (7), we first use the target machine to translate

ep , then apply the result to input data ed. Note that to
m

produce this compiler we need only function T (the super-

compiler), applying it, as one can see comparing (6) and (4),

to itself.

Furthermore we can produce a compileP compileP implemented

on the target machine, using the Refal interpreter with the

function Tm only once. According to the definition of

partial metaintegral,

235

The full metaintegral in the right side is the definition of

the function L. Let us generalize function r 1 to Ifl, which

includes the dependence on the functional definition:

(9)

Accordingly,

Now the metaintegral we need for (6) is expressed through

the generalized metaintegral as

(11)

Making the third metasystem transition, we receive the

compiler compiler:

(12)

which is used according to the formula:

The compiler compiler (12) is as universal as the super

compiler Tm itself. It can be computed using the Refal

machine only once.

236

Let us sum up the main features of the supercompiler system.

(1) Refal is used both as the algorithmic language and as the

metalanguage of the system. Formally, all algorithms are

written in Refal, but in fact one can define any language

through an interpreting function, and then write in that lang

uage. One can construct hierarchies of languages, defining

one language through others.

(2) The system includes a Refal interpreter, so as to debug

progorams in the interpretation mode. This .makes the debugging

process closest to the terms in which the program is written.

(3) The system includes a supercompiler, which transforms a

Refal program into an efficient program for a target machine.

Counting on the supercompiler, we can program in a much freer

style than we did in Chapter 2 when the program was expected

to be interpreted. We can use very general algorithms, which

are not efficient when executed literally, i.e. interpreted,

but with the arguments partially specified, may be turned into

efficient algorithms by the supercompiler. The use of-a lang

uage defined through its interpreting function is only one

special case of this style.

(4) Operations and algorithms not defined in Refal can be

used as external functions, provided that translation statem~nts~

which show how these operations should be performed in the

target machine, are available to the supercompiler.

(5) One part of the supercompiler's job is the compilation

process, which is one of the basic optimization tools. The uqcr

may control this process by choosing a compilation strategy

and modifying it depending on the results of compilation. Making

a number of trials, an optimal point on the interpretation

compilation axis may be chosen, i.e. the desired trade-off

between the size and the speed of the program achieved.

(6) The second part of the supercompiler's job is the mapping

of the Refal machine on the target machine. When the user

programs in Refal, he defines his formal objects (data structures)

237

as Refal expressions, in a mathematical style. After debugging,

which, as mentioned above, should be done with the Refal

interpreter and in terms of Refal expressions, the user may

partially or completely specify the mapping of the Refal

configurations on the target machine. Different mappings

may be tried to achieve better performance. Those configura

tions for which no mapping was indicated will be mapped auto

matically by the supercompiler. Since the mapping is made

when the algorithm has already been formally defined, it is

possible to adjust it to the algorithm in order to achieve

high efficiency. In this way it is possible to free the user

completely of so tedious a job as organizing and describing

data for a real computer system. He will be dealing only

with a mathematical model.

(7) If an algorithmic language L defined in Refal is expected

to be used for a class of problems, an efficient compiler

from L can be produced automatically. It will be run on the

target machine and will translate programs in L into the

language of the target machine. The user of the language L

may or may not know anything about Refal and the way the

compiler from L was made.

* * * * * * * * * *

238

REFERENCES

(The titles of the papers in Russian are given in English

translation only, which is indicated by enclosure within

square brackets.)

1. Bazisnyi REFAL i yego reaZizatsiya na vyahisZiteZnykh

mashinakh [Basic REFAL and its implementation on computers].

GOSSTROY SSSR, TsNIPIASS, Moscow, 1977.

(The authors are not indicated in the book. In fact

they are: Khoroshevsky, V.F., Klimov And. v., Klimov Ark. v.,
Krasovsky A.G., Romanenko S.A., Shchenkov, I.B., Turchin, V.F.)

2. Turchin, V.F., The Phenomenon of Saienae, Columbia Univer

sity Press, New York, 1977.

3. Turchin, V.F., "[A metalanguage for formal description of

algorithmic languages]," in: Tsifrovaya VyahisZiteZnaya

Teahnika i Programmirovanie, Sov. Radio, Moscow, 1966,

pp. 116-124.

4. Turchin, V.F., "[The Metaalgorithmic Language]", Kibernetika

No. 4, 1968, pp. 45-54.

5. Turchin, V.F., AZgoritmiaheskiy Yazyk Rekursivnykh

Funktsiy - REFAL [Recursive Functions Algorithmical

Language- REFAL], preprint !PM*, Moscow, 1968.

6. Turchin, V.F. and Serdobolski, V.I., "[The Language REFAL

and its Application for Algebraic Manipulation]",

Kibernetika, No. 3, 1969, pp. 58-62.

7. McCarthy, J., "Recursive functions of symbolic expressions

and their computation by machine," Comm. ACM l' 184 (1960).

8. Yngve, V.H., "COMIT," Comm. ACM .§_, 83 (1963).

9. Markov, A. A., Teoria AZgorifmov (The Theory of Algorithms),

Trudy Matern. Inst. AN SSSR, 1954.

10. Dijkstra, E.W., "An attempt to unify the constituent concepts

of serial program execution," in: Symbol Languages in Data

Processing, Gordon & Breach, 1962.

Institute of Applied Mathematics, Academy of Sciences of the USSR.

239

11. Dijkstra, E.W., "On the design of machine independent

programming languages," in: Annual Review in Autom. Progro

~, 1963.

12. Van Wijngaarden, A., "Generalized ALGOL," in: Annual

Review in Autom. Progr. ~, 1963.

13. Farber, D. J., Griswold R.E., Polonsky I.P.,

"SNOBOL, A String manipulation language," J. ACM 11 (1)

(Jan. 1964).

14. Guzman, A., and Mcintosh, H.V., "CONVERT", Comm. ACM 9

604 (1966).

15. Florentsev, S.N~, Oliunin, Yu.v., Turchin, V.F.,

"[REFAL-interpreter]", Trudy I Vsesoyuznoi Konfer. po

Programmirovaniyu, Kiev, 1968.

16. Florentsev, S.N., Oliunin, Yu. v., Turchin, V.F.,

Effektivnyi interpretator dZya yazyka REFAL [An effi

cient interpreter for REFAL]. Preprint, !PM AN SSSR, *

1969.

17. Bobkova, 0. F., et al. "[A REFAL interpreter for M-220

computer]" in: Yazyki programmirovaniya i metody ikh

reaZizatsii, Kiev, 1973.

18. Romanenko, S.A. and Turchin, V.F. "[A REFAL-compiler]"

in: Trudy 2 Vsesoyuznoi konfer. po programmirovaniyu,

Novosibirsk, 1970.

19. Klimov, A.V., Romanenko, S.A., Turchin, V.F. KompiZator

s yazyka REFAL [A compiler for the language REFAL] •

Preprint !PM AN SSSR,* 1972.

20. Turchin, V.F. Programmirovaniye na yazyke REFAL

[Programming in the language REFAL]. Preprints No. 41, 43,

44, 48, and 49 of the !PM AN SSSR,* 1971.

21. Turchin, V.F. "[An ALGOL translator written in REFAL]"

in: Trudy I Vsesoyuznoi Konfer. po programmirovo,

Kiev, 1968.

* Institute of Applied Mathematics, Academy of Sciences of the USSR.

24 0

22. Bychkov, S.P., et al. Yazyk SIMULA v monitornoi sisteme

DUBNA dZya BESM-6 [The language SIMULA in the Monitoring

System DUBNA for BESM-6 computer]. Preprint 118 IPM AN

SSSR,* 1975.

23. Budnik, A.P., et al. "[The Basic Wave Functions and

Operators Matrices in the Collective Nuclear Model]",

Yadernaya Fizika !!' No. 2, 1971, p. 304-313.

24. Turchin, V.F. "[Equivalent transformation of Recursive

Functions defined in the language REFAL]", in:

Trudy Vsesoyuznogo simposiuma "Teoriya Yazykov i Metody

Programmirovaniya, AZushta," Kiev, 1972, p. 31-42.

25. Turchin, V.F. "[Equivalent transformation of REFAL

programs]", Avtomatizirovannaya Sistema UpravZeniya

StroiteZstvom. Trudy TsNIPIASS, GOSSTROY, Moscow, 1974,

pp. 36-38.

26. Ershov, A.P., "[On the essence of translation]",

Programmirovanie~ 5~ p. 21-39, 1977. English translation:

Neuhold, E.J., Editor, Formal Description of Programming

Conaepts, North-Holland Publ. Co., 1978, pp. 391-418.

27. Turchin, V.F., "A supercompiler system based on the

language REFAL," SIGPLAN Notiaes 14 (2) (Feb. 1979) 46-54.

28. Dahl, 0.-J., Dijkstra, E.W., Hoare, C.A.R., Struatured

Programming, Academic Press, 1972.

241

abnormal stop

active sign k

ALGOL-60 syntax of

6,10

9

numbers 266-167

algorithmic equivalence

(strict, nonstrict)54-55

alien variables 47

all-level scans 31

antecedent

argument-value form

149

131

backtracking function 8 37

basic configurations 105

basic Refal 6

bidirectional

substitutions 148-149

BNF (Backus Normal Form),

transformation into

set selector 166-168

brackets 7

check functions 176

chromatic number of a

graph of states 104

Church theorem 216

class of object

expressions 41

clean graph of states 91

closed e-variables 18

compilation ix,69-75

compilation strategy

105-106,106-107,129-130

complete graph of states77

INDEX

242

composition arc 86

composition rule

for restrictions (RC) 97

compound symbol 2,7

computed variable 88

concretization xi,2

concretization bracket

(also concretization

sign and point) 7

configuration (full,

restricted)

configurations: active,

passive

75

76

configurations: recurrent,

nonrecurrent, static,

dynamic 137

conjunction of

substitutions 161-163

consequent 149

conservative predicates 26

constriction (term,

sum) 97-98,144

constrictions: simplifi-

cation rules 98-102

contraction

controlled concreti

zation

compiled compiler

42

222

235

compiler compiler 235-236

covering context-free

grammar 171,195

covering L-class 166

deadlock situation

in projecting

determiner

differential meta

function -

see metaderivative

differentials

domain of a function

domain widening

18

5

183

58

62,63

driving

dynamic arc

xi,S9-60

76

elementary contrac-

tions

expression

extended Refal

external functions

factorization of a

variable for meta

system split

feasible and unfeas

ible paths

feasible and unfeas

ible walks

format of a function

94

7

7

10

214

91

112

21

formatted walk

free variable

(also variable)

186,194

from wi tl:out within

strategy (also called

inside from outside

4,7

and outside-in strategy)

67,170,189,192

functional equivalence

(strict, nonstrict)SS-59

functional loop 112

243

generalization 123

generalization to

(formatted) functions

strategy 106-107

generalization

variables

Godel theorem

82,90

215

GPA - Generalized Pro

jecting Algorithm 43-48

graph of states 175

induction 131,170

input state, set,

class 111-112

input variable 91

input variable form 182

inside from outside

strategy: see

from without within

interpretation function202

interpreting function

of a language 69

interpretive implementa

tion, principles of 15

i/o quasisentence 135

iteration as defined

in Refal 28

L-class 41

leading sign k 8

LE-generalization 127,208

lengthening of e-vari-

able value

L-generalization

L-generalization

strategy

L-neighborhood

18

123

129-130

221

logical machine (logic)213

mathematical machine 213

mapped variable and

configuration 134

mapping of Refal machine

on target (object)

machine

Markov's normal

algorithms

memory-field

75,134

4

9

metacode A 12-14,140

metacode B

metaderivative (also

differential meta-

12,14

function)

xii,l80,196-197,203,214

metaderivative of the

second kind

meta function

metaintegral (also

integral meta-

221

30,139

function) xii,201,214

metalanguage

meta logic

metasystem analysis

v,l,69

215

metasystem level

xiii,213

139

metasystem reduction

141,149,232

metasystem split of

variables 196,203

metasystem

transition

MST-formulas

multibrackets

ix,l39,215

204,214

34,35

neighborhood 220

nonterminal symbols

(nonterminals) 140

nonterminal walk 148,149

normal form of a Refal

program 111

normal form of a walk 156

normalization of walks

145-146

normalization rulesl57-161

object expression

object space

object string

8

139,220

7

one-step (sub)function

open e-variables

order of a scan

output set of a walk

outside-in strategy

see from without

within strategy

path in a graph

of states

147

18

22

146

89

pattern expression 8

perfect graph of statesll2

point with a neighbor-

hood, driving of

projecting algorithm

229

16

projecting number 16

productions for walks 145

production system 142-

244

quasiinput (exact)

state, class

quasiinput variables

range of bidirectional

substitution

range of concretization

sign

reduction -- see meta-

system reduction

redundant variables

Refal machine

replacement

replacement rule (in the

state of variables)

representation arc

reproduction of

variables

restriction, restricted

91

91

157

8

88

6,9

149

150

82

23

class 95-96

screening rule (A3) 56

sentence 3

set selector 165

shorthand notation 11,140

sign 1,7

simultaneous substi-

tuions 42

specification language viii

specific sign 7

specified variable

specifier

split functions

7

7

173

s-restricted class 102

stack of variables (in

walk interpretation) 150

245

stairway effect

strict Refal

structure brackets

ix

6,40

(parentheses) 3,7

submerging rule (A4) 56,57

submission of configura-

tions

subwalk

supercompiler

symbol

84,93

220

vi,73,233

1,7

syntactic recognition 5,8

syntax of Refal 7-8

term

terminal path

terminal walk

t-generalization

tight generalization

transitory configura-

tion

translation statement

transparency principle

in walk normaliza-

tion

ultrametasystem

union of functions

7

91

149

124

123

78

136

161

216

183

valid variable form

variable form

vertical segment

view-field

182

182

89,137

9

walk 111-112,145

walk interpretation 149-

while functions

workable expression

W-productions

223

8

146

	vt1980rm

