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INTRODUCTION 

This book presents a formal system based on the language 

"Refal" (i.e. REcursive Functions Algorithmic Language). Besides 

the language itself, and the techniques of programming in it, 

the system includes a theory of equivalence transformation of 

algorithms defined in Refal, and an approach to foundations of 

logic called metasystem analysis. 

The origins of Refal are in computer science. It was 

designed as a universal metalanguage for formal definition of 

algorithmic languages --oriented towards classes of problems, 

or invented ad hoc for specific problems. At the same time 

Refal can be regarded as a regular algorithmic language 

oriented towards symbol manipulation. It is implemented on 

computers and has been used in this capacity. However, a 

programming system using Refal as a metalanguage proper, and 

including a "supercompiler" is still in the project stage. 

The aim of this project is to facilitate the creation 

and implementation of specialized algorithmic languages at low 

expense, and also to allow computers to perform a great deal of 

work on optimization of algorithms and even on algorithmiza

tion itself, which is now performed manually. We hope to create 

a programming system, in which the ad hoc introduction of a 

new special language, or a hierarchy of languages, for each 

large-scale programming problem is just as natural and practic

able as is the introduction of an ad hoc hierarchy of proce

dures when we are programming, say, in ALGOL-60. We hope to 

create a system, in which the programmer will have to formulate 

only the definition of his problem, its mathematical model, 

without bothering about the details of algorithmic efficiency 

and data structures in the real computer. 

To build an extensible hierarchical system of language, 

a metalanguage must be specified which would allow the system's 

user to define each new language L in terms of the languages n 
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of the lower levels: L 1 , L 2 , etc. Also, a ground-·level n- n-
language L0 must be defined, and must be such that all the 

languages of the hierarchy could ultimately be expressed in it. 

There are two ways to formally define a new language L in n 
terms of a lower-level language Lk: in a translation mode, in 

which one specifies the manner in which a text in Ln is trans

formed into a text in Lk; and in an interpretation mode, i.e. 

specifying the process of execution of a text in Ln in terms 

of the language Lk. Accordingly, we can distinguish between 

two kinds of expansible systems. Systems of the first, trans

lation mode, kind have machine (assembler) language as the 

ground-level language L0 : such systems may be called macrocode 

systems, and are widespread now. The metalanguage in this case 

is the language of macrodefinitions. Although very useful, 

these systems do not unburden the programmer, but only put him 

in a bettern environment. The system we are designing is of 

the second kind. Here, new languages are defined in interpre

tation mode, and b 0 is then a very elementary language which 

includes only basic operations on symbolic expressions. The 

description of a language and of an algorithm in that language 

takes the shape of a "description of the meaning" rather than 

a final definition of the program to be executed on a computer. 

But then one needs an algorithm --which we call supercompiZer 

-- which would translate this multilevel interpretative semantic 

definition of a problem into an efficient program for a real 

computer. 

An important feature of our project is that the metalanguage 

M in which new languages are defined, the ground-level language 

L0 , and the language inwhich the supercompiler is written, are 

all the same language, Refal. As shown in [1], this has the 

crucial advantage that only one supercompiler Cp from the meta

language M into the language of an object machine Mo is needed 

for all languages Ln of all levels. To attain this surprising 

economy, we use a method, whose essence is self-application of Cp. 

The result: by writing a simple "metasystem-transition formula" 
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and pushing a button one can obtain a program for M0 which can 

be either 

(1) an efficient, compiled program Po which is the transla

tion of a program P written in Ln (if Pis given); or 

(2) an interpreter for the language Ln , which takes a 

program P in Ln and input data D and executes P on M0 

in accordance with the interpretive definition of Ln; or 

(3) a compiler for the language Ln , which takes a program P 

in Ln and translates it into an efficient program Po for 

M0 ; or 

(4) a compiler compiler (if the definition of Ln is not given), 

which takes the definition of a new language in M and 

produces a compiler for it. 

For the approach we have sketched to be feasible, the 

following three requirements must be met by the metalanguage M: 

(1) It must be universal -- not only in the sense that any 

algorithmic transformation can ~e described in it, but also in 

the sense that it must not be aimed at any special system of 

concepts tied to a particular object language; this makes it 

possible for one and the same metalanguage to be used with equal 

success in describing whatever language we may invent, and at 

all levels of the conceptual hierarchy. In programming terms, the 

metalanguage must have a broad symbol manipulation orientation. 

(2) The metalanguage must be convenient to use; in particular, 

a text in it must look not like an intricate program, which in 

some mysterious way performs algorithms written in the language 

to be described, but rather must be a semantic description of 

this language, consisting of a set of sentences which define the 

meaning of its concepts. Thus, the metalanguage must be essenti

ally a production language, rather than an instruction/ 

statement language of more familiar form. 

(3) The language must be minimal in the sense that the 

defining machine which executes algorithms written in this 

language must be simple enough for the rules of dealing with 

algorithms to be formulated effectively. Otherwise there 
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will be little hope of creating a supercompiler which could 

perform really deep optiMizing transformations of algorithms. 

However, this requirement may come into conflict with the 

requirement of convenience. A simple Turing machine or Harkov 

algorithms languages are simple enough to be used for purposes 

of theory, but certainly impractical for writing complicated 

algorithms. A language which deals with itself must be 

neither too sophisticated nor too elementary, a situation 

reminiscent of maximizing the product of two factors with a 

given sum. We can summarize the third requirement of our meta

language in these words: it must rest upon a minimum of 

facilities, but still remain convenient enough to be used in 

practice. 

The language Refal was born in response to these require-

ments. 

Independently of our work, one of the ideas of the Refal 

project became quite widespread during the last two or three 

years, although expressed in somewhat different terms. It is 

the idea that one should distinguish between pPogPamming in a 

pPogPamming language, and specifying your algorithm in a 

specification language; and that a good programming system 

should allow you to specify your problem only, without actually 

programming it. The concept of a specification language 

appeared originally in the context of proving correctness of 

programs, where a specification was intended to give some infor

mation in addition to a program; later people started to speak 

of a specification instead of a program. Should we use these 

terms, we could say that Refal is a specification language. But 

we shall stick to our terms referring to Refal as a universal 

algorithmic metalanguage, and not only because our p~oject was 

initiated long before the current trend in terminology. The term 

"specification language" is not very meaningful. The fact that 

we are "specifying" something in Refal is not essential; after 

all, writing a program is also specifying it. It is essential 

how we do it. It is essential that we allow an extensible 

system of ad hoc languages, leaving only the metalanguage fixed. 
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In the algorithmic aspect, the term "specification language" 

is again unfortunate, not to say misleading. Any specification 

of a problem to which the solution is an algorithm is, in the 

last analysis, a definition of an algorithm, even if disguised 

by mathematical notation of the precomputer era. The important 

difference, as discussed above, is whether you define your 

algorithm in interpretation mode, without thinking of efficiency 

of the process, or in translation mode, aiming at an efficient 

program for a machine. We use the term compilation to designate 

transformation of an interpretation-mode algorithm into a 

translation-mode (efficient) algorithm. The relation between 

these fundamental concepts and their formalization is one of 

the main themes of the present book. 

The philosophical background which initiated the work on 

the Refal project is developed in [2]. In that book the concept 

of metasystem transition is introduced and taken as the basis 

for an analysis of the evolutionary process. By a metasystem 

transition we mean a transition from a system S to a metasystem 

S*, containing a set of S-type subsystems unified as a whole 

and somehow controlled, produced, modified, etc. Seen in the 

functional aspect, this transition is a transition from the 

activity A typical for system S to a metaactivity A* exhibited 

by S*, which is directed in some way onto the activity A: analyz

ing it, modifying it, etc. In [2], the metasystem transition 

is shown to be a sort of "quantum of evolution". Accumulation 

of these quanta produces more and more sophisticated structures, 

organized as multi-level hierarchies of control. For a system 

to be self-developing, consecutive metasystem transitions must 

become possible ("the stairway effect" in the terminology of 

[2]). It is the author's belief that to make essential 

progress in programming systems and artificial intelligence, 

one must formalize and harness the concept of metasystem 

transition. In the present book we are making first steps in 

this direction. 
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A few comments on the contents of the book, together with 

some historical and bibliographical references follows. 

In the first chapter the language Refal is introduced. 

The second chapter presents the techniques of using Refal 

as an algorithmic language expecting the program in Refal to 

be executed in the interpretation mode. We do not say much 

about implementation of Refal, outlining only the general prin

ciples. A detailed description of the interpretative 

implementation of Refal may be found in [1]. 

Initially Refal was called the metaaZgorithmic Zanguage 

[3,4] and had some features which made its efficient imple

mentation difficult. Subsequently it became clear that the 

decisive role in this language is played by the notion of 

recursive function, and the methods of programming in it had 

been worked out [5,6]. The language was simplified and 

received its present name. 

In the creation of Refal the ideas embodied in LISP [7] 

and COMIT [8] were used; A. A. Markov's work on normal algo

rithms [9] was an important source of ideas. We must also 

mention papers by E. Dijkstra [10,11] and A. Van Wijngaarden 

[12]. Refal shares some ideas with SNOBOL [13], and a striking 

resemblance to CONVERT [14] can be seen, though in 1965-66, 

when Refal was designed, the author was not acquainted with 

either of these languages. 

Save for the initial period, there has been no influence 

of other approaches on the Refal approach which we could 

mention as appreciable. To be sure, one could find parallels 

between our work and work done by other authors, but it would 

have required a special effort which the author did not 

undertake when preparing this book. 

The first Refal interpreter efficient enough for practical 

purposes was put into operation in 1968, in Moscow, on the 

computer BESM-6 [15,16]. An interpreter with automatic access 

to external memory was developed in Leningrad [17]. In 1969 

a new method of implementation of Refal was worked ou [18,19], 

which allowed, in particular, a greater part of the implementation 
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work to be accomplished in a machine-independent form. At that 

time this method was called compilation, but in fact it should 

be more precisely called semicompilation. There now exist 

Refal semicompilers for the most popular Soviet computers 

(ES EVM, BESM-6, M-220, Minsk-32). An extensive exposition 

of programming techniqu~s in Refal was published in 1971 

as a series of preprints of the Institute for Applied Mathe

matics of the Academy of Sciences of the USSR [20]. As a 

programming language Refal has been used for writing trans

lators, algebraic maniuulation and theorem proving (see, e.g. 

[21-23]}. The efficiency of the use of Refal in semi

interpretive implementation is comparable to that of LISP or 

SNOBOL. Debugging in Refal is, in the view of the author, 

easier than in any of the languages he knows. 

In Chapter 3 we introduce basic equivalence transforma

tions of Refal programs. The most important transformation, 

called driving is the "concretization" (evaluation} of a 

function call with only a partially defined argument, i.e. an 

argument containing free variables or not yet evaluated func

tion calls. The notion of driving appeared first in [20]; 

more systematically the rules of equivalence transformations 

were formulated in [24] and [25]. 

Chapter 4 presents the theory of compilation. Its main 

idea is to consider the graph of generalized states 

(configurations} of the Refal-machine, and to reduce the graph 

to a certain normal form, using driving. In programming terms 

this procedure can be defined as executing at compile time all 

the evaluations which can be done, and compiling a new graph 

out of those operations which have been left for the run time, 

as strongly dependent on input data. The normal form depends 

on the set of configurations which are declared basic. This 

gives us a means to formalize the intuitive notion of the 

interpretation-compilation axis, and to control the process 

of compilation. Besides driving we use empirical generaliza

tion with subsequent proof by mathematical induction. The 
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notion of a perfect graph of states is introduced, which also 

serves to direct the compilation process. 

The first examples of using driving for optimization 

were published in 1971 (see [20]). The main ideas and results 

of the theory of compilation were formulated in 1973. 

Unfortunately, in the years 1974-1977 the author could not 

publish his work in the USSR because of political circumstances. 

(In 1974 I was expelled from my job and blacklisted as an 

active participant in the Human Rights Movement in the USSR. 

The book [1] was published anonymously after my emigration in 

1977, and it was only possible to smuggle into it several pages 

on the theory of compilation. But it was not allowed to use 

the term "the theory of compilation", nor to mention that the 

piece was a part. of a larger ~·mrk. ) 

In Chapter 5 we introduce metasystem transition into our 

formal system. This is done through metaderivative and 

metaintegraZ functions, which are used in MST-formuZas. 

Basically, this is a self-application of the algorithm of 

equivalence transformation. By this we model a feature of 

human thinking, which is crucial for creativity: the ability 

to transfer attention from the use of an instrument (e.g., an 

equivalence transformation) to the. analysis of its use and making 

a new instrument to improve the existing instrument. In our 

system this transfer can be repeated indefinitely, just by 

writing an MST-formula. We show that by including the meta

system transition into our formal system we do expand the range 

of possible equivalence transformation algorithms; e.g., writing 

an MST-formula for an algorithm which cannot prove the commuta

tivity of addition in formal arithmetic, we receive an algorithm 

which proves it. Our approach is not based on traditional 

axiomatic logic, but on direct modeling of the three main aspects 

of human thinking: 

(1) concretization (computation), including driving; 

(2) generalization (empirical induction) with subsequent 

proof by mathematical induction; 

(3) metasystem transition. 
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We call this approach the metasystem analysis (see Sec. 5.7). 

Application of the principle of metasystem transition 

to practical needs of the supercompiler system leads to the 

result which has already been mentioned above: having one 

supercompiler for an object machine (computer) , we are able 

to produce automatically compilers and other system programs 

for all languages defined in Refal in interpretation mode. 

This is the only result of Chpater 5 which was published 

before (in [1]). It is also mentioned in A. P. Ershov's paper 

[26]. 

A brief account in English of the project of the super

compiler system based on the language Refal was recently 

published in the SIGPLAN Notices [27]. 
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CHAPTER 1. DESCRIPTION OF THE LANGUAGE 

1.1 Informal Description 

To sum up the requirements set forth in the Introduction, 

the language which we intend to design must be: (1) universal, 

(2) convenient for semantic description of different 

languages, and (3) minimal. Our purpose now is to present the 

main features of Refal as derived from these requirements. 

Since it is not at all evident that recursive functions have 

something to do with the language we design, we shall start 

with calling the language we seek the language M (Metalanguage). 

The concept of recur-sive function will appear in due course 

as a result of reasoning, and this will once more demonstrate 

its profundity and importance. 

Problem oriented languages are convenient when they 

reflect concepts specific for a specific field. To be conven

ient our language must model some very general features of 

human thinking --or, to be more precise --its manifestation 

in linguistic activity. This activity consists in manipulating 

linguistic objects to which certain "meanings" are prescribed. 

Linguistic objects are composed of signs, but not in an entirely 

arbitrary fashion because they have an inner structure which 

reflects the syntax of the language. In fact, linguistic 

objects are produced from parsing, and this feature being 

common to all languages, must be taken into account in 

the language M. Acting on the principle of minimality we shall 

assume the simplest scheme modeling the syntax of natural 

and artificial languages. The elementary syntactic unit of 

the language M will be called the sign. The complete set 

of signs is supposed to be finite, though in accordance with 

the metasystem nature of the language it is not exactly 

specified. The next syntactical level is formed by symbols. 
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While signs are analogous to letters in natural language, 

symbols model elementary semantic units -- morphs: word roots, 

prefixes, etc. A symbol may be simple or compound; the former 

is expressed by a sign, the latter -- by a sequence of signs 

bounded by slashes, e.g., /BEGIN/. When an algorithm is 

executed, each symbol is treated as a whole and cannot be 

subdivided; neither can a new symbol be formed. TRe purpose 

of this syntactical level is to provide a potentially infinite 

set of indivisible units. 

To build symbol structures we introduce the most common 

means parentheses. We call an expression any string of 

symbols and parentheses, obeying the usual rules of the 

parenthesis (bracket) syntax. Strings unbalanced in parentheses 

are not expressions and are notallowed. The expression is the 

most general object of manipulation in the language M. It can 

be paralleled with a word or a group of words in a natural 

language. 

Having specified the object, we proceed to specify the 

actions on them. An inherent feature of all developed languages 

is the presence of a hierarchy of concepts. Consider a language 

object, wh~ch has some meaning. What does it mean to understand 

its meaning? It is to know how in any given circumstances to 

concretize the object -- that is to express the meaning through 

concepts which take lower places in the hierarchy, and thus 

to replace it by the language objects which fix these lower 

rank concepts. With a natural language, this process comes to 

an end when the relations are established between a language 

object and the sensual worl~ in the case of a formal language 

we come to the concepts, defined as primitive. We shall take 

conceretization as the unit of action in the language M. From 

a formal point of view it is, of course, no more than substi

tution of one expression for another. and it is up to the user 

to ensure that these actions ·have in fact the quality of concre

tization. 

2 



A pair of signs is used to delimit an expression to be 

concretized: the aoncPetization sign k, which precedes the 

expression, and the conaPetization point 1 , which follows it. 

They obey the rules of bracket pairing, so they are also called 

the concPetization bPaakets. In contrast, parentheses (round 

brackets), which giye a structure to the ~bject, are called 

the stPuctuPe bPackets. A pair of concretization brackets may 

enclose other concretization brackets; as the language M is 

algorithmic, we must specify which concretization is to be 

performed first. Before an expression gets to be concretized 

it must contain no inner signs of concretization; parallel 

concretizations will be performed from left to right. In the 

following example: 

3 1 2 

k A ( B C k D 1 E k F ( ) G H 1 1 

the figures show the order in which the concretization must 

proceed. 

In accordance with one of the requirements, all informa

tion that we want to convey in our language must be expressed 

in sentences, which are essentially the rules of concretization. 

They constitute an analogue of sentences in natural language. 

Each sentence contains a left side and a Pight side. The left 

side begins with the concretizati9n sign k and ends with 

the substitution sign ~, which simultaneously stands for the 

concretization point paired with the initial k and separates 

the left side from the right. The sentences are separated by 

the sign # placed in the beginning of each. Between the 

# sign and the initial k there may be a comment. This is an 

example of a sentence, which describes a simole abbreviation: 

# 1 k AC~1 ~ Association for Computing Machinery 

Whenever a combination k ACM 1 may enter, it will ulti

mately be replaced through the application of this sentence by 

Association for Computing Machinery 
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A sequence of sentences describes an algorithm. It is 

performed as follows. At each step we try to find an applic

able sentence, beginning the search from the first; when 

such a sentence is found, it is applied, and the next step is 

executed. This procedure is reminiscent of Markov's normal 

algorithns, the essential difference is that symbol strings 

in Markov's language are unstructured, for this language, 

like other "theoretical" algorithmic languages, models only 

the very fact of man's formal actions, whereas our language 

uses structured strings (expressions), and models man's formal 

actions in the framework of a hierarchy of concepts. 

Yet the structurization of language objects alone is not 

sufficient to get a language powerful enough for practical 

purposes. \ve need free variables to make our sentences really 

expressive. In accordance with the syntax of the language M, 

we introduce three types of variable: those which may take 

as a value a symbol, a term or an expression. A free variable 

can be represented by a pair of signs, of which the first is 

s, t or e, and shows its type, and the second serves as an 

identifier. For convenience, we will write the identifier 

in the index position: s 1 , s 2 , sa , t 1 , ex , etc. These 

variables may take as a value any object of the corresponding 

* type. Additionally, we introduce a possibility of speci-

fying a class of allowed values of a symbol variable; details 

will be seen from the formal description. 

As an example of· the use of free variables we define the 

concept of the first symbol of an expression. To define a 

concept means to make the corresponding concretization possible 

and produce the needed result. We may wish, for example, that 

the concr9tization of 

k FIRST SYMBOL OF PROGRAM 1 
should produce the letter P. To ensure it we write a sentence: 

# k FIRST SYr1BOL OF s 1 e 2 ~ s 1 

We shall call them s-, t-, and e-variables for short. 
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It will be used in the following way. First we must find out 

whether the sentence is applicable for the above concretization. 

For this purpose we try to syntactically recognize the expres

sion under concretization as the left side of the sentence. 

The recognition is possible if the free variables in the left 

side can be replaced by such values that the left side becomes 

identical with the expression under concretization. In our case 

this can be achieved in a unique way by assigning the value P 

to s 1 and the value ROGRAM to e 2 • So, recognition is possible, 

and we apply the sentence, that is substitute its right side 

(in which the variables are replaced by their values) for the 

expression under concretization. 

Now we come to recursive functions. Theoretically, at 

each step of concretization we look through the set of sentences 

from its beginning, analyzing the applicability of each sentence. 

When the number of sentences grows, this becomes cumbersome. 

We clearly need a way to break down all the concretization 

rules into separate parts pertaining to different concepts. 

Such a way is suggested by the above example. If the left side 

of a sentence begins with a concrete symbol or a string of 

symbols, but not with a variable, it will be applicable only 

to such expressions which begin with the same string. As we 

can use compound symbols, one symbol is quite enough to classify 

sentences, so we shall agree that every sentence will have the 

left side beginning with at least one symbol, which will be 

called the determiner of the sentence. Now in an expression 

to be concretized we can single out the first symbol and 

ignore all sentences with determiners different from this 

symbol. Sentences break down into groups with the same 

determiner, groups with different determiners being commutable 

with each other. In the spirit of this agreement it is prefer

able to rewrite the last sentence in this way: 

# 2.1 k /FIRSYM/ s 1 e 2 • s 1 
and to use it accordingly. 
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What we have in fact introduced by our agreement is the 

concept of a function. Functions are identified by determiners 

and defined by groups of sentences with the same determiner. 

A usual function designation F(E) turns into k FE I, where 

the concretization sign explicitly shows that the function 

must be evaluated and its value substituted. As we do not 

restrict in cny way the right sides of sentences, functions are 

generally recursive. The description of an algorithm takes 

the form of a recursive function definition. 

We can illustrate recursion by extending the definition 

of the function /FIRSYM/. Indeed, this function is underdefined: 

if a machine, executing algorithms written in Refal (we call it 

the Refal-machine) happens to concretize an expression which 

begins with a bracket, it will not find any applicable sentence 

(a parenthesis is not a symbol!) and will come to an abnormal 

stop. The empty expression will bring about the same result. 

A natural way to extend the definition is to add two sentences: 

# 2.2 k /FIRSYM/ (e1 )e 2 ~ k/FIRSYM/e1e 2 .l 
# 2.3 k /FIRSYM/ ~ 

The language Refal is known in three versions: strict, 

basic, and extended. We have already exhausted the facilities 

present in the strict version; in fact, we have exceeded them, 

for it incorporates certain restrictions on the left side of a 

sentence as we shall see in Sec. 3.1. Basic Refal will be 

formally described in the next section. It includes a feature, 

which allows assignment of expression values to names. When 

an expression of the form k/BR/(N)E 1 is concretized (where 
* N and E are expressions ) it disappears, but E gets "buried" 

under the name N. It can be "dug out" by writing the expres

sion k /DG/ N 1 , the concretization of which turns it into E. 

* We shall generally use capital script 

(A B C V E F G H I J K L M N 0 P Q R S T U V W X Y Z) 
for metasymbols which denote Refal objects. 
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You cannot dig out an expression twice, which you have buried 

only once. The reader may have surmised that this avoids copy

ing expressions when implementing such assignments. 

In Extended Refal it is possible to introduce new sentences 

into an algorithm during its execution, and to use free variables 

of arbitrary syntactical types described through appropriate 

recursive functions. We have no place here to describe the 

details on this subject. 

1.2 Formal Description of Basic Refal 

I. Syntax 

A considerable part of the syntax will be desc~ibed in the 

Backus Normal form. 

I.I Signs. 

<sign> ::=<specific sign> I <object sign> 

<specific sign> ::= #I/J<bracket>J<variable type sign> 

<bracket> ::=<structure bracket>l<concretization bracket> 

<structure bracket> ::= ( j) 

<conc~etization bracket> ::= kJ l I ~ 
<variable type sign> ::= sltle 

Object signs are capital Latin letters and other signs 

which are different from specific signs. The set of all object 

signs is assumed to be finite. 

I.2 Symbols and Expressions. 

<symbol> ::= <object sign>J<compound symbol> 

<compound symbol> ::=/<object string>/ 

<object string> ::=<object sign>l<object string><object sign> 

<expression> ::= <empty>J<expression><term> 

<empty> ::= 

<term> ::= <symbol>l<variable>l (<expression>) jk<expression>l 

<variable> ::=<simple variable>!<specified variable> 

<simple variable> ::=<variable type sign><index> 

<index> ::=<object sign> 

<specified variable> ::= s <specifier><index> 

<specifier> ::= (<object string>) !<compound symbol> 
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A pattern expression is an expression, which does not 

contain concretization signs (but generally contains variables) . 

A ~orkable expression is an expression, which does not contain 

variables (but generally contains concretization signs) • An 

object expression is an expression, which contains neither 

concretization signs nor variables. 

I.3 Sentences and Programs. 

<sentence> ::= #<comment><reversion indicator><left side> 

<right side> 

<comment> ::=<object string>l<empty> 

<reversion indicator> ::=<empty> I (R) 

<left side> ::= k<pattern expression>~ 

<right side> ::=<expression> 

<program> ::= <empty>l<program> <sentence> 

No sentence can contain variables with identical indexes 

but different type signs. The right side of a sentence can 

contain only those variables appearing on its left side. Speci

fiers in right sides are omitted. 

By the range of a concretization sign k in an expression 

we mean the subexpression bounded by this sign and the conreti

zation point _L paired with it. We call the leading sign k in 

a given expression the leftmost sign k with no other signs k in 

its range. 

2. Syntactical Recognition 

2.1. We say that an object expression E0 can be syntactically 

recognized as a pattern expression Ep , if the variables in Ep 

can be replaced -- observing the rules listed below -- by such 

expressions, called their values, that Ep becomes identical to E0 • 

The rules are as follows. 

2.1.1. A variable of ~he form sX, tX or eX, where X is an 

index, can take as a value any symbol, term and expression, 

respectively. 

8 



2.1.2. A variable of the form s(P)X, where Pis an object 

string, can take as a value any symbol, which enters P. Variables 

s/SIGN/X and s/COMP/X take as values object signs and compound 

symbols, respectively. A variable of the form sVX, where V is 

a compound symbol different from those two, is equivalent to a 

variable s(P)X, where Pis the result of concretization of kVl. 

2.1.3. All entries of the same variable, i.e. those with the 

same index, must be replaced by the same value. 

2.2. If there are several alternative ways of assigning values 

to the variables, the ambiguity is resolved in one of the follow

ing two ways, which will be called recognition from left to right 

andfrom right to left. If recognition from left to right (from 

right to left) takes place, then of all alternatives the me 

is chosen in which the leftmost (rightmost) expression variable 

in E takes the shortest value. If this does not resolve ambi-
p 

guity, the analogous selection is made with respect to the second 

from the left (right) expression ~riable etc. 

2.3. To recognize a term kE 0l as a left side kEP~ means to 

recognize E0 as EP. 

3. Refal Machine. 

The Refal machine is an abstract device which executes algo

rithms written in Refal. It consists of two potentially infinite 

stores, which are called the memory-field and the vie~-field, 

and a processor. At every moment in time the memory-field con

tains a finite sequence of sentences, and the view-field contains 

a workable expression. 

The Refal machine works by steps. Having fulfilled a step, 

the machine proceeds to execute the next one, provided that the 

former has not led to a normal or abnormal stop. Execution of 

the step begins with the search for the leading sign k in the 

view-field. If there is no sign k, the Refal machine comes to 

a normal stop. On finding the leading sign k the Refal machine 

examines the term which begins with it; it is called the cctive 

term, and we say that the starging sign k became active. 
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3 .1. If the active term is k/BR/(N)Ejl,where N and E are some 

expressions, the machine writes down a new sentence 

# k/DCV N ,.. E 

into the memory field, putt.ing it before the first sentence. 

The active term is removed from the view field, and the step 

is completed. 

3.2. If the active term is k/DG/Nl, the Refal machine finds 

in the memory field the first sentence of the form 

# k/DG/N ,.. E 

with the same N, removes it from the memory field and substitutes 

E for the active term, thus finishing the step. If there is 

no such sentence, the active term is merely removed. 

3.3. In other cases the Refal machine compares the ~ctive 

term with the consecutive sentences in thememory-field,beginning 

with the first one, searching for an applicable sentence, by 

which we mean such a sentence, that the act~ve term can be 

recognized as its left side. Recognition is performed from 1 eft 

to right if the reversion indicator is empty, and from right to 

1 eft if it is ( R) . Having found the first applicable sentence, 

the Re fal rna:: hine copies its right side, replacing the variables 

by the values they have taken in the process of recognition. 

The workable expression thus formed is substituted for the active 

term, and the step is finished. If there is no applicable 

sentence, an abno~mal stop occurs. 

4. External Functions. 

In real implementations of Refal, as distinct from the 

abstract Refal machine described above, one more action is taken 

at each step before using the sentences: the examination of 

whether the active term is or is not an exte~nal function call. 

By exte~nal we mean those functions which are not described 

in Refal. Some symbols must be specified in every implementation 

as external function determiners. If the c:.ct::_-_-e term has the 

form kFEl, where F is such a determiner, control goes to a 

program (or whatever) that performs t~e concretization. It may 

result in the replacement of t':1e act:~ve term by some 
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work able expression, and may produce. any effect in the environ

ment. After it is over, the current step is finished and control 

goes back to tre Refal machine. 

The functions whim provide input-output facili t.ie s clearly 

must be external. In all implementations a function IPRI is 

availa'.Jle, v.hic'.1 is defined so that when a termkiPRIEl becomes 

active, the expression E is printed and the term is trans-

forrre d into E. Another function, IP I, prints the arg~ nt 

and deletes the activ= term. 

ve do not introduce into the formal description of Ie fal 

the coocept of number, but in implementations it is possili le to 

code positive integer nunb ers in a certain range (e.g. for 

ES EVM up to 231-l) as compound symbols of a special kind. 

Tl'E arithmetic or:erations on them are perforrred wit~ the aid of 

appropriate external functions. 

A compound symbol which enters a symbol variable as a 

specifier may also represent an external function. 

1. 3 Representations and Hetacodes 

In written and printed representations, variable indexes 

are lowered. T'le sign # may be omitted in v.hich case each 

sentence must begin in a new 1 ine. If the deterrnirer in a 

sentence rer:eats t'1at of the preceding sentence, it may be 

omitted together with the iniitial sign k. 'hus the abo\e 

cefini tion of the function IFIRSY.M/ could be written as fallows: 

k 1 FIRS YMI s1 e 2 ~ s 1 

(e l) e 2 ~ kiFIRSYMie 1e 2j_ 

It is also possible to use the shoPthand notation, in 

which Greek letters are introduced as representing combinations 

of a sign k and a function determiner. Additionally we agree 

that if a concretization point paired with a k-sign impl. icit 

in a Greek 1 e tt er closes a subexpre ss ion it may 'J e omitted 

11 



(because concretization points closing subexpressions can be 

unambiguously restored). Therefore, the definition of /FIRSYM/ 

may also take the form: 

a = k/FIRSYM/ 

as 1 e 2 ~ s 1 
a(e1 )e 2 ~ ae1 e 2 

a ~ 

At last we introduce one more facility into the shorthand 

notation: uppe~ indexes can be used without any further defini

tions. If a is defined as above, then aa means k/FIRSYMA/ and 

a 25 is equivalent to k/FIRSYM25/ • An upper index used with an 
1 object sign turns it into a compound symbol. So, F is equiva-

+-lent to /Fl/, and R to /R+-/. 

To write in Refal algorithms dealing with algorithm3 

written in Refal itself we have to represent sentences by object 

expressions, therefore, we need a special code for this purpose. 

It will be called metacode A. We further need a code to input 

Refal programs into a computer, which will be called metacode B. 

It is convenient to represent object signs in Refal by bytes 

in a computer, and it is convenient to treat each byte as an 

object sign. Since in I/O operations we are dealing, after all, 

with sequences of bytes, Refal sentences, and all possible Refal 

objects, for that matter, must be represented in metacode B by 

object st~ings (strings of object signs). In metacode A, Refal 

objects will be represented by object exp~essions -- for there 

is no need to destroy their tree structure. 

So, metacode A is a mapping of the set of all Refal objects 

(that is programs and expressions) on the set of all object 

expressions. Metacode transformation will be designated by 

adding an asterisk as a superscript to the designation of a 

~efal object. If Z is a Refal object, z* is its metacode-A 

transformation, z** its double transfor~ation, etc. 

Naturally, the metacode transformation and the reverse must be 

unique, but there is no need to require that each object expres-
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sion could be interpreted as the metacode of some Refal object. 

It would be convenient if the metacode of an object expression 

were always identical to the expression itself, but this is, 

obviously, impossible because of the required uniqueness of the 

inverse transformation. (Indeed, let t be an expression, which 

* is not an object expression. Then E is an object expression. 

If its metacode transformation E** must be identical toE*, 

then the inverse metacode transformation, when applied to E* , 

must give both E and E*, which do not coincide by the defini

tion of E.) Nevertheless, it is desirable to define metacode A 

in such a way that the subset of those object expressions E0 for 

which E~ ~ E0 is minimized. 

We define a metacode A by the following rules. 

o The metacode of a sequence of objects is the sequence of the 

metacodes of these objects. The metacode of (E), where E is an 

expression, in (E*>. This rule applies also to specifiers. 

o The asterisk * is a special S~'rnbol. Its metacode is *V. 

All the other symbols are transformed by the metacode into them

selves. 

o A variable type sign V is transformed into *V. For example, 

the metacode of s is *SX. Rest~iction: The asterisk cannot be 
X 

used as a variable index. 
* o An expression kEl is transformed into *K(E ) • 

o A sentence with the left side L and the right side R is 

transformed into *( <L*> = R*>, if the reversion indicator is 

<empty>, and *(R(L*) = R*), if it is (R). The comments are 

ignored, which may be regarded as a restriction on the unique

ness of the inverse transformation. 

As an example consider the following program: 

k/RPM/e1 +e2 ~ k/RPM1/e11- k/RPM/e 21 

k/RPM/el ~ k/RPM1/e1J 
k/RPM1/e1 (e2 )e3 ~ e 1 (k/RPM/e21> k/RPM1/e 31 

k/RPM1/e1 ~ e 1 
which describes a function, replacing the symbol + by the symbol -

on all levels of parenthesis structure. In the metacode A it will 

become the following expression: 
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*((/RPM/ *El + *E2) = *K(/RPMl/*El) - *K(/RPM/*E2)) 

* ( (/RPM/ *El) = *K (/RPI-U/ *El) ) 

* ( (/R!?Ml/*El (*E2)*E3) = *El (*K(/RP~/ *E2)) *K(/RPi'1l/*E3)) 

*((/RPMl/*El) = *El) 

We shall not describe metacode B here (it may vary with 

implementation), we will only give an illustration. This is how 

the above program will appear on the programming form: 

RPM El '+' £2 = K/RPMl/El. '-' K/RPM/E2. 

El = K/RPMl/El. 

RPMl El(E2)E3 = El (K/RPM/E2.) K/RPM1/E3. 

El = El 
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CHAPTER 2. INTERPRETIVE H1PLEMENTATION AND PROGRAMMING 

2.1 Principles of Interpretive Implementation 

In Chapter 4 we shall outline the p=oject of a super

compiler system which uses Refulas the metalanguage to define 

programming languages, and produces compilers for these languages. 

But to start using Refal and to initialize a bootstrapping 

process, one needs an interpreter for Refal. The Refal 

machine as defined above, is such an interpreter. However, 

if it is implemented on a compu~:er , Z i tel' a Z Z y, the efficiency 

will be so poor that it will be impossible to use Refal as a 

programming language for serious problems. To make this possible, 

we set forth the following five requirements of the implementa

tion of the Refal machine: 

Rl. When a parenthesis or a concretization bracket has 

been located in the view-field it must be possible to locate 

the paired bracket immediately, without scanning the enclosed 

expression. 

R2. If a variable enters the right side of a sentence in 

the same number as, or in a smaller nunilier than it enters 

the left side, then it must be possible to fulfill substitu

tion of the right side without actual copying or scanning of 

the values of this variable. In other words, subexpressions in 

the view-field must be transposable without re\vri ting. 

R3. It must be possible to locate the leading sign k 

without actually scanning the view-field, which is implied in 

the formal description of the language. 

R4. The time needed to bury or to dig out an expression 

in the view-field must be independent of its length. 

RS. Having found a determiner, it must be possible to 

locate the corresponding group of sentences Hithout scanning 

the memory-field. 

In existing implementations these requirements are met 

by organizing the view-field as a symbol list structure and 

maintaining a push-down store for the addresses of the conreti-

15 



zation signs present in the view-field. With such an implementa

tion, Refal becomes a practical programming language, which can 

be used with the same order of magnitude efficiency as LISP 

or SNOBOL. 

2.2 The Projecting Algorithm. Open and Closed e-Variables. 

Requirement 1 concerning brackets is very important 

for syntactical recognition. In the formal description this 

concept was introduced from the point of view of its final 

result only. But to understand the precise algorithmic mean

ing of what is written in Refal, it is necessary to take into 

account the actual process of syntactical recognition, the 

algorithm that is used to recognize an object expression E0 
as a pattern expression E • This algorithm can be more conven

p 
iently described from the opposite side -- as an algorithm of 

mapping or projecting Ep on E0 • We proceed to do so. 

Entries of symbols, brackets and variables will be 

called elements of expressions. Gaps between elements will be 

called knots (see p. 17 ) • The following general rules must 

be observed at every stage of mapping. 

Gl. If a knot K1 is positioned in Ep to the left of a 

knot K2 , then its projection P1 in E0 cannot be positioned to 

the right of the projection P2 of the knot K2 • 

G2. Projections of parentheses and symbols must be 

identical to themselves. 

G3. Projections of variables must meet requirements on 

their values, in particular, different entries of the same vari

able must have identical projections. 

It is assumed that at the moment when syntactical recogni

tion begins, the bounding knots of E are projected on the 
p 

bounding knots of E0 • The mapping algorithm is described by six 

rules (Pl-P6) listed below. They are meant for the left-to-right 

case, the algorithm for the reversed direction being analogous. 

At every stage of projecting, the rules Pl-P4 determine the 

element to be projected next; thus each element gets a projecting 

number. 
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The projection of the pattern expression 

on the object expression 

E0 =A( ( 2 3 ) ) B 
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Pl. After a parenthesis is projected, its paired 

parenthesis bracket is projected immediately. 

P2. If as a result of previous steps both ends (boundary 

knots) of an e-variable turn out to be projected, this variable 

is projected. Such entries are called closed e-variables. If 

there are two of them, they are projected from left to right. 

P3. An entry of a variable which already has a value is 

called a repeated entry. Parentheses, symbols, s-variables, 

t-variables and re~eated entries of all variables in E are 
p 

called rigid elements. If Pl and P2 are not applicable and 

there are some rigid elements with at least one end projected, 

the leftmost of them is chosen. If it is possible to project it 

without contradicting rules Gl-G3, then it is projected, and 

the process goes on. Otherwise a deadlock situation is stated. 

P4. If Pl, P2 and P3 are not applicable and there are 

some e-variables with the left end projected, the leftmost 

is chosen. It is called an open e-variable. Initially it gets 

an empty projection, i.e. its right end is projected on the same 

knot as the left. Other values may be assigned to open variables 

through lengthening (see P6). 

PS. If all the elements of Ep are projected, the syntact

ical recognition is successfully fulfilled. 

P6. In a deadlock situation the process comes back to the 

last (i.e. with the maximum projecting number) open variable, 

and its value is lengthened, which means that the projection of 

the right end of the variable is moved in E0 one term to the right. 

Thereafter the process is resumed. If the variable cannot be 

lengthened because of the rules Gl-G3, the preceding open vari

able is lengthened. If there is no open variable which could 

be lengthened, the recognition of E0 as EP is impossible. 

Examples of Projecting. 

On page 17, the variable e 1 is closed. Consider another 

example (the figures over elements are their projectin~ numbers): 

1 6 7 8 2 9 10 11 4 5 3 

+ + 
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Here e 1 and e 3 are open variables, e 5 , e 2 and e 4 are closed. 

It is easy to understand that if several main (not repeated) 

entries of e-variables are present on the top bracket-structure 

level of a given expression, the rightmost of them will be 

closed and the others open. This rule is also applicable to 

every subexpression enclosed in parentheses. 

In this example: 

9 10 11 2 3 5 6 4 8 1 

+ * * 
it may seem at first glance that the first entry of e 1 is open. 

In fact is is repeated. 

In the rest of this chapter we shall describe the primary 

methods of interpretive programming in Refal, i.e. prcgramming 

for an interpreter obeying principles Rl-RS. 

2.3 Function Formats. 

Suppose we want to define in Refal a function, which in a 

given expression on the top level of bracket structure, removes 

all repeated blanks, that is replaces each group of adjacent 

blanks by a single blank. How is the problem approached? 

Let us denote the required function by ¢(k-sign included!); 

a blank will be represented by the sign U. As there must be 

no pair of adjacent blanks in the result, we can define the 

concretization as a recursive removal of one blank of every such 

pair. This leads to the following two sentences: 

¢ e 1 U U e 2 ~ ¢ e 1 U e 2 

¢ el ~ el 

The variable e 1 in the first sentence is open. Initially 

it takes an empty value and then is lengthened until the first 

combination U U (if any) is found. The variable e 2 is closed, 

therefore the remaining part of the argument is not scanned, 

and by applying the sentence one blank gets eliminated. During 

the next step the projection of e 1 must be scanned again in 
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search of a pair of blanks, and this is clearly useless, 

because it cannot contain any. So our algorithm is not effi

cient. We can amend it by taking e 1 out of the conretization 

range in the right side. Now it takes the form: 

~ e 1 U U e 2 ~ e 1 ~ U e 2 

~ el ~ el 

According to R2 the interchange of ~ and e 1 takes effort 

which is independent of the length of e 1 • According to R3 the 

conretization sign in ~ is located immediately. The part of 

the argument which follows U U is not, as mentioned above, 

scanned, and when we fail to find this combination, the second 

sentence is applied without further examination of the argument. 

Thus no unnecessary actions are implied here. 

In the last example the concretization sign was used as a 

pointer in scanning an expression. This was possible because 

the scanned part of the expression did not participate in 

concretization, and therefore it could be taken out. When it 

is not, we retain the expression in the concretization range 

and use parentheses as delimieters or pointers. As an example, 

consider a correction function y, which in a given string of 

symbols deletes a symbol if it is followed by the negation 

sign I, and if there are several negation signs, deletes the 

corresponding number of preceding symbols. We can describe y 

in a very simple fashion by the following two sentences: 

Y el ~ el 

But this algorithm is not efficient. To construct an efficient 

algorithm we introduce an auxiliarv function y 1 with the format 
1 

y (E1 )E 21, where E1 is the examined part and E2 is yet unexamined: 
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A pair of structure brackets (parentheses) introduced to 

isolate a part of the argument, thus avoinding unnecessary scans 

(open variables), will be called a pouch. The argument of a 

function may have any structure with respect to parentheses; 

this structure will be called its format. The notion of the 

number of arguments, so important for numerical functions, becomes 

pointless for Refal functions, because any number of expressions, 

say three expressions E1 , E2 , and E3 , can be brought together 

into a structure, from which they are easily extractable, for 

instance (E 1 ) (E 2 ) E3 , or ( (E1 ) E2 ) E3 , or (E1 ) (E 2 ) (E 3 ). Moreover, 

whatever way we choose to write down a sequence of arguments 

it will be natural and convenient for the Refal programmer to 

regard it as one composite argument. Accordingly, we will always 

consider formally that a function in Refal has just one argument, 

but when its format is explicitly specified, the subexpressions 

of the argument may also be called arguments -- provided the 

meaning is clear. 

Let us give an example of a function with a sophisticated 

argument. Suppose we are to compare two expressions and compile 

the list of those terms, which have the same serial number in 

both expressions and are identical. Both original expressions 

must be reatined and separated by parentheses in the final result, 

and the list compiled must be added at the end, also separated 

by parentheses (cf. Sec. 25.). The format of the function which 

does this work (we assign determiner a ) will be 

where E1 and E2 -- are the scanned and yet unscanned parts of the 

first expression, E3 and E4 are the same for the second expres

sion, and E5 is the list of terms compiled to date. The defini

tion of the function is 

a ( (el) tae2) ( (e3) tae4) e5 

a ( ( e 1 ) t a e 2 ) ( ( e 3 ) tb e 4 ) e 5 

a((e1 )e 2 ) ((e 3)e 4 )e 5 
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a( (e1 ta)e 2 ) ( (e 3ta)e4 )e 5ta 

a ( ( e 1 t a) e 2 ) ( ( e 3 tb) e 4 ) e 5 

(ele2) (e3e4) (e5) 



2.4 Scans of Different Orders 

The number of open e-variables in the left side of a 

sentence may be called the order of the scan implied in the 

sentence. A scan of the n-th order requires, generally, a 

number of elementary operations proportional to Nn, where N 

is the number of terms in the expression under concretization. 

This is a simple example of the second order scan. Suppose 

we need to find two identical terms in an expression. This goal 

can be achieved by using a sentence with the left side: 

a e 1 tx e 2 tx e 3 ~ 

We have here two open variables: e 1 and e 2 , therefore the power of 

the implied scan is 2. Let us examine the performance of the 

Refal machine when it applies this sentence. First, the variable 

e 1 will be assigned the empty value, and tx will become the 

first term of the object expression. Then e 2 will take on an 

empty value. If the second term of the object expression is not 

equal to the first, the variable e 2 will be lengthened in a 

search for a term, which would be identical to the first. 

On coming to the end of the object expression, the Refal machine 

will lengthen the variable e 1 , i.e. will choose as tx the 

second term of the object expression etc. Thus, the Refal 

machine will perform those and only those actions which are 

necessary by the essence of the algorithm, therefore there is 

no loss of efficiency concealed in our program. 

Consider, however, a sentence with the left side 

a e 1 A ex Z e 2 ~ 

It purports to discover the first from the left expression 

that begins with A and ends with Z. Again this is a scan of 

the second power: If the expression sought for actually is 

present in the argument, no unnecessary actions will be performed 

during the search and the scan will actually be of the first 

power). But suppose the argument does not contain symbol Z at all. 

This fact requires only N steps for its discovery (N is the number 

of the terms). Meanwhile, the Refal ~achine will unnecessarily 

22 



lengthen the variable e 1 and perform, in the general case, 

const.·N2 steps before coming to the conclusion that recogni

tion is impossible: a loss of efficiency. Surely, a sophisti

cated interpreter (semicompiler) might spot this in the pre

processing (compilation) and introduce corrections, but this 

must be considered as optimization, which should not be expected 

from each implementation of Refal. To guarantee efficiency we 

must redefine our function so as to eliminate unnecessary scans. 

First, we spot a symbol A by the sentence 

where 8 is an auxiliary function, and then we search for Z by 

using the following left side in the definition of 8: 

(Recall that variables in Refal are local to sentences, so that 

the same indexes in different sentences, though convenient as a 

menomonie, should not cause confusion.) 

So, we received two sentences with the first power scan 

instead of one sentences with the second order scan. Generally, 

it is safe to use first-order scans, because the implications 

are easily seen, but some caution is needed with higher order 

scans in order to avoid inefficiency. Redefinintion to elimi

nate unnecessary scans is always possible and fairly obvious. 

In particular, it is possible to program in such a way that 

there will be no open variables at all. In this case, all the 

scans present in the algorithm will be expressed by functional 

recursion. 

2.5 Reproduction of Variables. Branching and Loops. 

If a free variable enters the right side of a sentence 

more times than it enters the left side, we will say that this 

variable is reproduced. In this case the Refal interpreter 

has to make one or more copies of the value of this variable 

when applying the sentence. This must be taken into account in 
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programming, because unnecessary reproduction of variables may 

lead to dramatic losses in efficiency. When there is no repro

duction of variables the interpreter will just rearrange the 

contents of the view-field, inserting and removing only 

those elements which are explicitly indicated in the sentence 

as constants (i.e. symbols and brackets). If there is repro

duction of variables, the interpreter will have to make copies 

of some parts of the view-field which may be very extensive. 

Thus, of the following t\-10 similar sentences: 

the second may require one hundred times more time to perform 

than the first. Therefore, if a variable may have a long 

value, it should not be reproduced unless it is needed by the 

essence of the algorithm. 

This consideration has a direct bearing on branching and 

exchange of arguments and values between functions in Refal. 

In other languages branches are usually defined through condi

tional expressions which make use of predicates (Boolean 

functions). In Refal it would not be difficult to define the 

semantics of conditional expression 

in the usual form: 

so that it could be used 

c.l kiiFI(T)ITHENI(e1 )1ELSEie 2 ~ el 

C.2 kiiFI(F)ITHENI(e1 )1ELSEie 2 ~ e2 

C.3 kiiF I ( e ) e .. kiiF I (ke 1) ex J p X p 

The first two sentences here will be used after the concretiza-

tion of the predicate into a truth-value has already been 

performed. The third sentence will bring about concretization 

of the predicate, should we choose to write it without embrac

ing concretization brackets. It can be translated into English 

in this way: to concretize a conditional ex~ression, first 

concretize the predicate. 

Logical connectives would not be difficult to define either. 

But programming branches in this way for a Refal interpreter would 
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be inefficient. We will show this in the following example. 

Let a relation (a two place predicate), which is written 

in the form: 

k/FOLLOWS/(e1 )/AFTER/e 2 1 
be defined. This relation may be used, e.g., in algebraic mani

pulation, the variables e 1 and e 2 being very bulky. Suppose we 

want a procedure of ordering a pair of expressions according 

to this relation. We define it this way: 

k/ORDER/( e 1 ) (e 2) => k/IF ( /FOLLOVlS/( e 1 ) /AFTER/e 2) 

/THEN/((e 2)(e1 ))/ELSE/(e1 )Ce 2) 1 
This definition. looks familiar to one's eye, but it leads to 

senseless reproduction of variables during interpretation, 

and hence to essential loss in efficiency. Each of the 

variables e 1 and e 2 enters three times the right side of the 

sentence, \vhile only once on the left. Therefore, the Rclal 

machine will copy it twice -- only to destroy both copies 

shortly afterwards. The first copy is destroyed when the predi

cate is concretized (because the argument gets lost and replaced 

by a truth-·value); the second copy is destroyed in accordance 

with one of the sentences C.l or C.2. 

How does one avoid this difficulty? 

The Refal machine is very simple and straightforward. 

To program for it efficiently one has to keep track of the 

"physical" rearrangements it makes in the view-field \v!'len apply

ing a sentence. It must be borne in mind that if a function 

destroys a free variable the value of which still is to be used 

later we will be obliged to resort to variable reproduction 

before using this function. In short, to avoid unnecessary 

reproduction of arguments, we must avoid unnecessary destruction 

of arguments. 

Let us apply this principle to predicates. Instead of the 

usual predicates, which substitute a truth-value for the argu

ment(s), we shall use recursive functions which retain the 

argument, and only add to it at the beginning the truth-value 
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resulting from evaluation. Such functions will be referred to 

as conservative predicates. For instance, the conservative 

predicate a which tells whether an expression contains two 

identical terms on the top level of parenthesis structure 

may be defined as 

In our example, we should redefine the predicate /FOLLOWS/ 

in such a way that the result of concretization is either T(e 1 )e2 , 

or F(e1 >e 2 • This eliminates one unnecessary copying. To elim

inate the other, we abandon function /IF/ and make up 

the following straightforward definition: 

k/ORDER/ (e 1 ) (e 2 ) 

k/ORDER1/T(e1 )e 2 

k/ORDER1/F(e1 )e 2 

k/ORDERl/ k/FOLLOWS/(e1 )/AFTER/e21 1 
(e2) (el) 

(el) (e2) 

introducing one auxiliary functiob. 

The branching of the algorithmic process is achieved here 

through the syntactic analysis of the argument: whether it starts 

with T or F. But the presence of more than one sentence in the 

definition of a function always generates a branch controlled 

by syntactic analysis, and conversely, the only way to generate 

a branch in Refal is to have more than one sentence in the 

definition of some function. Accordingly, the predicate3 in 

Refal lose their role as the only vehicles of branching. The 

differentiation of functional units into those which only analyze 

and branch but do not transform, and those which transform with

out branching, becomes optional and as a general rule unnecessary. 

A Refal function in a carefully written program performs t'.'7C jobs: 

on the input end, it makes branchings and corresponding t~ansfor

mations; on the output end, it leaves clear syntactic indicators 

to be used for branching by the function which takes up the 

result of concretization. For example, as the basis for a proce

dure of ordering a sequence of terms we should take not the 

predicate of order, but the procedure of ordering two terms, 
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which (1) puts the terms in right order, and (2) adds Tor F 

at the beginning to indicate whether they were initially in 

right or wrong order. 

The number of constant elements in the right sides of 

sequences also must be considered in effective interpretive 

programming. If the right side contains many elements which 

are not present in the left side in the same order, the inter

preter will have to insert these elements in the view-field: 

one by one, if there is no optimization. And if these symbols 

or brackets become unne~ced at the next stage, and get removed 

from the view-field, this program cannot be recognized as 

fully efficient. We can amend the program by using functions 

/BR/ and I I:G/ of ''b uryi..-1g" and "digging" information. 

Consider this example. let conservative predicate /ORD/ 

defined on the set of ordered pairs of 1 etters assume value T 

W1 en the letters are identical or the second appears later 

in the alt::habet than the first, and value F otl1erwise. 'Ihe 

simplest version of the definition is: 

k/ORD/~ s 2 ~ S \ s 2 ABCDEFGHIJKL1\1lOPQRS 'l.UVWXY Z 

B s 1 s 2 e xs 2e y s 1 e z ~ F 5_t s 2 

B 5_t s 2 ~ T s1 s 2 

This solution has the shortcoming we have just mentioned: 

each time when the first sentence is used the alphabetical list 

of letters will be brought into the view-field -- and thrown out 

at the next step. The other solution is to perform the 

concretization 

k/3 R/( ALPH) =ABC0EFGHIJKLMNOPQRS TGVWXY 2, l_ 

at any stage before using hee predicate /ORD/ , W1 ic h we 

redefine now in the following way: 

k/ORD/s 1 s 2 ~s s 1 s 2k/DG/ALPd l_ _l 

i3 s 1 s 2exs 2eyslez ~ F s 1 s 2k/BR/(ALPH)=exs 2eyslez j__ 

S ~ s 2ea ~ T \ s 2 k/3R/(ALPH)=ea l 
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Now the list as a whole is dug and buried, being represented 

in the form required for the view-field. These procedures 

take a small time, which is, according to implementation 

principle RS independent of the length of the list. Notice, 

that after using the list, one should not forget that it s~ould 

be buried again immediately (this is done by function S in 

this example) ; otherwise the list will be lost. 

In Refal, all iterative processes take the form of func

tional recursion. However, the difference between simple loops 

and the use of recursive functions, which is so noticeable in 

usual programming languages (say, ALGOL 60), has its analogue 

in Refal, being reflected in the structure of the right sides 

of sentences. If the right side is a call of the function itself, 

it is a simple loop: the configuration (see Chapter 4) of the view

field does not change, only one argument is replaced by another. 

Allowing the argument to include calls of other functions, which 

do not call back the original function, we get nested loops, 

for example 

kFl ~ kFl . . . kF 2 . . . 11 
kF 2 . . . ~ kF 2 1 

But if a sentence has the form 

kFl ~ kF 2 1 11 . . . kF ••• 

each application generates a new pair of concretization brackets 

-- function F 2 calls, which accumulate in the view-field and 

will be taken up for concretization only after another, 

nonrecursive, sentence for the function F1 has been used. 

This is a recursion in the sense of ALGOL 60. 

Consider the factorial function as an example. According 

to its recursive definition, we can immediately write this 

program which uses recursion in ALGOL: 

integer procedure FACT(n); 

value n; integer n; 

FACT := if n = 0 then 1 else FACT(n-1) x n 
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In Refal, we must first introduce the function a perform

ing arithmetic operations. Let it have the format 

where 0 is the operation sign, N1 and N2 are the operands. Then 

the corresponding description of the function /FACT/ will be: 

k/FACT/0 => 1 

k/FACT/en => a x k/FACT/ a-en, 1 1 , en 

To eliminate the recursive function call in the ALGOL 

program, we can rewrite it this way: 

integer procedure FACT(n); 

value n; integer n; 

begin integer f, m; 

f : = 1; 

for m := 1 step 1 until n do 

f : = f x m; 

FACT := f 

end 

The corresponding program in Refal is: 

k/FACT/ en k/Fl/(1) (a+en,l) 1 1 
k/Fl/ (e ) (e )ef n n ef 

k/Fl/(a+em,l) (en)ax ef,em 1 1 
Here the first sentence corresponds to the declaration of 

the local variables and the initial assignments to them, the 

second and third sentences correspond to the for statement. 
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2.6 Decomposition of the Algorithm into Functions 

One Refal function is usually attached to the algorithmic 

problem to be solved. But in a complicated case, to define 

this function we have to introduce auxiliary functions, which 

may demand the introduction of new auxiliary functions, etc. 

For instance, a translator from ALGOL 60 into assembler language 

takes several dozen functions described, all in all, by a 

few hundred sentences. 

The most usual reasons to introduce an auxiliary function are: 

(1) To break down an object into some parts according to 

a pattern. This pattern will be reflected in the left side of 

the defining sentence. 

(2) To define branching by putting one sentence into corres

pondence with each particular case. 

(3) To change the format of the argument, which is dictated 

as a rule by the necessity of bringing a new object into the 

process. 

(4) Preliminary processing of the argument in order to 

describe the main process in a more convenient or efficient way. 

Suppose that some object is to be processed by several 

functions in succe~sion. This can be achieved in two ways. 

First, we can define all the functions independently, and 

then define a function which applies them consecutively, for 

example: 

k/F/ex ~ k/F3/k/F2/k/Fl/ex 1 1 1 
Second, we can define the first function in such a way that it 

will call the second when it has finished processing; the 

second function can call the third in the same manner, etc. 

The first method has the advantage of independently defined 

functions, which may be used on different occasions. On the 

other hand, the second way is more convenient when the functions 

are introduced ad hoc, and the choice as to what function to 

apply next may depend on the form of the result. 

Some functions may not exactly specify what other functions 

will be called; such functions are called metafunctions, they 
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control the use of other functions, dependent on input informa

tion. For example, the function /APPLC/ ("apply consecutive! y") 

defined as follows: 

k/APPLC/( ) e 
X 

e 
X 

takes its first argument (the expression in the pouch) as a 

list of function determiners and applies these functions consecu

tively from left to right to the other argummt. 

In some implementations of Refal it is required t~a t each 

concretization sign in the program is always followed by a 

determiner, thus rendering the s ocond sentence inadmissible. 

However, these implementations provide a special external 

function /MU/ which works as a universal metafunction. 

Specifically, the concretization of k/MU/s 1e \ 
X-

the same results as ks1 ex J._,.;ri th any values of s 1 
'Jherefore, ~ only need to rewrite the ri<j.l t side 

sertence as follows: 

e 
X 

l j_ 

2.1 All-Level Scans of Bracket Structures 

produces 

and e • 
X 

of our 

Remember function ¢ from Section 2.3, which eliminates 

repeated blanks. It leaves unprocessed those parts of the 

argument which are enclosed in parentheses. Now we want to 

modify it in such a way that the argument is processed on all 

levels throughout its parenthesis structure. The simplest 

solution to this problem is to insert an additional sentence 

between the first and the second sentences, which would 

describe the procedure of entering parentheses: 

¢ e1 U L: e 2 => ¢ E]_ L ¢ Ll e 2 

¢ el ( e2) e 3 => E1 (~ e 2) ¢ e3 

Here we also had to modify the first sentence by enclosing 

the variable e 1 on the right in concretization brackets 
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because it still has to be scanned in order to find out 

whether it has parenthesized subexpressions. Variable e 1 
in the right side of the second sentence can be taken out 

of concretization brackets, for it no longer contains either 

repeated blanks or parentheses. 

This definition is not free of 

We pr~sent two more solutions: 

<P u u 1 1 <P U e 2 el e2 ~ 
<P el 

<P el 
,. ¢1 el 

1 
<P el(e2)e3 

,. 1 
el (¢e2)¢ e3 

1 
<P el 

,. 
el 

and 

<P U ~J e 1 
,. 

<P u el 

<P sael 
,. s <P el a 

~(el)e2 
,. (¢el) ¢e2 

<P 
,. 

algorithmic inefficiencies. 

leaving it to the reader to analyze the differences between 

them in the algorithmic aspect. 

The language Refal takes parentheses very seriously. 

The Refal object is a tree written in line with the help of 

parentheses and concretization brackets, and its structure 

cannot be easily ignored. Whatever way we choose to describe 

an algorithm in Refal, it remains to be expressed through 

operations on tree structures. 

Consider this 2xarnple. We want a procedure which scans 

the object from left to right and of all the entries of each 

symbol, keeps only the first, deleting the others. This 

procedure, in fact, ignores the tree structure of the object, 

it regards parentheses as symbols (but of a special kind, since 

they should not be deleted). In Refal, we will have to define 

this procedure as moving around a tree, but unlike the preced

ing example, we will have to transfer information from one 

branch of the tree to another. 
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Let us assign determiner a to our procedure. Obviously, 

we must maintain a list of symbols already discovered. Let us 

put it into a pouch, which we will position at the end of the 

argument. Therefore, the auxiliary function will be intro

duced as follows: 

If there were no parentheses in the arguments, function a 1 would 

be defined by these three sentences: 

1 a s e (e1 s e 2 ) 
p q p 

a 1 s e (e1 ) 
p q 

1 
a t 1 

Because of the parentheses, the list of symbols accumulated 

in one subexpression must be used when scanning another. This 

means that we must take in this list when entering parentheses 

(which is easy), and bring it out on exit (which is a bit more 

difficult). The most universal way to exchange information 

between any points in tree structures is to use procedures 

/BR/ and /DG/. We will keep the list of symbols buried under 

the name LS. On scanning each subexpression delimited by 

parentheses, function a 1 will bury the up-to-date list, and it 

will dig it out on the next higher level of the parentheses 

structure. At the end of the work the list should be dug out 

and destroyed so as not to waste space. 

a e 1 => al e 1 ( ) 1 k/DESTROY/ k/DG/LS 1 1 
1 1 

eq(e1spe 2 ) a s e (e1 s e 2 ) => a 
p q p 

1 1 
a s e (e1 ) => s a e (e1s ) 

p q p q p 
1 a (e1 )e 2 t 5 => 

1 
(a e 1 ts) 

1 a e 2 (k/DG/LS 1 ) 
1 

a (es) => k/BR/(LS) = es 1 
k/DESTROY/el => 
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As an exercise, the reader may define function a without 

resorting to functions /BR/ and /DG/. 

Now we describe some scanning techniques that are coupled 

with rearrangement of the bracket structure. The parentheses 

may be removed and restored, if they are replaced by some 

special symbols which are not used otherwise. Let it be /L/ 

for the left parenthesis and /R/ for the right. The procedure 

replacing parentheses is fairly simple: 

The inverse procedure, which pairs corresponding symbols 

/L/ and /R/, and replaces them with parentheses, is somewhat 

more complicated, but, as we shall see, requires only five 

sentences to define, and no bury-dig functions. We shall give 

a detailed account of the process of designing this program, 

in order to illustrate the method of work in Refal. 

First, some examples. If after a "quasi-bracket" /L/ 

immediately (not counting normal symbols) follows a quasi

bracket /R/, they can be paired and replaced by parentheses: 

I I I I 
A /L/ B C /R/ D ~ A ( B C ) D 

If after an /L/ another /L/ follows, it is the second one that 

will be paired with the first /R/ to appear, the first /L/ being 

kept unpaired. The scanned part of the object may be: 

r 
A /L/ B C D E F G 

The general form of the scanned part will be called a 

Zeft muZtibPacket. It contains a number of yet unpaired /L/ , 

but does not contain any /R/ s. Paired /L/ and /R/ are already 

replaced by "real" parentheses. How do we represent this type 

of object in a Refal program? We could keep a multibracket in 

its "natural" form, putting it in a pouch. But this would 

require a multiple scan of the argument. The first scan, when 

we are lengthening the multibracket, is, of course, inevitable. 
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Other scans are being done when we seek the last symbol /L/ 

to pair it with the /R/ encountered. We can avoid them if 

instead of quasi-brackets /L/ which break down the multi

bracket into separate segments we use structure brackets 

--parentheses! A multibracket of the form 

can be represented as 

or else as 

The latter proves more convenient. Using it, we devise the 

following definition of the pairing function, which requires 

exactly one scan of the argument: 

k/PAIR/ e ~ a( 
X 

) e 
X 

a(e1 ) /L/ e2 ~ a((e1 ))e2 

a((e1 )e2 ) /R/ e3 ~ a(e1 (e2 ))e3 

a(e1 )spe2 ~ a(e1sp)e2 

a(e1 ) ~ el 

The notion of a right muZtibracket can be introduced in 

the same way as the left multibracket. The structure 

will be represented in the form 

E1 ( ••• E 1 (E ) ••• ) n- n 
Using these r£presentations, we can describe one more way 

of performing all-level scans of bracket structures. When we 

move along the pr~cessed expression, the scanned and yet 

unscanned parts are left and right multibrackets. Suppose, e.g., 

that we are at the second level down in the bracket structure. 

This situation may be depicted as follows: 
+ 
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where the arrow shows the control point. With our representa

tion of multibrackets the argument of the scanning function 

will be of the form: 

[((El) E2) E3] E4(E5(E6)) 

(For the sake of lucidity, the format parentheses are repre

sented here as square brackets.) Therefore this way of scan

ning is coupled with rearrangement of the processed tree: 

the subexpression worked on is raised to the top level of 

bracket structure. 

There is a technical point in dealing with the above

mentioned argument which ought to be indicated: we must avoid 

confusing the parentheses introduced to represent multi

brackets with "genuine" parentheses representing the original 

structure of the argument, which may happen if it ends with a 

right parenthesis. Suppose, e.g., that the processed expression 

is 

(A)BC(D) 

At the moment when the control point has just passed symbol C, 

the argument of the function will be 

[(A)BC](D) 

Suppose now that the original expression was 

A(BC)D 

When the control point passes C, the argument of the function 

will be 

[(A)BC](D) 

which is indistinguishable from the first case, indicating an 

amgiguity. 

To eliminate this difficulty, we may add to the original 

expression any symbol, e.g., an asterisk, when we call an 

auxiliary function with a pouch; thus, a terminal right paren

thesis in the argument (and only it) will be always attributed 

to a multibracket. In the end the asterisk should be of course 

removed. 
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The above function a, which removes all repeated entries 

of symbols, will be defined using this technique in the 

following way: 

1. FORMAT TRANSFORMATION. SECOND POUCH IS FOR SYMBOL LIST 

1 ae1 ~ a ( ) e 1 * ( ) 

2.1. END OF JOB 

1 
a (e1 ) * ts ~ e 1 

2.2. REPEATED SYMBOL 

a 1 (e1 )speq(e2spe3) ~ 
2.3. NEW SYMBOL 

2.4. 

1 
a (e1 )speq(es) ~ 

RIGHT PARENTHESIS 

1 
a ( (.e 1 ) e 2 ) (e3 ) ts 

1 
a (e1sp)eq(essp) 

IN ORIGINAL EXPRESSION 

1 
~a (e1 (e2))e 3ts 

2.5. LEFT PARENTHESIS IN ORIGINAL EXPRESSION 

1 1 a (e1 ) (e2 ) e 3ts ~ a ( (e1 )) e 2 (e 3 ) ts 

If we have finished the work before completing an all-level 

scan, the argument in the "inside-out" form 

* [ ( ••• ( E l) ••• ) Em] E +l ( ••• { E ) ••• 
r.~ n 

can be brought b~ck to normal by applying the backtracking 

function !3: 

with the format parentheses preliminarily removed: 

2.8 An Example: Translation of Arithmetic Expressions. 

As an example of a more complicated program, we list the 

definition of a function (/TRAREX/), which translates an 

arithmetic expression into a program for the assembly language 
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of a one-addressed computer. Elementary operands are ALGOL 60 

identifiers and integers. Literal constants in the resulting 

program are formed with the help of an equality sign, e.g. 

ADD, =36; 

Intermediate results are stored in R + 0, R + 1, etc. Syntacti

cal correctness is checked and error printings are made. 

Incorrect subexpressions are replaced by the identifier ERROR. 

First, the argument expression is parsed into a more 

convenient form for translation, which has a prefix structure 

with the prefix being either an operation sign, or an asterisk 

indicating an elementary operand. The parsing is done from 

right to left. The pouch in the format of the function /TRANSL/ 

contains the displacement to store the next intermediate result. 

TRANSLATION OF ARITHMETIC EXPRESSIONS 

k/TRAREX/ e ~ k/TRANSL/ (0) k/PARSE/ e 1 1 a a 
a. = k/PARSE/ 

a. + el ~ a. el 
a. - el ~ a. 0 - el 

1 (R) a. e 1s(+ -) e2 ~ sf (a. el)a. e2 
a. e '* a.1e 

f 

1 1 1 2 
(R) a. 1e 1 s (x /) f e2 ~ sf(a. el) a. e2 

1 2 
a. el ,.. a. el 

(R) 2 e 1 t '* t (a. 2 
el) 

3 
a. e2 a. e2 

2 ... 3 a. el a. el 
3 

a. (el) ,. a. el 
3 a. s/LETTER/l e 2 • k/IDENT/(s1 )e2 1 

a.3s/DIGIT/l e 2 • k/NUMBER/(s1 ) e 2 1 

a. 3 e • ERROR k/P/ ERROR: e 1 
X X 

k/IDENT/(e1 ) s/LETTER/2 e 3 • k/IDENT/(e1s 2) e 3 1 
(e1 ) s/DIGIT/2 e 3 • k/IDENT/ (e1s 2) e 3 1 
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( el) ~ * e 1 

(el) e 2 ~ ERROR k/P/ ERROR: e 1 e2 1 
k/NUMBER/ 

k/TRANSL/ 

(el) s/DIGIT/ 2 e3 ~ k/NUMBER/ (els2) e3 1 
(el) ~ * = e 1 

(el) e 2 ~ ERROR k/P/ ERROR: e 1 e 2 1 
( e ) sf(el) * e2 ~ k/TRANSL/ (e ) el 1 n n 

k/CODE/ sf 1 , e2 

( e ) 
n s(+x)f ( * el) e2 ~ k/TRANSL/ ( e ) 

n e2 

k'CODE' sf 1, e 1 ; 

(en) sf(e1 )e2 ~ k /TRANSL/ (en) e 2 1 

STORE, R + e . 
n' 

1 

k/TRANSL/ (k/PLUSl/en 1 ) e 1 1 

k/CODE/ sf 1, R + en; 

(en) * e 1 ~LOAD, e 1 ; 

k/CODE/ + ~ ADD 

- ~ SUB 

X ~ MULT 

I ~ DIV 

t ~ POWER 

The functions /LETTER/, /DIGIT/ and /PLUSl/, the meaning 

of which is obvious, can be easily described in Refal, but 

it is preferable to have them i:::.~plemented as external 

functions. 
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CHAPTER 3. EQUIVALENT TRANSFORMATION 

3.1 Strict Refal 

When a formal system is developed, the first step to take 

along the way of metasystem transition is to introduce a concept 

of equivalence and elaborate a system of equivalent transforma

tions of formal objects. In the case of Refal it has been 

discovered that a compact yet powerful system of equivalent 

transformations of algorithms and functions can be formulated 

([21]) if the basic version of the language is somewhat restricted. 

These restrictions are: 

(1) The functions /BR/ and /DG/ are excluded; 

(2) t-variables are excluded; 

(3) in the left sides of sentences there must be no open 

variables, neither repeated entries of e-variables 

(repeated s-variables are permitted). 

For the sake of simplicity we shall assume later on that every 

sentence has a determiner, and sentences are grouped into 

function descriptions. 

We call this language Strict Refal. The translation of 

a program from Basic Refal into Strict Refal can be easily made 

automatically. We note though, that the restrictions are not 

very severe and leave the language expressive enough to conven

iently describe most complicated algorithms. 

A pattern expression will be called an £-expression if 

no one of its subexpressions contains more than one e-variable 

not enclosed in parentheses, anu no one e-variable enters t~e 

expression twice. In strict Refal the left sides of sentences 

are L-expressions. From the definition of L-expression there 

immediately follows 

Theorem 3.1. Each subexpression of an L-expression is 

an L-expression. 

Examples of L-expressions: 
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ABC 

/RS/(s(+-) 1 e 2 (Ae 3B))s1 

(el) (e2) (e3)e4 

Examples of pattern expressions which are not L-expressions: 

el + e2 

sl e2 (s3 e2) 

Due to the absence of open e-variables the following prop

osition holds: 

Theorem 3.2. Let E0 be an object expression and E~ an 

L-expression. There can exist only one set of values of the 

free variables in E~ such that the substitution transforms 

E~ into E0 • 

To demonstrate this we only need to review the projecting 

algorithm in 2.2. All rigid elements are projected uniquely. 

Having projected them all, we come to a situation where the 

only (if any) e-variable present on each level of bracket 

structure in each subexpression has both its ends projected, 

and therefore, gets its value uniquely also. 

3.2 Classes and Subclasses 

To every pattern expression E a set corresponds, which p 
comprises all object expressions syntactically recognizable as 

E . We call this set a alass depiated by E , or simply a p p 
alass E . A class depicted by an L-expression is called an 

p 
L-alass. To denote set-theoretic relations and operations on 

classes we shall use the usual signs: ~ , = , n , u . 
No distinction will be made between object exp~ession and the 

class it depicts. Thus the relation E0 ~ Ep , where E0 is an 

object expression, means that E0 is recognizable as Ep. 

In the formal description of Refal the requirements 2.1.1 

to 2.1.3 for the values of free variables were formulated. 

Now we generalize the notion of value by allowing values to 

contain free variables. Points 2.1.1 and 2.1.2 are modified in 

this way: 
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2.1.1*. The value of an unspecified s-variable can be any 

symbol or any s-variable. The value of an e-variable can be 

any pattern expression. 

2.1.2*. The value of a specified variable can be a symbol 

from its specifier or a specified s-variable with a specifier 

containing a subset of the set of symbols contained in the 

specifier of the replaced variable. 

The simultaneous substituion of expressions E. for var~-
~ 

ables v. , where ~ = 1,2, •.• ,n, will be written as 
~ 

vl -+ El, v2 -+ E2 ' ... , v -+ E n n 

(It will always be impl~ed that the subst~tution is legitimate, 

i.e., the above mentioned requirements to the values are 

satisfied.) 

The result of applying a substition ~ to a pattern E 
p 

expression will be denoted by Ep II ~- By E II ~l II ~ 2 
we mean (E II ~ 1 ) II ~ 2 • 

Theorem 3.3. Let E be a pattern expression and ~ a sub-
' p I 

stitution. Let E = E II ~- Then E c E p p p p 

Proof: Let us take an arbitrary object expression E0 . 

Suppose 

tion ~O 

E = E 

it is recognizable as E'. This means that a substitu
p 

exists, such that E0 = E~ II ~ 0 • Therefore 

0 p II ~ II ~ 0 . It is easy to see that the composition of 

two legitimate substitutions is a legitimate substitution again. 

Hence, E0 can be seen as a result of applying composition ~ ~O 

to E , which means that E0 is recognizable 
p I 

any E0 it follows from E0 ~ EP that E0 c EP. 

is implied in relation E' c E . 

as E . Thus for 
p 

This is just what 

p- p 
A class E' , obtained as E II ~ will be referred to as a p p 

subalass of Ep; the corresponding operation will be called 

the aontPaation of E thPough ~. 
p 

An Example. The class of expressions which begin and end 

with the same letter, this letter being A or B, is depicted by 

the pattern expression s(AB) 1 e 2 s 1 • Through the substitution 

s 1 -+A, e 2 -+ =(e2 ) we contract it to the subclass A= (e2 )A. 
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We note, that a subclass of an L-class is not, generally, 

an L-class. For instance, any class is a subclass of the L-class 

el. 

We now take up the question of finding the union and inter

section of classes. The union of two classes may or may not be 

a class. For example, the union of classes s(l2)a and s(34)b 

is class s(l234) . On the other hand, the set of all terms a 
is the union of two classes: s 1 and (e1 ) , and it cannot be 

represented as a class. The best representation for this set 

is the union s 1 u (e1). The intersection of two classes also 

may not be a class. We put the problem of representing the 

intersection of two classes in the form of a union of classes. 

The solution of this problem will be given for the special case 

when at least one of the two classes is an L-class. To perform 

equivalent transformations, this case will suffice, which, of 

course, reflects the fact that in strict Refal the left sides 

of sentences are L-expressions. 

Thus, let E~ be an L-expression, and Ep an arbitrary 

pattern expression. We can see the inters0-ction Ep n E~ 

as the set of all those object expressions E0 from EP which are 

recognizable as E~. The problem, therefore, is a generalization 

of the problem of syntactical recognition. In particular, if E p 
happens to be an object expression, then Ep n E~ is either Ep 

itself, in the case when Ep is recognizable as E~ , or empty 

when this is not the case. The answer here may be obtained 

by using the algorithm of projecting (mapping) E~ on Ep. 

In the general case we also will find a solution by projecting 

E~ on Ep , but we must keep in mind that Ep represents now 

a set of object expressions, not a single one; in the process 

of projecting we shall contract this set, excluding from it 

subsets of those elements (object expressions) which certainly 

are not recognizable as E~. 

Those terms of which an expression is by definition a 

sequence will be referred to as its constituent terms. If 

object expressions E1 and E2 are identical, their first 

constituting terms must also be identical. Of all constituting 
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terms of E~ only the e-variable may be transformed by a 

substitution into an expression consisting of several (or no) 

terms; other terms are always transformed into exactly one term. 

Therefore, if E~ can be represented in the form T~E~ , where 

T~ does not have the form eZ , the term T~ can be projected 

on the first constituting term of E separately, and if this p 
latter one is T , a legitimate substitution must exist for 

p 
successful recognition, which transforms T~ into Tp. For such 

a substitution to exist, we will sometimes have to make contrac

tions in T , and therefore in E • 
p p 

Analogous considerations are applicable, of course, to the 

last (rightmost) constituting term. In defining the projecting 

algorithm, there is a freedom of which constituting term, the 

leftmost or rightmost, to choose at each step. The final 

result will of course be the same independent of the strategy 

taken, but the length of the process may be very different in 

some cases. The simplest version is to move left to right until 

an e-variable is met, and then start from the right end back to 

this variable. This version will be used in the examples below. 

We proceed now to describe the generalized rules of 

pro~ecting. Contractions in ~ will be written as substitutions 

V --). f • W1 en a variable from E takes a value, this will be 

writ ten as an assignment V + f • Clearly, this is also a subs ti

tution, Which produces a contraction, but in E~ , and not in EP. 

We use arrows qirected in different sides to S1 ow where the 

contraction is made. This is important, because a variable from 

E may occasionally be identical (syntactically) to a variable 
p 

from E~. 'lb avoidconfusion we will sometimes denote the empty 

expression (and the class consisting of the empty expression) 

by <empty>. The empty set (which is not a class) W"ill be denoted 

as¢. For the sake of brevity, we will assume that all s-variables 

have specifiers. An unspecified s-variable can be interpreted 

as havi:rg all possible symbols in its specifier. 

~e following points cover all possible cases which may 

arise in projecting. By X , Y , Z and Y. (with any i) \'.e 
..{. 

s1all denote arbitrary indexes, by Sand Si- acy syP\bols, am 

by P, Q , a rd R -- any specifiers. 
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1. E~ is empty. Recognition is possible if Ep is either empty 

or has the form 

• • • eY 
n 

where some indexes Y. may coincide. In the latter case, 
~ 

contraction 

eY1 ~<empty>, eY 2 ~<empty>, ••. , eYn ~<empty> 

is needed. Otherwise, recognition is impossbble, i.e. not a 

single object expression from Ep is recognizable as E~. 

2. E~ is eZ. Recognition is possible with any Ep. As a result, 

the variable eZ takes the value E which fact is depicted as 
p 

eZ : = Ep 

In all the following points E~ takes the form of either 
I I 

T~E~ , or E~T~ , where T~ is any term which is not an e-variable. 
I 

In the first case we represent E in the form T E , in the second 
I p p p 

case -- in the form E T , where T is any term. If this is p p p 
impossible (that is E is empty) then recognition is impossible. 

p 
We formulate the rules for the first case (leftmost constituting 

term) , the rules for the other cases are analogous and will be 

referred to by the same pair of nurnbe~with an added asterisk, 

such as 3.1*. On applying one of the rules 3.1* - 6.4*, we 

take into account the contractions and assignments indicated 

in the rule by making appropriate substitution in Ep and E~ , 
after which we proceed to project yet unprojected parts of the 

original E~. 

3. T~ is s. 
3.1. Tp is s1 • 

to S· 

This holds for all points 3.n with any n. 

Recognition is possible only if s 1 is identical 

3.2. rp is s(Q)y. If s enters Q we make the contraction sy ~ S 
and continue projecting, otherwise recognition is impossible. 

3.3. T is (Ei). Recognition impossible. 
p p 

3.4. rp is eY. Let us divide the class EP into two suhsets: the 

first subset will be the subclass obtained by applying to Ep the 

substitution eY ~ <empty>, the second will be the complement, 
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including all the remaining object expressions. We cannot 

state anything concerning the first subset, we will just 

continue to project E~ on this subclass. In the second sub

set (which is not a subclass) recognition can be possible only 

if the leftmost term of the value of eY is S, that is, only in 

the subclass of E formed by the substitution eY ~ SeY. To 
p 

sum up, we form two subclasses of E by the substitutions 
p 

eY ~ <empty> 

eY ~ SeY 

and continue the process of projecting in each of these, 

independently of one another. 

4. T~ is s(P)Z. 

4.1. Tp is S1 . Recognition is possible if S1 enters P. 

In this case sZ takes the value s1 . 

4.2. T is s(Q)Y. The needed contraction is sY ~ s(R)Y 
p 

where R is the intersection of the sets P and Q (if R is empty, 

recognition is impossible). The variable sZ is taking s(R)Y as 

a value. Now we face a problem. We have to make the corres

ponding substitution in E~, but we do not want to mistake the 

variable sY from Ep for one of the variables in E~. To resolve 

the conflict, we will introduce a new type of element, the 

alien s-variable, with the variable type sign a instead of s. 

In our case the substitution will amount to replacing all entries 

of s(P)Z in E~ by a(R)Y. The projecting of a-variables will 

be described in point 6. Since E~ now has references to the 

variables from E , a contraction of E may demand some modifi-
p p 

cation of E~. Specifically, when a contraction of the form 

s(P)Y ~ E is made in f. , we must replace all the alien vari-
p 

ables with the index Y in E~ by the value E in which the variable 

type sign s, if present, is changed to a. 

4.3. Tp is (E~). Recognition impossible. 

4.4. T is eY. Two subclasses of E are generated by the con-
p p 

tractions: 
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eY -+- <empty> 

eY-+- s(P)Y 1 eY 

Here s(P)Y 1 is a new variable with an index Y1 differing from 

all other indexes. 

5. TR. is 1 
(ER.). 

5.1 & 5.2. T is 
p 

S1 or s(Q)Y. Recognition impossible. 

5.3. T 

Ef. 
p 

as 

is ( Ei) . 
p 

Therefore 

Recognition is possible 

we proceed to project E~ 
if E~ ~s 
on E1 

p' 

recognizable 

and for 

those subclasses on which the projection is possible continue 
I I 

the process by resuming projection of En on E • The contrac-
x- • p . 

tions and assignments made in projecting E~ on E~ must be 

taken into account when we resume projecting on the main level 

of bracket structure. 

5.4. T is eY. Two subclasses of E are generated by the 
p p 

contractions 

eY -+- <empty> 

eY -+- (eY 1 ) eY 

where eY1 is a new variable with index Y1 differing from all 

other indexes. 

6. TR. is an alien variable a(P)Y. 

6.1. T is S. If S enters P then we make the contraction sY -+- S 
p 

(which means, incidentally, that if there are other entries 

of the same alien variable in ER., they will be replaced by S, 

see Rule 4.2). Otherwise, recognition is impossible. 

6.2. T is s(Q)X. Let R be the intersection of P and Q. 
p 

If it is empty, recognition is impossible. If R is not empty, we 

make the contraction in E through the following simultaneous 
p 

substitution: 

s(Q)X-+- s(R)Y 1 s(P)Y-+- s(R)Y 

(in ER. 1 the al1en variable aY will be replaced by a(R)Y). 

We note that index X may be identical to Y. 
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6.3. 

6.4. 

T is p 
T is 

p 

(E~). Recognition impossible. 

eX. Two subclasses of E are generated 
p 

substitutions: 

eX ~ <empty> 

eX~ s(P)Y eX 

by the 

As we mentioned above, when the term being projected 

T~ is the rightmost, the rules are analogous, and the 

formulations differ only if an e-variable from E is involved. 
p 

For example, instead of 6.4, we will have: 

6.4*. T is eX. p Two subclasses of Ep are generated by the 

substitutions: 

eX ~ <empty> 

eX~ eX s(P)Y 

In the process of projecting, the variables of E~ take 

some values, which may contain some variables from E and may, 
p 

therefore, alter when contractions take place. In order to 

get the correct list of the values of variables in the end 

of the projection, we must update this list when each new 

contraction is made by making the substitution in the values. 

Applying these rules step by step, we generate a branch

ing process, each branch corresponding to one subclass of the 

original class E . Some of these branches may be terminated 
p 

by the verdict "Recognition impossible", others may come to 

a successful end through the use of rules 1 or 2. Obviously, 

the process of projecting will always be finite. Thus we 

obtain the following theorem: 

Theorem 3.4. The Generalized Projecting Algorithm (GPA), 

when applied to the projection of an L-expression E~ on an 

arbitrary pattern expression E , provides a representation 
p 

of the set E~ n Ep in the form 

E1 u E2 u •.• u En 
p p p 

where Ei are subclasses of the class E and n is a finite 
p p 

number, which may be in particular equal to zero (E~ n EP= ¢). 
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Let us consider several examples of generalized projecting. 

For the sake of brevity, we will introduce the following conven

tions. To indicate the rule used at each step, its number 

designation will be placed at the beginning of the line. Period, 

comma and equality signs will be used as delimiters; to avoid 

confusion, these will not be used as object signs in Refal 

expressions. In branching, we will always first take up the 

subclass generated by the substitution eY ~ <empty>. Having 

finished the whole tree which is produced by this branch, 

we come back to the remaining alternative. To note this, we 

mark each branching point by placing its sequential number 

in parentheses immediately after the rule's designation. Thus 

each sequential number will appear exactly twice. 

1) Let us find the intersection of the following classes: 

3.1. 

Et = A s 1 (e2 ) e 3 s 1 A 

EP = A sa (C + eb) ec 

The sign A is projected on the identical sign in E . 
p 

I I 

4.2. s 1 := sa , Et = (e 2 ) e 3 aaA. Now Et takes on the role 

of Et. Therefore in the following we shall not 

distinguish between them and use Et as the notation. 

5.3. E~ = e 2 , E! = C + eb. We enter the parentheses. 

2. e 2 := C + eb. Return to the main level of the bracket 

structure. 

3.4*. (1) e -c 

3.4*. (1) e ~ 

c 

3.1*. Et = e3 a 
a 

6.4*. (2) e ~ 

c 

6.4*. ( 2) e ~ 

c 

2. 

<empty>. 

e A c 

, E = 
p 

<empty>. 

e 5 c a 

e 

E = e 
p c 

Recognition impossible. 

c 

Recognition impossible. 
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Recognition attained. Collecting all the substitutions 

made, we find that E~ n EP is the subclass of EP , obtained 

by the substitution 

that is the class 

A s (C + eb) e s A . a c a 

It can be recognized as E ~ if the free variables take the values: 

5 1 a 

2) The second example. Let 

E~ = sl ( e2) 

Ep = el + e2 

(In the following we shall use 

e3 54 A 

the notation 

"Recognition impossible. Return to n" . ) 

4.4. (1) el -+ <empty> 

4 .1. sl:= +, E~ = (e2) e3 s 4 A I E p 

5.4. (2) e2 -+ <empty>, X ( 2) 

5.4. ( 2) e2 -+ (e3) e2 

2. e2:= e3 

E~ = e3 s 4 A I E = e2 . p 

3.4*. ( 3) e2 -+ <empty>, X ( 3) 

3.4*. (3) e2 -+ e 2 A 

4.4*. (4) e2 -+ <empty>, X(4) 

4.4*. (4) e2 -+ e2 54 

4.2*. 54:= 54 

2. e3:= e2 

X (n) meaning: 

= e2 . 

Recognition attained. We have received the subclass 

El = + (e3) e2 54 A p 

Return to ( 1) . 
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4. 4. (1) el -+ s3 el 

4. 2. sl:= s3 

E~ = ( e2) e3 s 4 A , E = el + e2 . 
p 

5.4. ( 5) el -+ <empty>, X ( 5) 

5.4. ( 5) el -+ (e4) el 

2. e2:== e4 

3.4*. ( 6) e2 -+ <empty>, X ( 6) 

3.4*. (6) e2 -+ e2 A 

E~ = e3 s4 E = el + e2 . p 

4.4*. ( 7) e2 -+ <empty> 

4.1*. s4:= + 

2. e3: = el 

Recognition attained. We have received the subclass 

2 
(e4) E = s3 el + A 

p 

Return to ( 7) • 

4.4*. ( 7) e2 -+ e2 ss 

4.2*. s4:= ss 

2. e3:"" el + e2 

Recognition attained. We have received the subclass 

3 
(e4) E = s el + e2 s 5 A p 3 

and finished the process of projecting. Thus 

E~ n E = El u £2 u £3 
p p p p 

The three subclasses which resulted from the application 

of the GPA in this case are overlapping. Thus, the object 

expression +(A)+A belongs to the first two classes, the 

expression +(A)++A belongs to all three classes. 

3) Consider an example of generalized projecting which 

involves specified symbol variables. 
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ER. = s4 (e2 s(ABC)l ) s4 s (ABC) l 

E = s (AB) l (BCex s (AB) l )ez s(BC) 2 p 

4. 2. s4 := s(AB)l 

ER. = (e2 s(ABC) 1 )a(AB)l s(ABC)l 

5.3. Ei s(ABC)l 
i 

X s(AB)l = e2 ' E = Bee R, p 

4.2*. s(AB)l-+ s(AB)l ' s(ABC)l := s(AB)l 

2. e 2 := BC ex 

The projection inside the parentheses is completed. 

The values assigned to the variables s 1 and e 2 must be 

substitut7d into the remaining part of ER.' and the contrac

tion in E~ (in this case trivial) must be expanded on the 

whole of E • As a result we get: p 

Ep = ez s(BC) 2 

6.4. (1) e -+ <empty> 
z 

6.2. s(BC) 2 -+ s(B)l 

ER. = a(AB)l E = <empty>, X ( 1) 
p 

6.4. (1) e -+ s(AB)l e 
z z 

ER. = a(AB)l E = e s(BC) 2 p z 

6.4. ( 2) e -+ <empty> 
z 

6.2. s(BC) 2 -+ s(B) 1 ' s(AB)l-+ s(B)l 

Recognition attained. We get the sublcass 

1 
E p = s (B) l ( BC ex s (B) l ) s (B) l s (B) l 

If the specifier of a symbol variable consists of one 

symbol, we can replace the variable by this symbol: 

El = B(BC e B)BB 
p X 

Now we return to the branching (2). 

6.4. (2) ez-+ s(AB) 1 ez 

ER. = <empty>, 



Recognition impossible. Hence, the subclass E1 is equal to 
p 

the intersection E~n E . 
p k 

As we could see above, the classes E resulting from the 
p 

use of the GPA may generally overlap. But if E is also an 
p 

L-expression, these classes will be nonoverlapping. 

Theorem 3.5. The intersection of two L-classes obtained through 

the use of the GPA is the union of nonoverlapping L-classes. 

Proof: The subclasses Ek are obtained from the L-expression 
p 

E by the substitutions listed in the rules of generalized 
p 

projecting 1 to 6.4*. In these substitutions symbol variables 

never generate expression variables, and expression variables 

may generate a new expression variable only confined by 

parentheses (Rules 5.4 and 5.4*). Therefore, an L-expression 

may only generate an L-·expression. 

More than one subclass may be generated by the application 

of one of the b~anching rules: n.4 and n.4* with n eaual to 

3, 4, 5 or 6. These rules provide substitutions for e-variables 

in E . If E does not contain e-variables, the GPA will 
p p 

never give more than one subclass. If on the main (top) level of 

bracket structure, the expression E does not have an e-variable, 
p 

all the generated subclasses will be identical on the main level, 

so that to compare two subclasses we must comp~re their subexpres

sions confined by parentheses. By induction, we see that now we 

only have to consider the case of an e-variable eZ on the main 

level of bracket structure. 

Let us denote by n the number of constituting terms in E 
p 

without the term eZ. Application of any legitimate substitution 

to any other constituting term will not alter the number of 

constituting terms in E • Consider the first branching. When 
p 

we schoose the first alternative, i.e. eZ ~ <empty>, we receive 

a subclass, each element of which consists of exactly n consti

tuting terms. When we choose the second alternative, we receive 

a subclass, each element of which consists of at least n+l 

constituting terms. Consequently, these two subclasses, and 

any pair of subclasses which may be obtained from them through 

subsequent substitutions, will not overlap. The same consideration 
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is true for the second and all subsequent branchings, which 

proves the theorem. 

The following theorem, which is a generalization of 

Theorem 3.5, i~central for equivalent transformations: 

Theorem 3.6. Let L1 and L2 be L-expressions, and Ep an 

arbitrary pattern expression, which may contain only those 

free variables which are present in L1 • Let <~k~with k = 1,2, •.. r 

be the set of 

L2 on Ep. (*) 

substitutions in E generated by projecting 

Then L 1 I I ~ k , wher~ k = 1 , 2, ... , r, are non-

overlapping L-classes. 

To prove this theorem we only need to note that the 

demonstration of theorem 3.5 remains valid if the substitutions 

applied to the L-expression Ep (which becomes L1 in Theorem 3.6) 

are obtained by rrojecting Et (which becomes L2 in Theorem 3.6) 

not necessarily on itself, but on any pattern expression (E 
p 

in Theorem 3. 6) • 

3.3. Algorithmic Equivalence 

We shall make a distinction between algorithmic and 

functional equivalence. By algorithm we mean the ordered set 

of sentences in the memory-field of the Refal machine. An 

algorithm A' will be called strictly equivalent to an algo

rith~ A, if the replacement of A by A' in the memory field 

will not change the result of any step, performed by the 

Refal machine with any contents of the view-field.(**) This 

means that if the result is recognition impossible in one case, 

then it also must be recognition impossible in the other, 

and if the step is successfully performed, the resulting view

field must be the same in both cases. 

(*) When new~ariables are introduced in the process of project
ing, they must be different from all variables entering L1 , 
not only E • 

(**) p 
Instead of "contents of the view-field" we shall say later on 
just "view-field". 54 



If A' is strictly equivalent to A, then the domain of A', 

i.e. the set of all those view-fields which do not lead to an 

abnormal stop (recognition impossible) after any number of steps 

of the Refal machine, is equal to the domain of A. It is useful 

to weaken this requirmment. We shall call an algorithm A' just 

equivalent(*) to A, if the results of executing one step of 

the Refal machine with A' and with A. in the memory-field are 

related in the following way: if A does not lead to an abnormal 

stop, then A' produces the sane new view-field as A; if A leads 

to an abnormal stop, then A' may produce any result. Therefore, 

the domain of the algorithm may be expanded when we transform 

A in to A'. 

For the algorithms which never lead to an abnormal stop, 

the notions of (nonstrict) equiv~ency and strict equivalency 

are coextensive. It is not difficult to write algorithms in 

Refal in such a way that abnormal stops become impossible. 

For this end, ore has only tD s re that for each function F, 

the union of all classes in the left sides of the sentences 

is the complete set of object expressions. In particular, 

ore may add to the description of the function F a sentence 

wit.:1 the left side 

k F E]_ 

thereby expanding the domain as is deemed convenient. However, 

it may lead to an unwarranted lengthening of the program. 

Suppose, for example, that we need a function, which would 

remove the first symbol of its argument. Suppose, furthermore 

that all calls of this function are such that the argument in 

fact begins with a symbol. Then we need only one sentence to 

define this function (to which we attach, say, the determiner a): 

~ e 
2 

The algorithm which uses the function a may have the domain 

equal to the complete set, although the description of the 

function a has a narrower domain. No matter how we expand 

(*) or nonstPictly equivalent. 
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the domain of the function a, this will not change the algo

rithm as a whole. Thus a nonstrictly equivalent traDsfor

mation of some parts of an algorithm may turn useful even if 

\ve are interested in a strictly equivalent transformation of 

the whole algorithm. 

We formulate ~~ the following five rules of algorithmically 

equivalent transformation. 

Al. At the end of the description of a function F an arbitrary 

sentence with the same determiner F can be added. 

(This rule is the result of our definition of equivalency, 

which allows expansion of the domain.} 

A2. If the intersection of the left sides of two adjacent 

sentences is empty, these sentences can be transposed. 

A3. If a sentence with the left side L1 precedes a sentence 

with the left side L2 , and L2 ~ L1 , then the second sentence 

can be eliminated. 

A4. Suppose that for a pair of adjacent sentences 

k L1 ~ R1 

k L2 ~ R2 

a substitution 6 exists, such that L1 = L2 II 6, and R1= R2 II 6. 

Then the first sentence can be eliminated. 

AS. Let L and R be the left an<1 right sides of a sentence, 

and 6 - a substitution. Then a new sentence 

k L II 6 ~ R II 6 

can be inserted inrnediately before the original sentence. 

Notice that all we need to apply these rules is 

the GPA. Relation L2 ~ L1 takes place when L2 n L1 = L1 , i.e. 

in projecting L1 on L2 , no contractions are needed in L2 for 

recognition to be possible. 

An Example. Suppose we have the following definition of a 

recursive predicate a: 
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.1 CL sl ~ F 

.2 CL sl s(+ -} 
2 
~ F 

.3 CL sl 52 ~ F 

.4 CL s(+ -)1 52 ~ T 

• 5 CL sl 52 53 ~ F 

.6 CL sl 52 53 54 ~ B e 5 

The sentence .4 will never be used because it is screened 

by sentence .3 (Rule A3}. Therefore we eliminate it. Now, 

the sentence .2 is submerged by the sentence .3 in accordance 

with Rule A4, and we eliminate it too. It is easy to see 

that all the sentences left are transposable (Rule A2), 

thus we can rewrite the algorithm in this manner: 

a s 1 52 53 54 e ~ B 
5 es 

a s 1 ~ F 

a sl 52 ~ F 

CL s 1 52 53 ~ F 

Using Rule Al, we add at the end one more sentence: 

a e 1 ~ F 

which expands the domain of the function CL by including the 

cases when its argument is either <empty>, or contains paren

theses. But it was not this domain expansion that we aimed at. 

It became possible now to submerge (Rule A4) the preceding 

three sentences into the last. As a result the algorithm 

is greatly simplified: 

a s 1 s 2 s 3 s 4 e 5 ~ B e 5 
CL e 1 ~ F 

It should be stressed that unlike Rule A3, rule~ A2 and A4 

are applicable only if one of the sentences is i~mediately 

followed by the other. For example, in the algorithm 

B A ~ T 

B s 1 ~ F 

B sl e2 ~ T 
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the first sentence cannot be submerged by the third. 

The system of five rules Al-AS is not complete; it 

only gives the most useful tran2formation rules. The incomplete

ness of this system can be seen from the following example. 

Consider this definition: 

a s e ~ A 
a 1 

a (e1 ) e 2 ~ B 

a ~ c 

a ex ~ D 

The fourth sentence will never be used, because every 

expansion begins with either a symbol or a parenthesis, or 

else is empty. Therefore, this sentence may be eliminated, 

but this cannot be done using rules Al-AS only. In Section 

4.3 we shall present an algorithm which performs transforma

tions of this kind. 

3.4 Functional Equivalence. 

By the domain of a function F we mean the set M of those 

object expressions E0 , for which the process of concretiza

tion of the expression k F E0 1 will be brought by the Refal 

machine to a normal end. Note the difference between this 

definition and the definition of the domain of an algorithm. 

Speaking of an algorithm, we mean the process itself 

irrespective of whetherit is finite or not, hence the only 

reason for an expression E0 to be outside the domain 

is to result in an abnormal stop (recognition impossible). 

Speaking of a function, we mean ~he result of a process, 

thus if the concretization will never end, the expression 

E0 is outside the domain. 

Let an algorithm A define inter alia a function F. We 

shall say that an algorithm A' is functionally equivalent to 

A with respect to the function F if for every E0 from the 

domain of F, the concretization of k F E0 1 with the alga

right A' leads to a normal end and gives the same result as 
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with the algorithm A. We shall speak of strict functional 

equivalency, if this relation holds for any object expression 

E0 , and the two domains, therefore, are identical. As in 

the case of algorithmic equivalency, we will be interested 

in and formulate the rules for simple (nonstrict) func

tional equivalence. It should be noted that nonstrict 

equivalence (both algorithmic and functional) is not a 

relation of equivalency in the sense the term is used 

in mathematics, because it is not symmetric. But it is 

reflexive and transitive: a quasi-ordering relation. 

Clearly rules Al-AS of algorithmic equivalence are 

applicable for functionally equivalent transformations. 

Two additional rules, Fl and F2, specific for func-rional 

equivalence, will be formulated below. We shall call them 

the rules of driving. Their main idea is to execute one or 

more steps of the Refal machine in a situation where the 

expression under concretization is not completely defined, 

but contains free variables. The expressions containing 

free variables are taken, of course, from the right sides of 

the sentences; we are as if "driving" som;:: expressions from 

the right sides through the left sides in order to execute 

one step of a Refal machine in a general form -- hence the 

nickname of the operation. 

Fl. (Rule of driving) Let one of the sentences defining a 

function F be of the form: 

F.X k F Lf ~ C1 k G Ep l C2 

where Ep is a pattern expression. c1 is a left and c2 a right 

multibracket, and G is the determiner of a function which is 

defined by the sentences: 

G.l k 
1 1 

G Lg ~ Rg 

G.2 k 2 2 
G Lg ~ Rg 

. . . . . . 
G.n k G 

n n 
Lg ~ Rg 
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Using the Generalized Projecting Algorithm we find n sets 
i i of substitutions <~ 1 , ... ,~ >, i=l,2, ... ,n, which specify n r. 

intersections 1 

n 
E 

p 
n Li = u E II~~ 

g j=l p J 
i=l,2, ... ,n. 

Then we can replace the sente;.ce F. X by r 1 + r 2 
sentences of the form 

k L£ II ~~ ~ {C1 II ~~} R!j {C 2 II ~~} 

+ . • • + r 
n 

which are arranged in the order of increasing i . Here Rij 
i g 

are obtained from R through the ~eplacement of the free 

variables by those ~alues they ta~e when E II ~~ is recognized 
. p J 

as L1 • We note that if for some i the number of subclasses 

r i~ one, and substitution ~i is trivial (which means that 

En c Li) then by virtue of Rule A3, all the sentences with 
p - g ' 

greater i can be omitted. 

Proof: As a result of the application of the sentence F.X 

in the process of concretization, a term of the form 

will enter b~e view-field of the Refal machine as on•: of its 

subexpressions. Here E0 is some object expression. Until 

the concretization sign k in this term becomes active, the 

term, whatever it is, ~·.-ill net influence the work of the 

Refal machine in any way. When ~he sign k becomes active, 

~he Refal machine will start the next step by trying to 

recognize E0 first as L! , then, if recognition is impossible, 

as L~ , etc. We do not know E0 exactly, but we know that 

E0 C E , and this is something. Using the GPA to recognize 

E as p L1 we come to one of the following three cases: 
p g ' 

E c L l Fl.l. p g 
be recognized as 

, therefore every E0 belonging to EP will 

L1 . Consequently, we can, anticipating 
g 

the action of the Refal machine, replace the term k G E I in p -
F.X by the expression R11 , obtained from R1 by substituting 

g g . . th f 
the values (which are generully pattern express1ons w1 ree 
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variables from E ) assigned to the free variables in L during 
p g 

the process of projecting. 

Fl.2. EP n L~ = ¢. Recognition of E0 as L~ is impossible, 

and we proceed to th•:> second sentence. 

Fl.3. E n L1 is the union of r 1 subclasses of Ep obtained 
p g 1 

through substitutions~ .. Since the variables of E are 
J p 

defined in the left side Lf' the conditions of Theorem 3.6 ~re 

satisfied, and Lf II~~ for j = 1,2, ... ,r1 , will be nonover

lapping L-classes. Using Rules AS and A2, we transform sentence 

F.X into r 1 + 1 sentences: 

k F Lf II ~1 '* c k G E 1 c2 II ~1 1 1 p 1 
. . . . . . 

k F Lf II ~1 '* cl k G E 1 c2 II ~1 
rl p rl 

F.X k. F Lf '* c k 1 
G E 1 c2 p 

Now, since 

E II ~~ c Ll 
' for j = 1,2, ... ,r1 p J - g 

we will have case Fl.l for each of the new r 1 sentences and 

we can make the corresponding substitutions in the right sides. 

We have isolated all the subclasses of Lf for which 

any E0 belonging to Ep can be recognized as L~ , which makes 

sentence G.l applicable. Therefore, sentence F.X will be used 

now for those E0 only for which sentence G.l proved unapplic

able. Thus we can continue the transformation of sentence 

F.X ignoring G.l and ~ta=ting the step by trying to recognize 

G E as the left side of the second sentence G.2. Repeating 
p 

this procedure, we will come ultimately either to the case Fl.l, 

which ends driving, or to the end of the definition of function 

G. In the last case, the group of sentences which has resulted 

from the original sentence F.X due to driving will still haVe 

sentence F.X at the end. But it can be dropped now. Indeed, 

this sentence will be, possibly, used with the transformed 

algorithm A' for those E0 c EP only, for which no sentence 

in the original algorithm A proved applicable to concretize 
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k G Ep 1 , thus bringing the Refal machine to an abnormal stop. 

This means that whatever function has demanded this concreti

zation, its argument was out of its domain, and the transformed 

algorithm may produce any result. We have completed toe proof of 

the correctness of Rule Fl. 

Widening of the domain as a result of the use of Rule Fl 

will be shown in the following example. Let functions /Fl/ and 

/F2/ be defined by the algorithm 

F.X k/Fl/ sl sl ~ k/F2/ sl 1 
F.2 k/Fl/ el ~ e 

1 
G.l k/F2/ A~ A 

G.2 k/F2/ (el) e2 ~ el e2 

Let us drive the function call k/F2/ s 1 l in sentence F.X. 

Driving it through the first sentence G.l, we get one subclass, 

obtained by the contraction s 1 ~A. The second sentence G.2 

produces no subclasses where recognition is possible (r 2 = 0). 

As a result, we receive the following definition of the 

function /Fl/: 

F.l k/Fl/ A A ~ A 

F.2 k/Fl/ e 1 ~ e 1 

and the definition of function /F2/ is not needed any more. 

Now, according to F.l-2, function /Fl/ is defined everywhere 

on the set of expressions. According to the original definition, 

it was not defined on the set of all double symbols with the 

exception of double A. If we retained sentence F.X, we would 

derive the definition: 

F.Xl 

F.X 

F.2 

k/Fl/ A A ,. A 

k/Fl/ s 1 s 1 ,. k/F2/ s 1 1 
k/Fl/ (e1 ) e 2 ~ e 1 e 2 

which is strictly equivalent to the original, but we would 

not be able to eliminate the definition of function /F2/. 

The following rule provides a generalization of Rule Fl. 
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F2. Suppose one of the sentences describing a function F 

is of the form: 

where E is an arbitrary (general) expression. We replace in 

E every term which begins with the sign k and is not itself 

situated in the range of another sign k by a new e-variable 

different from all the others. If the sentence thus modified 

allows the application of the rule Fl under the condition 

that in all the substitutions 6~ no one of the auxiliary 
J 

e-variables is affected by contractions, then we can use Fl, 

and afterwards replace the auxiliary e-variables by the terms 

they represent and perform in these the necessary substitutions. 

'lhis rule adds more to "nonstrictness" of functional 

equivalence. Now the original function may lead for some 

arguments to the nonstop situation, while the transformed 

function will have this argument inside its cbmain. Consider 

the following example: 

1 • k/F/ ~ ,.. k/BEGPAR/ ( k/X/e1 j) 1 
2.1 k/BEGPAR/ (el) e2 ... T 

2. 2 k/BEGPAR/ ~ ,.. F 

3.1 k/ X/ * EJ. ... k/ X/ * 1 
3. 2 k/X/ e1 ,.. ~ 

We can use Rule F 2 to drive the call of function /X/ in 

the definition of function /F/. Then its definition reduces 

to one simple sentence: 

k/F/,.. T 

Since the argument of /BEGPAR/ in the original sentence 1 

will always begin with a parenthesis whatever the result of 

concretization of the function /X/ call is, sentence 2.1 

will always be used giving T as the result -- but concretiza

tion of the /BEGPAR/ call will start only after, and if, 

concretization of k/X/e1 1 has been successfully finished. 

If it is infinite, which occurs for the arguments e 1 begin

ning with an asterisk, function /F/, like function /X/ will be 
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undefined. Using Rule F2 we greatly simplify function /F/, 

but pay the price of expanding its domain. 

3.5. Iterative Usage of Driving 

The problems which can be expressed in terms of symbol 

strings or trees composed of such strings (expressions) can be 

conveniently formulated in Refal. Repeatedly using equivalent 

transformations we can find partial or complete solutions of 

such problems, the leading role being played of course by the 

rules of driving. We shall illustrate this by two examples. 

(1) The problem is: what must the string X be in order for 

the composite string ABXBX to be symmetric? 

The property of a string being symmeti~ic can be defined 

by the recursive predicate a: 

S.l a ~ T 

S.2 a sl ~ T 

S.3 a sl e2 sl ~ a e2 
S.4 a el ~ F 

No~ ~ problem can be formulated as finding all those arguments 

of the predicate a: 

A a e 1 ~ a AB e 1 B e 1 

for which it takes the value T. We shall transform sentence A 

by using rule Fl repeatedly. 

At the first step of driving sentences S.l and S.2 prove 

to be inapplicable. We proceed to project the left side of S.3 

on the expression to be driven (the notation will be the same 

as in 3. 2) • 

Et = sl e2 sl Ep = A B el B e 1 
4.1 sl := A 

Et = e2 A ' E = B el B el . p 
3.4*. (1) el -+- <empty>, E = B B X ( 1) 

p 
3.4*. (1) el -+- el A ' e2:= B el A B el 
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Recognition is attained by isolating one subclass. This gives 

us the sentence 

A.l ae 1A ~ a A B e 1 A B e 1 A 

which we insert before sentence A. By driving in A.l we 

immediately transform it into 

A.l a e 1 A~ a Be1 ABe1 

Continuing driving in sentence A we transform it into 

A a e 1 ~ F 

Translating these two sentences into English, our first 

result is: the argument e 1 must end with A. Now we drive in A.l. 

E9., = sle2sl E = Be1ABe1 p 

4.1 sl := B 

r = e2 B E = el AB el ~9., 
, 

p 

3.4*. (1) el -+ <empty>, 

E9., = e2 B E = AB 
p 

3.1*. E9., = e2 , E = 
p 

A , 

2. e2 := A 

Recognitiol, attained. We return to ( 1) • 

3.4*. ( 1) el -+ el B 

3.1*. E9., = e2 E = el BAB el p 

2. e2 := el BAB el . 

Again, recognition is attained. Thus, we have received two 

subclasses, and we insert two new sentences: 

a A ,. a BAB A.l.l 

A.l.2 a e 1 BA ,. a Be1 BAB e 1 B 

Continuing driving in A.l we transform it into 

A.l a e 1 A • F 

Using the algorithmic equivalence rule A4 with respect to 

sentences A.l and A we eliminate sentence A.l. Making 
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straightforward driving in sentences A.l.l and A.l.2 we 

receive the following description of a: 

a e 1 BA ~ a e 1 BAB e 1 
a e 1 ~ F 

If the definition of a predicate begins with a number 

of sentences whose right sides are T the left sides of these 

sentences ~efine a list of classes, which is a partial solu

tion to the problem. By now, we have obtained only one class, 

consisting of the only expression A. Driving in the second 

sentence we obtain this description of a: 

a A ~ T 

a BA ~ T 

a s 2 BA ~ T 

a s 2 e 1 s 2 BA ~ a e 1 s 2 BA s 2 e 1 
a e 1 ~ F 

We have obtained two new classes: BA and s 2 BA. One more 

driving will give additional classss s 2 s 2 BA and 

s 2 s 3 s 2 BA. This process can be carried on indefinitely. 

The set of all object expressions E0 for which concretization 

of a E0 1 gives T is not a class. It is easy to see that 

the described procedure gives the exact decomposition of this 

set into an infinite union of nonoverlapping classes. 

(2) Let us consider the function of addition of binary 

numbers defined by the following sentences: 

P.l k + ( e ) ( ) .. e 
X X 

P.2 k + ( ) ( e ) ~ e y y 

P.3 k + (exsl) (e 
y 

0) ~ k + (e ) (e ) l sl X y 

P.4 k + (e 0) (e 1) .. k + (e ) (e y> l 1 
X y X 

P.S k + (e 
X 

1) (e 
y 

1) .. k + (k + (ex> (1) l> (e ) 
y 1 0 

The predicate of equality will be defined in this way: 
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E.l k = ( ) ( ) ~ T 

E.2 

E.3 

k = (ex s 1 ) 

k = e 1 ~ F 

(e ) 1 
y 

We put the question: with the first argument of the function 

+ being 101, what must the second argument be for the sum to 

be equal to 1011 ? The predicate a which is to be transformed 

to obtain the answer to this question is defined by the sentence: 

A a ex ~ k = (k + (101) (ex) 1 ) (1011) 1 
In transforming this sentence we shall use a strategy of 

driving, which may be called from without within!*)It is this. 

In an attempt to make a simplifying transformation, we start 

with driving the subexpression delimited by the first from the 

left concretization sign in the right side of the sentence and 

the conjugated concretization point. If there are no concreti

zation signs in this subexpression, or they can be ignored 

according to Rule F2, we complete the driving according to Rule 

Fl, and this is the end of the first ~tep of transformation. If 

some of the auxiliary e-variables, fo~ed according to Rule F2, 

should be found to require contraction, we take the first of them 

and try to drive the corresponding subexpression, applying the 

same principles as in the previous attempt. Obviously, sooner 

or later we shall find a drivable subexpression: in the worst 

case it will be the one deliminated by the leading concretiza

tion sign and the conjugated concretization point. 

In our case, we first try to drive the call of the equality 

function, and find out that it is impossible because of the k-sign 

in its first argument, which is a plus function call. Therefore, 

we drive on this call. Sentence P.l is applicable with the 

contraction e ~ <empty>. This gives us the sentence 
X 

a ~ k = (101) (1011) 1 
which we immediately transform into 

a ~ F 

In transforming predicates, it is very convenient to put, 

when it is possible, the sentences with F in the right side in 

the last places of the definition, through the use of the rule 

(*) Also to be referred to as inside from outside, or outside-in 
strategy. 
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of transposition A2. Then we add at the end of the sentence 

a e '* F 
X 

by virtue of Rule Al, and eliminate the F sentences by using 

Rule A4. In our case all new sentences will be transposable, 

so we shall keep track only of the sentences with the right 

side different from F. 

Sentence P.2 proves to be inapplicable. Sentence P.3 

generates the sentence 

a ex 0 '* k = (k + (10) (ex) 1 1) (1011) 1 
Using the strategy from without within for this sentence, we 

drive the equality function call, which gives: 

A.l a ex 0 '* k = (k + (10) (ex) 1> (101) 1 
Continuing the driving of the initial sentence A, we find 

sentence P.4 inapplicable, and sentence P.S gives 

a ex 1 '* k = (k + (k + (10) (1) 1 ) (ex) 1 0) (1011) 1 
Again, driving i"t inside from outside we obtain: 

a ex 1 '* F 

and lose interest in it. 

Thus, we have obtained only one sentence A.l for further 

transformation. In fact, we have performed the first step of 

the usual algorithm of subtraction from right to left. Our 

general strategy formulated in terms of Refal notions produced 

a familiar algorithm in this particular case. If we continue 

the transformation, we finally get: 

a 110 '* T 

a 0110 ,. T 

a e '* F 
X 

which gives a complete formal answer to the problem in clear 

form. 

It is worth noting that we derived two solutions instead 

of one, because we did not introduce the equivalence of numbers 

which differ by leading zeros. As the problem is defined, 

there are exactly two solutions. The number 00110 if added to 

101 gives 01011, not 1011 • 
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CHAPTER 4. COMPILATION PROCESS 

4.1. Formulation of the Problem 

vfuat does it mean to define the semantics of an algo

rithmic language? The most direct definition is the interpre

tive one: to construct a machine which upon receiving a text 

(program) written in that language and a work object (the set 

of data the program is to be applied to), would execute the 

program, step by step, according to the algorithmic intention 

of its author. Thus, a metalanguage to define (semantically) 

algorithmic languages should formally describe machines, i.e. 

algorithms, which is to say that it must again be an algorithmic 

language. The language Refal -.;as designed as such a language 

which is both algorithmic and a metalanguage to deal with algo

rithms. Now we shall look into how a programming system employ

ing Refal as the means to introduce new algorithmic languages 

might work. 

Let A be an algorithm written in a certain language, 

and E a work object. To define the language we define in Refal 

a recursive function with a determiner L (identifying the 

language) in such a way that the process of concretizing the 

expression 

(1) k L A (E) 1 
could be seen as (or, will model) the application of the 

algorithm A to the object E. In particular, the result of the 

concretization (when it exists) should be the result of the 

use of A on E. In programming terms, the program A is 

interpreted here, thus the function L will be called 

the interpreting function of the language. Since Refal allows 

the use of any object signs, there is no restriction on the 

composition of program A and work object E: the algorithmic 

language to be defined is allowed to use any characters differ

ent from those depicting the specific signs of Refal. We might 
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consider A and E as arbitrary strings of object signs, but 

nothing prevents us from introducing Refal parentheses into 

these strings, thus making them generally object exp~essions. 

If the object language uses parentheses in the way they are 

usually used (to create trees), it is convenient 

to identify them with the structure brackets in Refal. 

When defining a language through its interpreting 

function, we do not give an explicit definition of the set of 

correct (legitimate) texts in that language. Instead, it is 

natural to introduce the following definition: a pair of 

expressions A and E is called a co~~ect text-object pai~ in 

language L , if concretization of (1) does not lead to an 

abnormal stop of the Refal machine (note: a nonstop situation 

is allowed). Now the set of correct texts A may be defined as: 

a text A is correct if the set of those work objects E that make 

a correct pair with A is not empty. If we have an independent 

definition of the set of correct work objects then we can give 

an alternative definition of the correct text: a text is correct 

if it makes a correct pair with any correct work object. 

So, we have a formal description of the algorithmic lang

uage L through its interpreting function. How do we use it? 

If we have a computer implementation of the Refal ma~hine 

(an interpreter or a semicompiler) , we can use the language L 
in the following manner. Each time that we have to execute an 

algorithm A written in L, the expression to apply this algorithm 

to being E, we form the working expression (1) in the view

field of the Refal machine and start it into action. l~e will 

obtain the desired result in this way, but understandably this 

is not an efficient way to use a programming language systemati

cally, because this is an interpretation mode. Can we improve 

the efficiency by turning to a compilation mode? What is compila

tion? 

Let us examine it in a very simple example of a language 

with the interpreting function /L/ defined by the following 

sentences: 
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L.l k/L/ e 1 ; e 2 (ea) ~ k/L/e 2 (k/Ll/e1 (ea) 1) 1 
L.2 k/L/ e 1 (ea) ~ k/Ll/ e 1 (ea) 1 
Ll.l k/Ll/CROSS(s1 e 2 ) (s 3 e 4 ) ~ s 1s 2 k/Ll/CROSS(e1 ) (e2 ) _l 

Ll.3 

Here the first sentence indicates that a text in the 

language /L/ may be formed as a sequence of instructions 

separated by semicolons, and the instructions are executed 

from left to right, being applied each time to the result of 

the execution of the preceding instruction. Function /Ll/ 

defines the execution of separated instructions. There are 

only two kinds of instructions: CROSS and ADD. Instruction 

CROSS(P) "crosses" the work object with the word P by putting 

their symbols in alternation until one of the words is 

exhausted (we assume that the objects which the language /L/ 

deals with are strings of symbols). Instruction ADD(P) adds 

the word P at the end of the work object e . Here is an a 
example of a program: 

CROSS(CAT); ADD(DOG) 

In order to execute it on the word LION as the work object (input 

data), we put into the view-field of the Refal machine: 

k /L/ CROSS(CAT); ADD(DOG) (LION) 1 
The concretization of this expression gives: 

CLAITONDOG 

Now suppose we have some object machine M0 , and we want 

to translate our program into the language of M0 • Let M0 have 

two fields, referred to as object and result in which the 

object and the result of work are stored and gradually trans

formed, and let it be able to perform certain simple operations, 

which we will describe in English. What do we do to translate 

the program on the basis of the interpreting function /L/ 

defined in Refal? We analyze the process of interpretation 
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of this program with some general, not exactly specified input 

data, and describe the operation of the Refal machine in the 
0 language understandable by M . Chapter 3 of the present work 

provides us with the necessary apparatus. We imagine that the 

following expression is put in the view-field of the Refal 

machine: 

k /L/ CROSS(CAT) ADD(OOG) (ex) 1 
(which is, of course, impossible literally and must be under

stood as a set of view-fields) and use the rules of driving to 

follow the process of concretization. Since we defined driving 

for the strict Refal only, we should rewrite the definition of 

/L/ in the corresponding way: 

L. k/L/ e => k /LL/ e 1 X X 

LL.l k/LL/ (e1 ) ; e 2 (ea) => k/L/e2 (k/Ll/e1 (ea) 1 ) 1 
LL.2 k/LL/(e 1 )sx e 2 (ea) => k/LL/ (e1 sx) e2(ea) 

LL.3 k/LL/ ( e 1 ) (ea) => k/Ll/ e 1 (ea) 1 
(The definition of /Ll/ remains unchanged.) 

A number of initial steps of the Refal machine is done 

without contractions of free variables, i.e. with any input 

data. This is the part of the job which is performed once 

and forever at compilation time. Then we receive the 

following view-field: 

k /L/ ADD(DOG) (k /Ll/ CROSS(CAT) (ex) 1) 1 
Contraction ex ~ siex is needed here according to Rule Fl, 

which means that a conditional statement depending on unknown 

input data must be added to the program for M0 . Proceeding 

in this manner, we compile the following object program: 

1. Object assumes its input value, result becomes empty. 

2. If object begins with a symbol s 1 , it is deleted, 

and cs1 is added to result, otherwise result becomes CATDOG, 

and go to End. 

3. If object begins with a symbol s 2 , it is deleted, 

and As 2 is added to result otherwise ATDOG is added to result, 

and go to End. 
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4. If object begins with s 3 , and the rest is e 4 , 

then Ts 3 e 4 DOG is added to Pesult, otherwise T object DOG 

is added to Pesult. (*) 

5. End. 

In the general case of a language L and an algorithm A in 

that language, the expression 

(2) 

must be driven through the Refal machine, and the goal of the 

theory of compilation is to examine this process and describe 

the operations performed on the argument e in the language 
X 

of the object machine M0 . If this theory were to be elaborated 

bearing in mind one definite language L, that is drawing upon 

its specific features, then the theory would result in an 

algorithm of compilation from this language L. But we shall 

not bear in mind any specific language, of course. As in deal

ing with equivalent transformations, the theory should be applic

able to any texts in Refal, and therefore, the goal of the 

theory is to design one univePsal algoPithm to compile from 

any language, had its interpreting functions been defined in 

Refal. This algorithm may have variations, though. In particular, 

it must vary from one object machine M0 to another. 

The object machine s~ould have facilities for symbol 

manipulation, since this is what the Refal machine is doing. 

In addition, it may have any specific opeations, however 

complicated, and these may be even undefinable in Refal, such 

as generation of a random number. The only requirement is that 

the universal compiler (supePcompileP) could recognize the 

corresponding Refal expressions as external function calls, 

and translate them into the standard notation for M0 . 

In particular, M0 rnay be the Refal machine. Then as the 

result of compilation we get a program in Refal again! The 

T*) In fact, both alternatives in this statement lead to the same 
result, but to discover it one has ·to use Rule A4, not just 
Rule Fl. 
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expression (2) can be introduced as the right side of the 

sentence defining a new function: 

a ex ~ k L A (ex) J 
Then compilation amounts to an equivalent transformation of 

this function, or more exactly, the theory of compilation 

provides a new class of equivalent transformations, which cannot 

result from simple application of the rules described in 

Chanter 3. 

In our case: 

a ex~ k /L/ CROSS(CAT); ADD(DOG) (ex) j 

As the result of compilation (which in this particular case 

is nothing more than an iterative application of Rule Fl and 

algorithmic equivalency rules) we get 

a e 
X 

~ C s 1 A T ex DOG 

~ CAT ex DOG 

This definition is shorter and is executed much faster 

than the original definition using function /L/. Thus, optimi

zation is one of the aspects of the theory of compilation. 

In the expression (2), metasymbol A represents some 

definite expression, therefore the argument of the function 

L is partially (but not completely, because of the variable e ) 
X 

specified. The problem to be solved by the theory of compilation 

is to eliminate the redundancy of the general definition 

of the function L in the circumstances when we need it only 

in a specific context. From this formulation, one can see 

that the structure of the expression (2) has actually no signi

ficance; the only important thing is that it is more specific 

than the general format of the function L. Also, it is of 

no significance that function L has been introduced as the 

interpreting function of a language; it may have any meaning. 

Removing these preconditions, we get the most general formula

tion of the problem. 
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The method of solving this problem may be described 

(informally, for the time being) in this way. Let there be 

an algorithm given, and a general expression in the view-field 

of the Refal machine. We consider this expression as a 

generalized state of the ~fal machine, and map the generalized 

states of the Refal machine onto the generalized states of the 

b . h" 0 h o Ject mac 1ne M • W en we execute each next step of 

the Refal machine, its state changes, which generates a 

graph of states. We shall trace this group and model it on M0 . 

That is, compile such a program for M0 , that if the Refal 

machine and the machine M0 with corresponding initial states 

work in parallel, then their states will remain corresponding. 

4.2. Graph of States. 

The workable expression in the view-field of the Refal 

machine will be called its exact state, for it uniquely deter

mines all the consequent states of the Refal machine (recall 

that we use strict Refal, so that digging and burying are not 

allowed). A set of exact states will be called a generalized 

state. Our main concept 

will be a configuration, 

expressions produced when 

in describing generalized states 

by which we mean a set of workable 

the free variables of a general 

Refal expression assume some values. Thus a configuration 

is defined by (or as) a general expression. If the free vari

ables in this expression may assume all syntactically permitted 

values, we refer to the resulting generalized state as a fuZZ 

or unrestricted configuration; if the values of the free 

variables are somewhow IEstricted, we call this state a 

restricted configuration. 

The dynamics of the Refal machine with a given memory field 

may be represented by its graph of states, which is essentially 

a graph of configurations. The vertices of this graph repre

sent generalized states of the Refal machine, and the arcs 

(directed edges) represent basic relations between them. There 
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are three types of arcs, which we shall be introducing in 

the course of exposition. The first type is a dynamia ara, 

which depicts a possible transition from one generalized 

state to another resulting from one or more steps of the 

Refal machine. The condition when the transition occurs will 

be indicated on the arc as a contraction of free variables in 

the original configuration. The contractions on the dynamic 

arcs of the graph of states are essentially the left sides 

of Refal sentences. To model the Refal machine with the help 

of a graph of states, we apply the contractions to specific 

values of free variables in exactly the same way as we are 

applying left sides. For example, the contraction 

e 1 -+ s2 e 1 

is not only a conditional statement, which determines 

not the vruue of e 1 starts with a symbol, but it also 

this symbol to s 2 and redefines e 1 correspondingly. 

tions on the arcs in a graph serve as definitions of 

ables appearing in the subsequent states. 

The dynamic arcs outgoing from tre same ~ rtex 

whether or 

assigns 

Contrac-

new vari-

are ordered in conformity with the use b:r the Refru machine 

of different sentences. ve S1 all picture dynamic arcs by more 

or less horizontal solid lires in the order from top to bottom. 

'!he states will be numbered, and for each number the corresponding 

configuration will be gi\en in the list of~ onfigurations 

accompanying the graph. 

A ~onfiguration may be either aative, if it includes at 

lea~ one concretization sign k, or passive, if this is not the 

case. Acti~ configurations will be depicted as circles, and 

passive as squares, with the number of state inside. 

There will be two standard designations: 

D and 

representing the empty configuration and the state recognition 

impossibZe of the Refal machine. Each graph of states will 
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have as a starting point a fuZZ configuration; the correspond

ing state will be called the start of the graph. During the 

construction of the graph of states, we will be applying the 

rules of driving to some configurations, thereby exploring 

their evolution in time. These configurations (more precisely, 

the corresponding vertices, i.e. the states) will be referred 

to as explored, and the others as unexplored, these notions 

being applicable of course only to active configurations. 

The formal indication that a vertex is explored is the presence 

of at least one outgoing dynamic arc. If it is found for 

this configuration that the recognition is impossible, we use 

a dynamic arc leading to vertex [1] as mentioned above. 

A finite graph of states without unexplored vertices 

will be called aompZete. 

Theorem 4.1. Let S be the start configuration of a 

complete graph of states G. Then for every exact state from 

S we can find all the subesquent states of the Refal machine 

using only graph G. 

At the present time we are proving this theorem for the 

case when graph G consists only of vertices and dynamic arcs, 

and we shall complete the demonstration later. Replace free 

variables in the start configuration by their values. We shall 

be able to choose uniquely one of the dynamic arcs which 

originate from the start, or else establish that recognition 

is impossible. In the former case we come to the next exact 

state. If it is passive this is a normal stop of the Refal 

machine, if it is active it is explored, and we continue to 

apply the same procedure. 

Our goal in the theory of compliation is to know how to 

construct complete graphs of states. Let us start with examin

ing this process on the following example. The algorithm in 

the memory-field is: 

a e1 • 6( ) e1 
B (e1 ) /PLUS/ e 2 • 8(e1 +) e 2 

B (e1 ) s 2e 3 • 8(e1 s 2 > e 3 

B (e1 ) • e 1 
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And the initial configuration is 

(1) a A /PLUS/ e 1 /PLUS/ B l 
Executing three steps of driving we get the following 

graph (Figure 1): 

Figure 1 

with the configurations: 

(2) 

( 3) 

( 4) 

B( ) A /PLUS/ e 1 /PLUS/ B 1 
B(A) /PLUS/ e 1 /PLUS/ B 1 
8(A+) e 1 /PLUS/ B 1 

The vertices from which only one dynamic arc without 

contractions originates, such as 2 and 3 in Figure 1, will 

be called transitory. A transitory vertex different from the 

start vertex (this restriction is to avoid confusion with the 

identification of the initial state) may be removed from the 

graph of states. We shall remove transitory vertices in this 

example, and will do so later on, if the opposite is not 

explicitly stated. 

A straightforward application of Rule Fl to our graph 

transforms it into Figure 2. 

e 1 -+ <empty> 

e 1 -+ <empty> 

Figure 2 
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The list of new configurations is: 

( 5) A + + B 

( 6) 8 (A + + el /PLUS/ B 1 
( 7) B (A + 52) el /PLUS/ B 1 

The third arc outgoing from state 4 will never be used, 

because it is screened by the first arc with the same contrac

tion. To see more clearly how the graph of states transforma

tions correlate with equivalent transformations of Refal 

programs as formulated in Chapter 3, we shall at this point 

start outlining the procedu~e of mapping the graph on the 

Refal machine. 

Each configuration of the source Refal machine M5 will 

be mapped on a configuration of the object Refal machine M0 , 

which has the special form: 

where n is the sequence number of the configuration, m is the 

number of (different) free variables, and V. are these 
1 

free variables. en stands for an active, and Pn for a passive 

configuration. While a configuration is yet unexplored, its 

definition in Refal will consist of one sentence, the left 

side of which is its notation in M0 terms and the right side 

is the defining expression in M5 terms. For instance, the 

starting point in our case is: 

k c1 (e1 ) ~ a A /PLUS/ e 1 /PLUS/ B 1 
Performing driving, we first of all express the right side 

of the sentence in terms of M0 configurations. As a result, the 

sentences de~ining an explored configuration will have both 

sides expressed in M0 terms, thus representing not a condition 
s 0 

of correspondence between the states of M and M , but a dynamic 

transformation taking place inside M0 • When there are no 

unexplored configurations (a complete graph), we get a completed 
0 program for M • 
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The stage of work represented in Figure 1 corresponds to 

the following program 

k c 1 {e1 ) ~ k c 4 (e1 ) 1 
k c4 {e1 ) ~ B {A +) e 1 /PLUS/ B 1 

At the stage of Figure 2 we get: 

C4.1 

C4.3 

k c 1 {e1 ) ~ k c 4 <e1 ) 1 
k c4 < ) ~ k Ps 1 

/PLUS/ e 1 ) ~ k c6 {e1 ) 1 
~ k Ps 1 

~A+ + B 

k c6 (e1 ) ~ B{A + +) e 1 /PLUS/ B 1 
k c7 {e1 ) {s 2 ) ~ S {A + s 2 ) e 1 /PLUS/ B 1 

We want to make the object code in Refal as efficient 

as possible, so before continuing exploration we will drive 

configuration c 4 in the definition of c 1 , thus eliminating c 4 

altogether. First, this reduces by one the number of steps 

necessary to co cretize c 1 ; second, this has some additional 

implications, which will be discussed later. Also we simplify 

the definition of c 4 using the rule of screening {A3) to C4.3 

and 

get 

{8) 

{ 9) 

( 10) 

C4.1 to eliminate C4.3. 

k cl { ) ~ k Ps 1 
k c 1 {/PLUS/ e 1 ) .. k c6 {el) 1 
k 

1 C {s 2 e 1 ) ~ k c7 {el) {s 2) 1 

If we execute one more step of driving in Figure 2 

the graph in Figure 3, with the new configurations: 

A + + + B 

8{A + + +) e 1 /PLUS/ B 1 
8{A + + s 3 ) e 1 /PLUS/ B 1 
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( 11) 

(12) 

( 13) 

A + s 2 + B 

8(A + s 2 +) e 1 /PLUS/ B 1 
B(A + s 2 s 3 ) e 1 /PLUS/ B 1 

e1-+ <empty> 

e1-+ /PLUS/ 

e 1 -+ /PLUS/el e1 -+ s3 e1 

e1 -+ <empty> 

e1 

e1 -+ /PLUS/ e 1 

e1 -+ s3 e1 

Figure 3 

Mapping this graph onto the object Refa1 machine M0 , 

we again perform "M0 to Mo .. driving. Configurations c 6 and 

disappear, and we receive: 

k c1 ( ) ~ k cs 1 
k c1 (/PLUS/) ~ k p8 1 
k c 1 (/PLUS/ /PLUS/e1 ) ~ k c9 (e1) 1 
k c 1 (/PLUS/ s 3 e1) k 10 1 ~ C (e1 ) (s 3 ) 

k 
1 

k P11 (s2) l C (s 2 ) ~ 

k 
1 

k c12 (e1) (s 2) 1 C (s 2/PLUS/ e 1 ) ~ 

k 
1 

~ k c13 (e1) ( s 2) (s 3) C (s 2 s 3 e 1 ) 
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There are as many sentences here as there are paths on 

the graph, which start from c1 and end at an unexplored or 

passive configuration. The left side of each sentence is the 

composition of the contractions which appear on all arcs of 

the corresponding path. 

It is easy to see that we can proceed in this way ad 

infinitum. But we need a complete graph, which is, first of 

all, finite. To accomplish this, we shall use the method of 

generalization. Comparing all active configurations in our 

graph we perceive that with the exception of c1 , all are 

of the form 

B (E) e 1 /PLUS/ B 1 
where E is different for different configuration expres

sions. Let us introduce a generalizing configuration 

that is such a configuration that all the others could be 

produced from it by substitution. For instance, c12 can be 

produced from this configuration by the substitution e 2~ A+s 2+. 

Note that there is a great deal of arbitrariness in this choice. 

There is always the possibility of taking B ex 1 as a generali

zation. But because of the reason to be presented later, too 

"sweeping" a generalization does not lead to efficient pro

grams. On the other hand, there is a more specific configuration 

in our case, which could also be taken as a generalization, 

namely, 

B (A + e 2 ) e 1 /PLUS/ B 1 
but the first configuration is easier to discover and it leads to 

the same result with respect to efficiency. 

Now we represent configuration c4 as a special case of c14 , 

i.e. configuration c14 where variable e 2 has taken the value A+. 

On the graph of states, we shall draw a representation arc, 

depicted by dashes, from c4 to c14 (see Figure 4). The substitu

tion expressing the values of the new configuration through the 

values of the original will be indicated as an assignment 
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statement on the arc. But instead of the usual form 

e := E 
X 

we used earlier, we shall write this assignment in the form 

E +- e 
X 

This fornl, which may seem strange at first glance, is in fact 

very natural and convenient in the analysis of graphs of 

states and permits better understanding of the relationship 

between the contraction and the assignment. This notation 

is a part of a consistent system of notation, based on the 

following principles: 

(1) In writing a substitution we always use an arrow 

which is directed from the variable to be replaced to the 

substitutins expression. 

(2) Seen another way, a substitution may reflect a 

relationship beb1een two groups of variables: those of the first 

group are old variables, i.e. they are already defined (have 

values), those of the second group are new, i.e. they get 

defined by the substitution. We shall always put the old 

valicbles on the left and the new on the right of the 

substitution formula. Tl~us two types of substitution ene rge, 

contractions and assignments, as presented in the following 

scheme: 

Con traction 

Assigmnent 

Old variables 
(already de fined) 

v 

f 

New Variables 
(being defined) 

L 

v 

W1-: re L is an L-a xpression incluuin g (possibly) new variables, 

and E is any expression, ,.,hich may include old variables; 

V is a single variable. 

(3) In the notation of substitution, the variable which 

is to be ~placed and the expression in ~ich the replacement 

must be performed make a pair separated by the substitution 

sign I I , and the arrm1 points to the substituted expression. 
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We have already used one form: 

E II V-+ E' 

The other form, completely equivalent from a syntactical point 

of view, is 

E' +- V II E 

(4) When we construct a graph of states we move from 

left to right defining new variables. Therefore the lists of 

both contractions and assignments will be lengthened (and read) 

from left to right. But because of the different directions 

of the substitution arrows, the law of composition of substitu 

tions will be different for contractions and assignments, 

although equally easily suggested by our representation: 

(V -+ L 1) ( v -+ L 2) = v -+ (Ll II v -+ L 2) 

(El +- V) (E2 +- V) = (El +- v II E2) +- v 

A variable like e 2 in Figure 4, which is introduced by 

an assignment statement, will be called a genePalization vaPi

abZe. When we model the concretization process using the 

graph of states, all generalization variables will take definite 

values expressed in terms of the values of free variables and 

constant expressions. But in the process of exploration 

(when constructing the graph) we treat them as if they were 

free: hence generalization. 

So, when we derive, for the first time in the process of 

driving, configuration (4), we come over to configuration (14) 

(see Figure 4 below). This procedure will be called submission: 

we will say that we submitted c4 to c14 . Then we continue to 

drive c14 , and find out that the two active configurations we 
15 16 

receive on the next step, C and C , also can be submitted 

to c14 , thus making the graph in Figure 4 complete: there are 

no unexplored states any more.(*) 

(*) Somet1'mes h 11 11 we s a use a sma square D instead of 

<empty>. 
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Figure 4 

( 15) e2 + B 

(16) 8(e 2 +) e 1 /PLUS/ B 1 
( 1 7) 8(e2 s 3) e 1 /PLUS/ B 1 

Mapping this graph on the object 

returning to passive configurations 

natural form, we derive: 

1 k c (e1 ) 

k cl4 (e2) 

k c14 (e2) 

k cl4 (e2) 

( ) 

(/PLUS/e1 ) 

(s3el) 

in 

~ 

~ 

~ 

~ 

Refal machine and 

the final result their 

k cl4 (A+) (el) l. 
e 2 + B 

k c 14 (e +) (el) 1 
14 2 

k c (e 2s 3 ) (el) 1 
Hurrah! We have brought our first process of compilation 

to a successful end. Let us evaluate the result. It is fairly 

good. In the original program, the string to be processed 

consisted of three parts: A /PLUS/ was the first, e 1 the 

second, and /PLUS/ B the third. Only the second, middle 

part was unknmm; the other two (which might have been much 

longer, of course) could be processed beforehand in order to 

optimize the algorithm. This is just what the compilation has 

accompliseed. The new algorithm stores the processed first part, 

then processes the unknown part, and upon completion, adds on 

at the end the processed third part. The algorithm of proces

sing the unknown part is exactly the same (disregarding format 

differences) as the original one. 

Let us consider another example. This is the program: 
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cp ,. 

cp el 52 
,. ljJ cp el 11 

ljJ el 
,. 

and this is the initial configuration: 

{1) 

After several steps of driving we come to the graph of 

states shown in Figure 5: 

{1) 

{ 2) 

{ 3) 

{ 4) 

el -+ 0 

e -+ 0 
el -+ els2 

ljJ cpel 11 
el -+ els3 

1jJ ljJ cp el 111 
ljJ ljJ ljJ cp el 1111 
ljJ ljJ ljJ ljJ cp el 11111 

Figure 5 

el -+ 0 

el -+ els4 

Obviously, this graph can be continued endlessly, and 

it cannot be made finite by submission of configurations {2), 

{3), etc., to a generalization: there is no generalizing 

configuration of these configurations, because they have 

different numbers of concretization signs. To represent such 

situations on the graph of states we introduce the third 

{and the last) type of arc: a composition a~c, which will be 

depicted by a vertical "wavy" line. Using this device we 

construct a graph of states shown in Figure 6: 

{1) 

{ 2) 

{ 3) 

0-

Figure 6 
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Now, with the introduction of composition arcs, the full state 

of the Refal machine (exact or. generalized) is character-

ized not by a single vertex, but, generally, by a vertical row 

of vertices connected by composition lines. When we proceed to 

explore the lower (internal) configuration, the upper (external) 

one does not go anywhere: it stays put. It is only for the 

sake of convenience that we do not represent external parts 

in trailing the fate of the internal parts, and this becomes 

possible because the external part remains unchanged (except 

for possible contractions) until the transformation of the 

internal part is completed. So, the graph shown in Figure 7a 

stands actually for what is depicted in Figure 7b (both graphs 

are showh schematically) • 

(a) (b) 

Figure 7 

Note that unlike external parts, all the internal parts of a 

configuration do participate in the transformations, therefore 

when an upper vertex is explored, the lower part disappears, 

as can be seen in Figure 7b: transitions c5 to c7 and c5 to P9 • 
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Like two other types of arc, a co~position arc represents 

a substitution, but this time it is the substution of the 

Pesult of concPetization, for the computed vaPiable of the tail

vertex indicated at the arc (e in Figure 6). Computed vari-x 
ables are absent in the original configuration. When we decompose 

configuration (1) in Figure 6 into the composition of (2) and (3), 

we introduce a variable, e , which, like a generalization variable, 
X 

is not fPee to assume any syntactically allowed value: its value 

will be uniquely determined by the values of free variables in 

(3) after the concretization of (3) is performed. But when we 

explore tl1e extePnal (tail vertex) configuration, we treat the 

computed variable as if it were free. This is why decomposition 

is also a type of generalization -- the external configuration 

represents a wider set of exact states than the set of those 

states which are actually possible at that moment. Generaliza

tion variables and computed variables will be referred to as 

Pedundant variables. 

We had no choice as to how to decompose configuration (1) 

into two configurations, because it contained only two concreti

zation signs. In the general case, when there are more than two 

concretization signs, there is some freedom in selecting the 

intePnal configuration, in other words, the subexpression to 

be driven first. The most reasonable way is to use the 

fPom without within strategy mentioned in Section 3.5. After 

the selected subexpression has been replaced by a computed vari

able, the external configuration may again be decomposed in two, 

using the same startegy. Another possibility is always to 

select for driving the subexpression beginning with the leading 

sign k. 

Now we can complete the proof of Theorem 4.1. The rules 

of construction of representational and compositional arcs, like 

those of dynamic arcs, are such that the variables in the 

head-vertex of a representation arc assume unique values if the 

variables of the tail-vertex have taken definite values, and 

the noncomputed variables in both ends of a composition arc 

assume unique values if the variables of the tail-vertex of the 
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preceding dynamic or representation arc have taken definite 

values. 

The dynamic transition from a generalized state which 

is not at the bottom of a vertical segment is, normally, condi

tional, depending on the value of the computed variable. When 

we model the Refal machine with the help of the graph of states, 

we will face the problem of making this conditional jump only 

after the lower part of the segment has been concretized, and 

therefore the computed variable has taken on a definite value. 

Hence, dynamic transitions will be as unique in the case of 

full states represented by vertical segments as they are with 

full states represented by single vertcies. Thus, at every 

step of the Refal machine we will know its exact state, which 

completes the proof. 

4.3. Clean Graphs 

Let us sum up what the graph of states is. 

--The vertices of a graph of states are (generalized) states 

of the Refal machine, but not every possible state of the Refal 

machine may be represented by a single vertex. Generally, a 

state of the Refal machine is a vertical segment, i.e. a 

sequence of vertcies connected by composition arcs. 

--with each vertex a configuration is associated, which is, 

generally, restricted in accordance with the location of the 

vertex in the graph. Each vertex is identified by its number. 

More than one vertex may be characterized by the same configura

tion. 

-~enerally, a graph of states is not a tree, but it is 

convenient to represent it as a tree, some terminal vertcies 

of which may be identical to (have the same number as) a non

terminal (explored) vertex. We assume now that the graph of 

states will always be represented in the form of a tree(even if 

it is pictured with loops), because this simplifies dealing 

with graphs. We shall call a path in a graph a sequence 

v 1A1V2A2 ••• vk-lAk-lvk , whose terms are alternately vertcies 
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V. and arcs A. 
1 1 

such that k > 1 and for 1 < i < k the arc A. 
1 

leads from v. to v. 1 , 
1 1+ 

and all the vertices are distinct from 

each other. 

--There are arcs of three types in the graph of state~. 

Dynamic and representation arcs will be occasionally called 

horizontal, as opposed to vertical composition arcs. vertices 

may be called active or passive, corresponding to the configura

tion they belong to. From an active vertex either one represen

tation arc or several dynamic arcs must originate. Dynamic arcs 

are ordered. From a passive vertex no horizontal arcs may origi-
.I 

nate. Independently of horizontal arcs, one vertical arc may 

or may not originate from a vertex. In a vertical segment, a 

horizontal arc may lead only to its topmost vertex. 

--Dynamic arcs bear contractions, representation arcs bear 

assignments. Assignments are, at the same time, generalizations. 

Let assignment E ~ V be borne by an arc leading from en to em. 

Then variable V in em has the full scope of values, i.e. repre

sents the set of all syntactically allowed values. Those 

variables which are not indicated in the right side of one of 

the assignments have the same meaning as in the preceding con

figuration. Contractions and assignments define new variables 

or redefine old ones. The variables defined by assignments will 

be referred to as Jeneralization variables. A computed vari

able is defined in a vertex if it is borne by the composition arc 

originating from this vertex. When this configuration gets 

explored, the computed variable is treated as a free variable 

having its full scope of values. Free variables appearing in 

the staj~configuration are, ipso facto, defined, and have their 

full scopes of values. Only those variables may appear in a con

figuration which have been in some of these ways defined on the 

path from the start to this configuration. 

--An active vertex is explored, if on the path from it to 

a terninal (in the tree representation) vertex there is at least 

one dynamic arc. A graph is complete if all terminal vertices 

are either passive or identical to one of the explored vertices. 
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We shall introduce now several new definitions. Input 

vaPiables in a graph of states are the free variables of the 

sbut configuration. Input variables, generalization variables 

and computed variables will be referred to as quasiinput 

vaPiabler,. An exact quasiinput state is specified when a 

value of each quasiinput variable is specified. A quas&

input set is a set of exact quasiinput states. In particular, 

a quasiinput set may be a quasiin?ut class; it is specified 

when contractions (possibly trivial) are specified for each 

quasiinput variable. A quasiinput class can be represented 

by a single pattern expression if we choose a way of combining 

contractions for all the variables into one expressi~n. We 

shall write a quasiinput class for the case of n ordered 

quasiinput variahles in the form 

where L. are the right sides of contractions for the variables. 
1 

To each exact 0uasiinput state a tePminal path (that is 

a path ending with a terminal vertex) corresponds: the one 

taken by the Refal machine if the quasiinput variables are 

assigned corresponding values. We shall say that the exact 

quasinput state takes this path and all its subpaths (paths 

which are parts of the terminal path) . To each path in the 

graph a quasiinput set corresponds which comprises all exact 

quasiinput states taking this path. The same set corresponds 

to the vertex which ends this path. A path is called feasible 

if the corresponding quasiinput set is not enpty, otherwise 

it is unfeasible. A graph in which there are no unfeasible paths

will be called clean. 

To refer to a specific path in a graph of states, we shall 

represent it as a sequence of vertex numbers, separated by 

the following sym.'Jols: a comma "," representing a dynamic arc; 

an equality sign "=" representing a representation arc; a 

bracket"[" representing a composition arc. If different dynamic 

arcs lead to vertices characterized by the same configuration 

(or just to draw attention to a specific ar~) , we may indicate 

the arc by placing the contraction borne by it in parentheses 

before the corresponding comma, e.g. 6(e ~ T), 8 • 
y 
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------~ 

------->0 
------~ 

Figure 8 

In Figure 8 the path leading to vertex 11 is 1 = 2, 

4 = 6 [7, 11 . In configuration (11) the following variables 

may appear: e 1 and sf as input variables, indicated, to make 

it clear, at the start vertex (1); e 2 defined as a generali

zation variable at the path 1 = 2 and redefined at 4 = 6; s a 
defined by the contraction on the path 2, 4. Input variable e 1 
is subject to two contractions, and we can combine them into 

one contraction: e 1 ~ sasfe1 . This is possible because between 

the two contractions there is no redefinition of e 1 • If the 

arc 4 = 6 bore assignment (e 2 )sa ~ e 1 , it would give back 

to e 1 its fully generality, and the contraction for e 1 at 

vertex 11 would be simply e 1 ~ sfe1 • 

We shall join input variables into a composite expression 

as shown in the argument of configuration c1 in Figure 8 adding 

newly defined redundant variables in the order of their 

appearance. What is the quasiinput set corresponding to the 

path leading to vettex 11 ? It may seem at first glance that 

it is the class ( sasfel) (sf) (e 2 ) • In fact, it is a subset of 



this class, because of the restriction on the variable s a 
resulting from the position of vertex 4 in the graph: s should a 
be distinct from A, otherwise arc 2,3 will be chosen by the 

Refal machine. Thus, configuration (4) is an example of a 

restricted configuration. Restrictions on variables may produce 

unfeasible paths if they are noc taken into account during the 

process of graph construction. In Figure 8 the path leading to 

vertex 9 is feasible, but adding to it arc 9, 10 we get an 

unfeasible path: contraction s + A is impossible because of 

the above-mentioned restriction. Consider configuration (5). 

It is also restricted. Variable e 1 cannot. begin \vith a symbol. 

This fact may be taken into account in drawing arcs originating 

from vertex 5. There is no arc corresponding to the impossible 

contraction, and at the vertex 14 the only possible value for e 1 
is <empty>, which should be reflected in treating vertex 14, 

to simplify the graph. 

Now let us discuss, using Figure 8 as an example, the 

problems we encounter trying to submit a new configuration to 

an already existing one. Suppose we try to submit vertex 11 

to vertex 5, as shown in the figure. We must answer two ques

tions. The first is: if we consider configurations correspond

ing to vertices 11 and 5 as full configurations, is it true that 

configuration 5 is more (or equally) general than 11 ? To 

answer this question we have to find out whether there exists 

a substitution which changes configuration 5, being applied to it, 

to configuration 11. This is a more special problem than that 

for which the Generalized Projecting Algorithm was designed. 

We do not need to find intersections; we only \vant to know 

whether one patterh expression can be recognized as the other. 

The algorithm for this problem is applicable to any pair of 

pattern expressions and is an obvious generalization of the 

projecting algorithm in Section 2.2, in which one allows free 

variables in an "object" expression and treats them as unknown 

wholes. 
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If we found configuration (5) to be no less general than 

(11), we must answer the second question: are not the restric

tions on the variables in the earlier vertex more severe than 

the restirctions at the current point? From this point of view, 

we should not unconditionally submit vertex 11 to vertex 5, 

because the variable e 1 as redefined at 11 may have its full 

scope of values, while at vertex 5 it is restricted. But it 

may happen that for some reason we are sure that the actual 

scope of e 1 is limited to what it is at 5; then the submission 

will be legitimate. If we do not have such (rather extra

ordinary) information, we should either explore vertex 11 as 

an independent configuration, or generalize vertex 5 by making 

a seemingly trivial assignment e 1 + e 1 , and reexplore it. 

If all variables in a vertex have their full scopes, this 

vertex may be made the start of a separate subgraph, not connected 

with the main graph (and other subgraphs) in any other way 

than by submissions. 

TO deal with q11asiinput sets we need some additional 

means of representing sets of object expressions. Fii:st we 

define eight types of the simplest contractions which will be 

called elementary. They are: 

(1) s ( P) . -+ s where s E p 
1 

( 2) s ( P) . -+ s ( Q) . where Q c p 
1 1 

( 3) s ( P) . -+ s ( P) . where i "I j 
1 J 

( 4) e. -+ <empty> 
1 

( 5) e. -+ s!e. where s! is new 
1 J 1 J 

( 6) e. -+ (e!)e. where e! is new 
1 J 1 J 

( 7) e. -+ e. s ! where s! is new 
1 1 J J 

( 8) e. -+ e. ( e! ) where e! is new 
1 1 J J 

As in Chapter 3, unspecified s-variables are considered 

here as having a special "any symbol" specifier which comprises 

the infinite set of all symbols. Primed variables s! and e! 
J J 

stand for variables which are distinct from any already intro-

duced variable. They are, in fact, generators of variables, 

the index of the newly generated variable being assigned as 

the value to the index of the generator variable. 
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It is easy to see that all contractions which appear in 

using the Generalized Projecting Algorithm (see Section 3.2) 

are either elementary or compositions of elementary contractions. 

For example, a contraction 

represented as 

of the form e. ~ S e. can be 
1 1 

I (e.+s.e.) (s.~S), 
1 J 1 J 

where contractions are to be applied from left to right. 

Theorem 4.2. A composition of any number of elementary 

contractions is a contraction to an L-expression. Conversely, 

any L-expression can be represented as the composition of 

a number of elementary contractions applied to an e-variable. 

Proof. There are no elementary contractions which would 

change one e-variable into another, and only new e-variables 

may be introduced. This means that no repeated e-variables 

may result from a composition of elementary contractions. New 

e-variables emerging due to elementary contractions are always 

at a different level of parenthesis structure, therefore no 

pair of e-variables on the same level may appear. So, both 

requirements to L-expressions are satisfied, which proves the 

first part of the theorem. To prove the second part, we only 

have to notice that applying the GPA to project any given 

L-expression on a single variable e 1 , one receives a represen

tation of this L-expression in the form e 1 // 6 , where 6 is a 

composition of elementary contractions. 

By A \ B we denote the difference between sets A and B, 

that is the set of all elements of A which are not at the same 

time elements of B • As usual, A\ B \C means (A\ B) \C etc. 

If the definition of a function in Refal consists of sentences 

with left sides L1 ,L 2 , ••• ,Ln , then the set of all object 

expressions for which the k-th sentence will be used is 

(1) 

We call this set a restricted class; expressions L1 ,L 2 , .•. ,Lk-l' 

which are negative, will be called restrictions on the class Lk. 
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It is very difficult to establish from a record of such a form 

whether the set is empty or not. As the first step to amend 

the situation, we replace r~strictions on the class by 

restrictions on the variables. Using the GPA we find k-1 

intersections: 
r. j 
U 1 Lk I I L\ , 

j=l 
i = 1,2, ••. 

where ~~ are contractions 
1 

of the variables in Lk. Now we 

represent our restricted class 

~1 \\ t-2 .•• \\~r1 1 (2) Lk \\ 1 1 

in 

" 
the form 

~1 
rk-1 

···''~k-1 2 

k-1. 

where ~~ will be referred to as restrictions on the variables 
1 

in Lk. To determine whether a given object expression belongs 

to this restridred class we first recognize it as Lk. If we have 

succeeded in that, we find out whether the values assigned to 

the variables in Lk allow at least one of the contractions ~i
If it is the case, the object expression does not belong to the 

set, otherwise it does belong. 

Operation\\ (read: "restriction"), applicable to a set 

E of object expressions and a substitution ~ , produces, like 

operation II (substitution), a subset E \\ ~ of the set E, but 

unlike the case of substitution this subset is not generally 

a class when E is a class. 

The expression 

means 

The operation of restriction is commutative in the sense: 

E \\~1 \\ ~2 = E \\ ~2 \\ ~1 

For the operation of substituting a simple rule holds 

with respect to the composition of substitutions: 

which is true by the definition of composition. For restriction 

the corresponding rule is more complicated: 
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(RC) E \\ (<\ o2 o3 ••• on) = E \\ o1 

u (E II o1 ) \\ o2 

u (E II o1 II o2 ) \\ o3 

We shall refer to this rule as RC (Restriction-Composition) 

and use it for the case when 6. are elementary contractions. 
l. 

The rule permits decomposing a class restricted by any 

contraction into a union of classes restricted by single 

elementary contractions. Now, the following distributive law 

holds, obviously, with respect to union and restriction: 

(UR) (E 1 u E2 u ••• u En) \\fl = (El \\ fl) u .•• u (En\\ fl) 

We shall refer to this law as Rule UR (Union-Restriction) • 

It is easy to see that by algebraic manipulation based on Rules 

RC and UR we can represent any restricted class (1) (represented 

first in the form (2) through the use of the GPA) in the form: 

~ 2 n 
Lk L~ u Lk L u ..• u Lk L 

where Li are compositions 

i i i ai 
L = a 1 a2 p 

of "constrictions" (i.e. contractions or restrictions) 

a~ is II 6~ or\\ 6~ 
J J J 

where 6~ are elementarv contractions. J • 

i 
a . : 

J 

For example, let a restricted class X be written in the 

form (2) as: 

where 

l:ll = 01 °2 °3 

fl2 = 64 65 

We proceed as follows (using + instead of U): 
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The set X will be the sum (union) of the following three sets: 

( L \\ 61) \ \ !12 = L \\ 61 \\ 64 + L \\ 61 II 64 \\ 0-
~ 

( L II 61 \\ 62) \\ !12 = L II 61 \\ 62 \\ 64 

+ L II 61 \\ 62 II 64 \\ 65 

( L II 61 II 62 \\ 6 3) \\ !12 

= L II 61 II 62 \\ 63 \\ 64 + L II o1 I I o2 \\ 63 II 64 \\ 

A composition product Li = ai ai 
1 2 ai of constrictions 

p 
will be referred to as a constriction term. :.-Ihen we start 

algebraic manipulation with a class E somehow restricted, all 

further transformations and subset formations will produce 

unions (sums) of the form 

ELl u E L2 u .•• u E Ln 

Therefore, in formulating the rules of manipulation we can omit 

a~bitrary E and consider constriction sums 

Ll u L2 u .•. u Ln 

or 

~1 + ~2 ~n t- t- + ••• +t-

For example, Rule (RC) may be written as 

\\ (6 1 6 2 ••• 6n) = \\ 61 u II 61 

+ ••• +II o1 

Our task now is to develop algebraic rules for simplifica

tion of constriction terms. We note first that if a term 

begins t~ith a number of "positive" contractions (contractions 

proper) we can simply perform the corresponding substitutions 

in E.. If we want the result not in the form of the union of 

restricted classes but in the form of a constriction sum 

applied to the original E, we shall remember the corresponding 

contractions for each term and add them at the left side. 

Thus whenever we are concerned with simplification, the term 

begins with a "negative" contraction (restriction) : 
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(A) 

Second, we notice that restrictions, unlike contractions, are 

commutative. Therefore we can organize the process of trans

formation in the following way. At the beginning of the sequence 

being transformed we shall always have a group of restrictions 

which have been processed already: 

{\\ 01 \\ 02 ••• \\ om} crm+l ••• crp 

If crm+l involves a variable which is not involved in the group 

of processed restrictions, then it is commutative. We either 

apply a substitution om+l to E if crm+l is a contraction II om+l , 

or treat the restriction as if it were in the first place in 

the sequence: case (A). In particular, no action may be taken 

other than adding\\ om+l to the list of processed restrictions. 

Suppose now that the replaced variable in crm+l is identical 

to the variable in one of the processed restrictions\\ o • Two 
X 

cases are to be considered: 

(B) 

(C) 

\ \ 0 
X \\ om} I I om+l 

\ \ 0 m} \ \ 0 m+ 1 

In both cases we can formulate rules which involve only 

ox and om+l , but in case (B) we must remember that II om+l 

does not commute with\\ o generally; therefore to transfer 
X 

II om+l to the beginning we must compare it to all \\ 

ing the same variable. In case (C) it will not be an 

to add\\ o 1 to the list, but again we must try all m+ 

o involvx 
error just 

possible 

pairs\\ ox\\ om+l if we want a maximum of simplification. 

There are three groups of rules to manipulate constric

tions, which correspond to cases (A), (B), and (C). The rules 

of the first group are elimination rules; they are applicable 

to a single restriction, no matter whether there are other 

restrictions for the same variable or not. The rules of the 

second and third groups are correspondingly applicable to pairs 

restriction-contraction and restriction-restriction. 
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For our purpose it is necessary now to treat separately 

the cases of a finite specifier, i.e. of a variable of the 

form s(P). , and of 
1 

unspecified varibble 

the "any symbol" specifier, i.e. of an 

s. • Therefore, instead of three 
1 

elementary contractions involving an s-variable, we will have 

six elementary contractions; this brings the full number of 

elementary contractions to eleven. In what follows we describe 

not only the rules of transformation, but the algorithm of 

their application (with some freedom of variety). We shall 

always make full lists of possible cases, and if no simplifi

cation is possible indicate this as "no action". 

A rule of the form 

L: 1 = L: 2 u L: 3 

should be understood as: with any E 

A. Elimination Rules 

A.l \\ s. -+ s ( Q) . 
1 1 

A. 2 \\ s(P).-+ s(Q.)i = II s ( P) . -+ 
1 1 

A. 3 \\ s. -+ s 
1 

s(P\0). 
- 1 

A.4 \\ s ~ P) . -+ s = II s ( P) . -+ s(P\{S}). 
1 1 1 

A. 5 \\ s. -+ s. 
1 J 

A. 6 \\ s ( P) . -+ s ( P) . 
1 J 

A.7.L \\ -+ 0 Ul I 
e.) u Ul e. = e. -+ s. e. 

1 1 J 1 1 

A. 7R \ \ e. -+ 0 = Ul e. -+ e. s ~ ) u Ul e. 
1 1 1 J 1 

A. 8 \\ e. -+ s~ e. = Ul e. -+ 0) u Ul e. 
1 J 1 1 1 

A. 9 \\ e. -+ (e!) e.= Ul e. -+ D) u Ul e. 
1 J 1 1 1 

A.lO \ \ e. -+ e. s! = Ul e. -+ 0) u Ul e. 
1 1 J 1 1 

A.ll \\ e. -+ e. (e!) = Ul e. -+ 0) u Ul e. 
1 1 J 1 1 

no action 

no action 

no action 
I -+ (e.) e.) 
J 1 

-+ e. ( e! ) ) 
1 J 

-+ ( e ~ ) e.) 
J 1 

-+ s~ e.) 
J 1 

-+ e. ( e! ) ) 
1 

I) 
-+ e. s.) 

1 J 

Elimination rules are applied as soon as a negative term 

is located. Either of the rules A.7L or A.7R may be used, 

and a clever algorithm may make a guess as to which choice 

will be more expedient. Also, it is possible to take 

no action at all, and we shall include this possibility in 

subsequent considerations. 
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So, after applying elimination rules we face a situation 

when only five out of eleven restrictions may take the place 

of 6 in (B), and both 6 and 6 +lin (C). Now, for a shorter 
X X m 

formulation of rules B and C, we again unite cases 5 and 6 

(as listed in the Elimination Rules) into one case s(P). ~ s(P). , 
J J 

and in addition consider case 3 as a special variation of 

case 

B. 

B.l 

B.2 

B.3 

B.4 

B.S 

B.G-9 

1, by considering symbol S as s' ( Q) . with Q = 
J 

{S}. 

Restriction-Contraction Rules 

\\ s. ~ s ( Q) i II s. ~ s(Q'). = II s. ~ sCQ' \ Q) . 
l. l. l. l. l. 

\ \ s. ~ s ( Q) . II s. ~ s. =II s. ~ s. \\ s. ~ s ( Q) . 
l. l. l. J l. J J J 

\ \ s ( P) . ~ s ( P) . II s ( P) . ~ s ( Q) . 
l. J l. l. 

= Ul s ( P) . ~ s ( Q) . \\ s ( P) . ~ s ( Q) . ) 
l. l. J J 

u (/I s ( P) . ~ s ( Q> i I I s ( P) . ~ s (Q) j \\ s ( Q) . ~ s ( Q) . 
l. J l. J 

\ \ s ( P) . ~ s ( P) . II s(P)i ~ s(P)k = 
l. J 

if k = j then ¢ else 

II s ( P) . 
l. 

~ s ( P) k \\ s ( P) k ~ s ( P) . 
J 

\\e. ~ 0 II e. ~ 0 = ¢ 
l. l. 

\\e. ~ 0 II e. ~ E = II e. ~ E 
l. l. l. 

where E is one of: s!e. , 
J l. 

(e!)e., e.s!, e. (e!) • 
J l. l. J l. J 

c. Restriction-Restriction Rules. 

c.l 

C.2 

C.3 

\\ s. ~ s ( Q) . \ \ s. ~ s(Q'). = \\ s. ~ s(Q u Q'). 
l. l. l. l. l. l. 

\\ si ~ s ( Q) . \ \ s. ~ s. no action 
l. l. J 

\\ s ( P) . ~ s ( P) . \\ s ( P) . ~ s ( Q) i 
l. J l. 

if Pis "any symbol", then no action else use Rule A.2 

for the second restriction; then use B.3. 

) 

.c. 4 \\ s ( P) . ~ s ( P) . \ \ s ( P) . ~ s(P)k no action (k~j is implied) 
l. J l. 

c.s \\ e. ~ 0 \\ e. ~ 0 = \\ e.~ 0 
l. l. l. 

e.G \ \ e. ~ 0 \\ e. ~ s!e. = II e. ~ ( e! ) e. 
l. l. J l. l. J l. 
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c.7 \\ e. -+ 0 \ \ e. -+ ( e! ) e. = II e. -+ s ! e. 
1 1 J 1 1 J 1 

C.8 \\ -+ 0 \\ I 

II ( e! ) e. e. -+ e. s. = e. -+ e. 
1 1 1 J 1 1 J 

C.9 \ \ e. -+ 0 \ \ e. -+ e. ( e!) = II e. -+ e. s ! 
1 1 1 J 1 1 J 

'V'Jhenever in any of the rules an empty specifier appears 

in a "positive" contraction, the corresponding term in the 

union must be set empty. 

There is one additional rule: 

D. Rule of Symmetry. 

D. \\ s ( P) . -+ s ( P) . = 
1 J 

\\ s(P).-+ s(P). 
J 1 

This rule is used for restriction\\ o , when constric
x 

tion om+l has in its left side variable s(P)j. 

Because of the eliminatrion rules, only the following four 

types of restrictions may enter the list of processed restric-

tions: 

( 1) \\ s. -+ s(Q.)i 
1 

( 2) \ \ s. -+ s. 
1 J 

( 3) \\ s(P).-+ s ( P) . 
1 J 

( 4) \\ e. -+ 0 
1 

where P and Q are finite (not "any symbol") specifiers. By using 

rules of groups B and C, and rule D, we ultimately represent 

each restricted subclass in the form 

+ + - -o = E • I I o 1 . . . I I o \\ o 1\\ ... \\ o 
q 1 p q 

where each of the restrictions\\ o7 is one of the four tvpes 
1 ~-

above. We notice in addition that for each unspecified 

s-va~iable there Qay be only one restriction (1) (because of 

Rule C.l), and a number of restrictions (2). For a specified 

s-variable there may be only some restrictions of type (3); 

for each e-variable there may or may not be one restriction (4) 

in the list. A restricted class so represented will be 

reLerred to as s-PestPicted. 
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Example. 

In the definition of a symmetric binary string: 

.1 a ~ T 

.2 a s(l0) 1 e 2 s(l0) 2 ~a e 2 

.3 a e 1 ~ F 

what is the set X of expressions processed by the third sentence? 

This set may be represented in the form (1) as 

X= e 1 \ 0\ s(l0) 1 e 2 s(l0) 1 

Projecting the left sides of the first and second sentences 

of e 1 , we get representation (2): 

X = e 1 \\ e 1 -+ 0 \\ (e1 -+ s 3e 1 ) (s 3 -+ s (10) 3 ) (e1 -+ e 1 s 4 ) 

• (s 4 -+ s(l0) 4 ) (s(l0) 4 -+ s(l0) 3 ) 

Using Rules RC and UR we get: 

x = x1 u x 2 u x3 u x 4 u x 5 

(because of the composition of five contractions). 

Let us transform each term now: 

x1 = e 1 \\ e 1 -..- o \\ e 1 -+ s 3e 1 = e 1 II e 1 -+ (e 5 )e1 = (e 5 )e1 

[Rule C.6] 

x2 = el \\ el --!- 0 II el ~ s 3el \ \ s 3 -+ s(l0) 3 

= el II el -+ s3el \\ s 3 -+ s(l0) 3 = s 3e 1 \\ s 3 -+ s(l0) 3 

[Rule B.6] 

x3 = el \\ e ~ 0 II el -1 s 3e 1 II s 3 -1 s(l0) 3 \\ el ~ els4 1 

= s(l0) 3 e 1 \\ el -+ e 1 s 4 = s(l0) 3U s(l0) 3 e 1 (e ) 
y 

[Rule A.lO] 

x4 = el \\ e 1 -+ 0 II e 1 -+ s 3e 1 II s 3 -+ s(l0) 3 II e 1 -+ el s4 \ \ 

= s(l0) 3 els4 \\ s4 -+ s(l0) 4 

xs = s(l0) 3 e 1 s(l0) 4 \\ s(l0) 4 -+ s(lO)._ 
_) 
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Thus the set X is the union of six s-restricted classes: 

X = (e 5 )e1 u s 3e 1 \\ s 3 ~ s(l0) 3 u s(l0) 3 u s(l0) 3 e 1 (e6 ) 

u s(l0) 3e 1 s 4 \\ s 4 ~ s(l0) 4 u s(l0) 3e 1 s(l0) 4 \\ s(l0) 4 ~s(l0) 3 

An s-restricted class may be empty even if this is not 

immediately obvious (we recall that when an empty specifier 

appears, the class is removed in the course of transformation, 

so in an s-restricted class no specifier may be empty). The 

following is an example: 

s(l0) 1 s(l0) 2s(l0) 3\\ s(l0) 1~ s(l0) 2\\ s(l0) 1~ s(l0) 3\\s(l0) 2 
~ s(l0) 3 

Our task now is to construct an algorithm which would 

determine whether a given s-restricted class is empty or not. 

We shall construct this algorithm as actually picking up one 

representative of the class, if such exists. We notice that 

only restrictions of the type 

\\ s(P)i ~ s(P)j 

may cause trouble in picking up a representative. Indeed, the 

restriction 

\ \ s. ~ s ( Q) . 
1 1 

leaves us with still an infinite choice of possible symbols 

The same is true with respect to a restriction of the form 

s. 0 

1 

\\ s. ~ s. 
1 J 

(we can just take a new symbol for each new unspecified s-vari

able we encounter). And of course, there is no problem in 

picking up a nonempty expression. 

If we have a system of inequalities for a number of 

s-variables with a finite specifier P consisting of p different 

symbols, we construct a graph G, the vertices of which are these 

s-variables, and two vertices i and j are connected by an edge 

if there is a restriction \\ s (P). ~ s (P) . or \\ s (P) J. ~ s (P} .• 
. 1 J 1 

Then we compute (see, e.g., [27]) the chromatic number x(G), 

that is the minimum number of colors needed to color verticies 
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in such a manner that no adjacent vertices have the same color. 

If X(G) > p, the restricted class is empty, otherwise we can 

pick up a represent•ltive, treating symbols from P as colors. 

The result of our consideration may be formulated as 

Theorem 4.3. For each vertex in the graph of states of a 

Refal machine, the quasiinput set can be represented as a 

union of nonempty s-restricted classes. 

Now we know how to clean the graph of states; we remove 

all vertices to which empty quasiinput sets correspond; we 

also remove dynamic arcs leading to these vertices. 

This gives us 

Theorem 4.4. An algorithm exists which makes any graph of 

states clean. 

4.4. Compilation Strategy 

When we have constructed a complete graph of states, 

we have represented the set of all possible s·tates (with a 

given start) as compositions of certain subsets configurations. 

Thus constructing a graph of states produces a set of configura

tions. Conversely, if we specify, no matter how, a set of 

configurations which we call basic, and if we agree that only 

basic configurations may enter the graph of states, we will 

to a considerable extent define the graph of states to be 

constructed. Into the set of basic configurations we include 

of course only active configurations: there is no point in 

restricting passive configurations from entering a graph of 

states. The general scheme of constructing a graph of states 

is as follows. Starting with the initial configuration, we 

execute driving, and every time that we receive an active 

configuration we decide whether to continue driving or to 

express the configuration through some explored basic configura

tions and stop driving. More specifically, the stPategy of 

compilation may be defined by giving answers to the following 

questions: 
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(1) How do we choose the subexpression to be driven? Two 

most natural strategies would be, first, following the defini

tion of the leading concretization sign, and second, the 

strategy "frorn without within". 

(2) When do we start trying to stop driving? For example, 

we may take as a rule never to stop on a transitory vertex, 

no matter whether or not it is a basic configuration. 

(3) When and how do we decompose a configuration? 

(4) What should be the initial list of basic configurations, 

or the initial criterion for a configuration to be basic? 

(5) When and how do we expand the list of basic configura

tions, or to change the criterion? 

With a compilation strategy given, the first question to 

answer is: will this strategy necessarily lead to the con

struction of a finite complete graph?A question still more 

fundamental: are there any strategies at all which always 

lead to a successful end (complete graph)? 

The answer to the last question is positive. There is 

a compilation strategy, which finds itself at the extreme 

interpretation end of the interpretation-compilation axis. 

It may be called generalization to functions. With this 

strategy the following answers are given to the five above 

mentioned questions: 

(1) The range of the leading concretization sign is chosen. 

(2) Try to stop at every step. 

(3) Always decompose a configuration which has more than 

one k-sig~ separating the leading subexpression. 

(4) Basic configurations are configurations of the form: 

k F ex 1 
with any determiner F. 
(5) This criterion does not change. 

Essentially, this strategy leaves the program in exactly 

the same form as it has been written in Refal. The graph of 

states decomposes into subgraphs corresponding to functions, 

and no optimization occurs. E.g., if we discover a call of 

function F1 with a specific completely defined argument: 
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k Fl A B C D 1 

then instead of computing and substituting the result of 

concretization, we will have to generalize to the configuration 

k F1 e 1 1 and construct the complete graph of states for 

this configuration, that is reproduce the definition of F1 . 

The choice of basic configurations determines the depth 

of compilation. The more specific the basic configurations 

are, the deeper the compilation process will go, and when the 

basic configurations are more general, the resulting program 

will retain a higher level of interpretation. Thus, the character

ization of a program in terms of interpretation versus compila

tion, familiar to every programmer, becomes more comprehensible 

and receives a formal definition: it is the generality of the 

configurations chosen as basic in constructing the graph of 

states. 

The strategy of generalization to functions can be 

considerably improved by excluding transitory configurations 

and including into the ba3ic configurations the foPmats of 

functions. We shall illustrate this strategy (genePaZization 

to foPmatted functions) by the following example. Let function 

F1 with the format 

(GFF) 

be defined by the sentences: 

k F1 (e1 ) (e 2 ) s 3e 4 => 

k F 1 (e1 ) (e2 ) => 

k Fl (el) (t::2s3) e4 1 

(el) (e2) 

using the strategy of generalization to formatted functions 

we take expression (GFF) as a basic configuration. This will give 

us the graph of states represented in Figure 9a. Let us 

compare it with the graph in Figure 9b, which is the result 

of generalization to unformatted functions for the same Refal 

program. 
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Figure 9a 

Figure 9b 

According to Figure 9b, the argument e 1 should be split 

into three subarguments e 1 , e 2 and e 3 , whereafter symbol 

variable s4 is separated (if possible) from e 1 . After 

exchanging symbol s 4 , the three subarguments are mce 

again united into one argument --all this being repeated at 

each step of the Refal machine. According to the version of 

Figure 9a, the start configuration has three arguments. At 

each step, a symbol s4 is separated from the third argument 

and passed to the second. The first argument is not involved 

at all. Obviously, the graph in Figure 9a, when mapped on 

the object machine (a real computer), will provide an essenti

ally higher efficiency than the other graph: there is no need 

to decompose and then recompose the argument with the help 

of parentheses during each cycle of the loop. Our second 

strategy is more compilative than the first, because the format 

parentheses are included in the basic configuration, ~aking it 

more specific. The parentheses are now absent from the object 

program; they have been dealt with in the process of comp}.la

tion. Seen from the other side, the first strategy is more 

interpretive, because the argument of the function F 1 is 

interpreted at run time as an expression of the form (e 1 ) (e 2 )e 3 • 
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The process of compilation may be controlled by 

includi~g some specific configurations into the set of basic 

configurations, or, on the contrary, stating that configura

tions of a certain kind should not become basic by any means 

(and therefore they will never be recipients of dynamic arcs, 

which means that they can be excluded, if necessary, from the 

final graph of states). Changing the compilation strategy, 

and varying the level of compilation thereby, we may receive 

different programs from the same initial definition of the 

problem in Refal. For an example let us go back to section 4.1, 

where the language /L/ was defined and the start configuration 

(1) k /L/ CROSS(CAT); ADD(DOG} (ex} l 

given. 

If the set of basic configurations is declared empty, 

which means the maximum depth of compilation (and in this case 

leads to a finite graph because a solution without loops 

exists}, we receive the following graph of states (Figure 10}: 

-+- s'e 
1 X 

e -+- 0 
X 

Figure 10 

-+- s'e 2 X 

e -+- 0 
X 

where the configurations are: 

( 2} k /L/ ADD(DOG} (k /Ll/ CROSS(CAT} (ex} l } l 
( 3} k /L/ ADD(DOG} (C 51 k /Ll/ CROSS(AT} (ex} 1 
(4} CATDOG 

( 5} k /L/ ADD(DOG} (C 51 A s 2 k /Ll/ CROSS(T} (ex} 

(6} c s 1ATDOG 

(7} Cs1As 2Ts 3exDOG 

(8} Cs1As 2TDOG 
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When mapped on the object machine, this graph will 

become an efficient program. But imagine that instead of 

"CAT" in the formulation of the problem we have a word of 100 

letters. Then the graph of states will contain 100 branching 

points, and the resulting object program will be quite bulky. 

We may desire as a tradeoff between space and time 

parameters -- to make the program more compact at the expense 

of retaining a level of interpretation. We declare as basic 

the configuration 

(9} k /Ll/ CROSS(e } (e } I y X ......!-

The following graph will be constructed as the result of 

the compilation process (Figure 11}: 

( 10} 

( 11} 

(12} 

(13} 

Figure 11 

k /L/ ADD(DOG} (e1 } 1 
e 1 DOG 

sasbe2 

eyex 

}(e-+ s.'e} 
X !) X 

We see here an example of mixed strategy: decomposition of 

the text in the language /L/ into statements and execution of 

the first statement are done at compile time, but the second 

statement-- the procedure of "crossing", which of course could 

have a longer word than "CAT" as the first argument -- is 

interpreted. 
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The notion of compilation strategy provides us with a 

key to the notion of a normal form of a Refal program. Suppose 

we have a graph of states and consider various ways to map it 

onto the object Refal machine. Differences in Refal programs 

stemming from different ways of mapping are clearly nonessential; 

a question of form. So let us fix a definite way of mapping -

say, that described in Section 4.2. Now we choose a compila

tion strategy. If it is generalization to functions, then 

compilation of the original Refal program for any function 

with a subsequent mapping will give us a new Refal program 

which is a representation of the original in a standard normal 

form. When we change the compilation strategy, we receive 

functionally equivalent Refal programs which may be referred 

to as normal forms, each normal form being defined by the 

corresponding compilation strategy. Differences between various 

normal forms of the same function may be huge and are "essential", 

not "formal"; they reflect the differences in the strategies 

they have resulted from. 

4 .5. Perfect Graphs. 

A walk in a graph of states is a sequence of alternate 

vertices and arcs v1A1v2A2 ••• Vk-lAk-ll\ which "might be" 

followed (passed) by t~e Refal machine with some definite 

values of the input variables (i.e. the Refal machine in a 

definite exact input state). When we say "might be" here, we 

mean that the actual existence of an exact input state which 

forces the Refal machine to make this walk is not presupposed; 

a walk exists if certain rules are observed in its construction. 

These rules are as follows: 

(1) If only horizontal arcs are outgoing from a vertex Vi 

in the walk, then any of them can be taken as A.. For a concise 
1 

representation of a walk, as in the case of a path, it is con-

venient to write outcnly the numbers of vertices and separate 

them by special signs indicating the nature of the connecting 

arc: it will be a comma "," for a dynamic arc and an equality 
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sign "=" for a representation arc. (If needed, the contrac-

tion on the arc may be specified in parentheses before the 

comma.} 

(2} If there is a vertical arc outgoing from v. , it must be 
l. 

taken as A. when we first encounter v. ; this downward passage 
l. l. 

of a vertical arc will be denoted in our concise notation by 

a left bracket"[". When we come to a passive terminal 

configuration v. , we look for the latest unpaired left bracket 
J 

and return to the vertex preceding this bracket. This upward. 

shift is depicted by a right parentheses"]" after v. , which 
J 

becomes paired, of course, with the last left bracket. A pair 

of corresponding brackets will be referred to as a functional 

loop. 

(3} After a right bracket closing a function loop, a hori

zontal arc must be taken if there are any. 

(4} When we come to a passive terminal vertex, without a 

composition arc or after closing the functional loop, and there 

are no unpaired left brackets, the walk cannot continue. It 

is concluded. 

An input set is a set of exact input states. In particular, 

an input set may be an input class; it is specified when con

tractions (possibly trivial} are specified for each input 

variable. To each exact input state either a concluded or 

an infinite walk corresponds: the one taken by the Refal 

machine from this initial state. To each walk (finite: a walk 

is finite if the opposite is not stated} an input set corres

oonds, which comprises all exact input states from which the 

Refal machine will make this walk. A walk is called feasible 

if the corresponding input state is not empty, otherwise it is 

unfeasible. A graph of states in which all possible walks are 

feasible will be called perfect. 

The graph in Figure 4 is perfect. We can easily find a 

corresponding input set for each possible walk in it, and this 

set will not be empty. For instance, for the walk 

1, 4 = 14, 16 = 14, 17 the restricted input class 
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/PLUS/ s 3 e1 \ \ s 3 -+- /PL t£/ 

corresponds to it, and for the concluded walk 1, 4 = 14, 17 = 14, 

17 = 14, 16 = 14, 15 the corresponding input set is 

s 3 s 4 /PLUS/ \\ s 3 -+- /PLUS/ \ \ s 4 ·+ /PLUS/ 

If there are no redundant variables in a graph of states, 

or they are never subject to contractions (which is the case 

for Figure 4), and if the input variables have the same range 

of values on both ends of each transformation (submission) arc 

(which again is the case for Figure 4), then a clean graph of 

states will be also perfect. 

Here is an example where a redundant (transformation) 

variable is subject to contraction, but the graph of states,is, 

nevertheless, perfect. We choose to define the procedure of 

deleting asterisks from a string of symbols in this bizarre way: 

a ex • a 1ex(END) 

1 1 
a •e • a e 

X X 

1 - 1 a s 1ex a exsl 

a 1 (END) ex • ex 

The following graph of states corresponds to this (Figure 12), 

which as can easily be seen is perfect: 

Figure 12 

A perfect graph (or the program in Refal represented by 

this graph --we will not distinguish these) cannot be improved 

by a compilation process. Compilation is consequential when 
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there is a margin of generality in the original program: the 

definitions of functions are more general than is really 

needed, and walks exist in the graph of states which in fact 

cannot be actualized under any input assumptions. A perfect 

graph of states has no margin of generality, and all the 

tests implied by the dynamic arcs in such a graph must be 

actually performed at every step of the computation process. 

This does not mean that there may be no functionallyequivalent 

graph which woUld work more efficiently than a perfect graph, 

i.e. our term "perfect" does not mean that it is perfect in 

any sense of the word. E.g., the following function, which 

only scans its argument without doing anything: 

8 sl e2 .. s 1 8e 2 

8 (el) e2 ~ (8e1 ) 8e2 

8 ~ 

has a perfect graph of states, but it is functionally equivalent 

to: 

This example shows us the limits of the compilation process: 

compilation is essentially computation in a general form, but 

it does not include the application of the principle of mathe= 

matical induction. This is why the transformation of the 

function 8 as indicated above is beyond our capability at the 

moment. The inclusion of induction into the system of formal 

transformations of Refal programs will be done later in 

Section 4.6. 

So, a perfect graph is a graph which cannot be improved 

by a straightforward compilation process. But even by a 

straightforward compilation process we can achieve a very 

impressive level of optimization -- to be more exact, we can 

eliminate most typical efficiency losses resulting from 

automated, straightforward construction of algorithms from 

some "building blocks". We demonstrate it by giving three 
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types of optimizations as examples. 

The first and most obvious type of optimization is,of 

course, executing at compile time all calculations which are 

possible to do without knowing the input data. An example 

was given in Section 4.2, where the initial function 

k c1 (e1 ) ~ a A /PLUS/ e 1 /PLUS B 1 

where function a was defined on page 77, was transformed into 

the efficient definition represented on page 85, which has 

a perfect graph of states. The graph of the initial defini

tion is not, obviously, perfect: it contains an element, 

reproduced in Figure 13, where only the walk 1, 2, 4 is 

feasible, but not the walk 1, 2, 3, nor the walk 1, 2, 5. 

Note that the paths 1,2,3 and 1,2,5 are feasible, so that 

the graph is clean. 

( 1) 

( 2) 

1 
k C (e1 ) .1 
B (e 2 )e3 j_ 

Figure 13 

The second type of optimization, "loop cleansing", will 

be illustrated in an example discussed by E. w. Dijkstra 

(see [28], p. 23-24). Consider the following two programs: 

(1) 

and 

(2) 

if B2 then 

begin while Bl do Sl end 

else 

begin while Bl do S2 end 

while Bl do 

begin if B2 then Sl else S2 end 
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Here Bl and B2 are boolean expressions, and Sl and 52 are 

statements. It is supposed furthermore that B2 is constant, 

i.e. unaffected by the execution of either Sl or 52, and 

there are no side effects of the evaluation of the boolean 

expressions. With these presumptions, programs (1) and (2) 

are equivalent. Comparing them, E. W. Dijkstra writes: 

"I can establish the equivalence of the output of the computa

tions, but I cannot regard them as equivalent in any other 

useful sense. I had to force myself to the conclusion that 

(1) and (2) are 'hard to compare•. Originally this conclusion 

annoyed me very much." 

The notion of the perfect graph of states makes it 

easy to compare these programs, for the graph of states of 

the first program is perfect, while that of the second is not. 

To see this clearly, we will trans!. ate ALGOL-60, in which 

the programs are written, into Re fal, i.e. we wil 1 map the 

Algol machine onto the Refal machine. The state of the Algol 

IllGChi re is determined by the position of the control point and 

the values of the variables. nLfferent positions of the control 

point correspond to different configurations of the Refal 

machine. ALGOL-60 is an instru::tion language. I£ we were to 

define its semmtics in Refal, the simplest way to do so wodd 

be by using the configuration 

k I ALGOL/ ( E1 ) E 2 1 

where ~ and E 2 together always make a program in ALGOL, 

a rrl the right parenthesis serves as the control point, 

the currently executed fnstruction being p.. aced immediately 

after it. (Compare the language /L/ in Section 4 .1 ) • So, the 

start configuration in the case of program (1) will be: 

( 1) k /ALGOL I ( ) if B 2 then. • • etc. 1 
After the branching according to B2 has been executed, the 

configuration will be either 

(2) k /N...GOL/ (if B2 then) begin while Bl ••• etc. j_ 
or 

(3) k /ALGOL/ (if B2 then begin ••• en::i else) begin while ••• etc._l_ 

arrl so forth. 
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Let us consider the variables now. We must separate the 

value of the boolean expression B2 from the others, because 

it is independent of the other variables and remains constant. 

Let us denote it by eb. The other variables will be repre

sented by a variable e , which may consist of any number of 
X 

subarguments. The expression Bl depends on ex. The state-

ments Sl and 52 are supposed to change the value of e • 
X 

lOw program (1} caneasilybe translated into the follow
! ing program for the starting cx:mfigura tion k C (eb} (ex} _L: 

kd- ( 'I} (ex} ~ k c 2 (ex} _L 
k cl (F) (e } 

X 
~ k c3 (ex} _l 

k c2 ( e } ~ k c 4 (k B1 ( e } j_} (ex} 1 X X 

k c4 ( T} ( e } ~ k c 2 (k~(e >1} l X 

k c4 (F) (e } ~ e 
X X 

k c3 ( e } ~ k c6 (k B1 (e } .1> (ex} _I 
X X 

k c6 ( T} (ex} ~ k c3 (k s 2 (ex} J.>J. 

k c6 (F) (ex> ~ e 
X 

Program ( 2} will be translated into: 

k 
1 

C (eb} (e) ~ k 2 1 
C (kB (ex>l> (eb} (ex)1 

k c 2 (T} (eb} (ex}~ k 3 
C (eb} (ex} 1 

k c2 (F) (eb} (ex}~ e 
X 

k c 3 (T} (e > ~ k c1 (T} (ks1 (e ) 1> 1 X X 

k c3 (F) (e } ~ k C1 (F} (kS 2 (ex>l> 1 X 

The graphs of states for programs (1) and (2} are 

represented in Figures 14a and 14b 

complete, for configurations B1 , s 1 

But we can apply to such graphs the 

respectively. They are not 
2 

and S are not explored. 

concepts pePfeat and 

impePfeat in the sense: an incomplete graph is perfect, if 

there are some definitions of the unexplored configurations 

for which the completed graph proves perfect: it is imperfect 
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e -+ F 
c 

e -+ T 
c 

Figure 14a 

(e -+ T) (T +- e ) 
b b 

e -+ T 
c 

Figure 14b 

if for any definitions the completed graph will be imperfect. 

In this sense the graph in Figure 14b is imperfect: the walk 

1 1 1 2 1, 2 [ B ] , 3 ( eb -+ T) , 1 [ S ] , 2 [ B ] , 3 ( eb -+ F) , 1 [ S ] 

is not feasible, as are all the walks(an infinite set of them) 

which include both dynamic arcs originating from c3 

If we are given program (2) as the definition of the 
algorithm, we can improve itand make the graph of states perfect 
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by using the compilation process. Almost any compilation strategy 

which is deeper (farther from interpretation) than the generali

zation to (formatted} functions will do the jot. It comes very 

naturally, but it is interesting to note, that the resulting 

graph of states, although perfect, will be different from 

Figure 14a. It is represented in Figure 14c and is obtained 

in the following way. 

We start with configuration c1 , and until we have come 

to configurations c3 and c4 we are just copying Figure 14b, 

because there is actually no other choice. Driving c3 we get 

two configurations: 

and 

kC 1 (F) (ks 2 (e } 1> 1 
X 

1 2 We have to decompose them, separating configurations S and S , 

because they are not specified and cannot be explored. Therefore 

w~ have configurations: 

(5} 

( 6) 

kc 1 (T) (ex} 1 
kC 1 (F) (e } 1 

X 

If we generalize them to configuration c1 , we will get 

Figure 14b. But why should we? These configurations result 

from substututing some specifid values into an already existing 

configuration c1 . To keep and continue to explore such config

urations at their first appearance, is a safe strategy, 

because there may be only a finite number of ways to select 

variables for substitution. 
5 Driving C we get, after an inevitable decomposition, 

configurat-.ion 

( 7} kc 2 (e } (T) (e >l 
C X 

It produces a branching with one arc leading to a passive config

uration, and the other to the configuration 

kC 3 (T} (e >1 
X 

which is transitory and therefore will not be considered as a 
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possible stop. Then we come to c5 once more and this time 

of course stop the process. Configuration c6 is treated 

correspondingly. 

Figure 14c 

e -+ T 
c 

The program we have come to (Figure 14c) is efficient: 

there are no unneeded tests of boolean variable B2 in the 

loop. It is a bit more compilative (and a bit larger) than 

the equally efficient program (1) (Figure 14a). But this bit 

of compilation does not come without a benefit: if boolean 

variable Bl is false from the very beginning, our program, 

unlike program (1), will not even ask for the value of B2. 

This may be very valuable in further optimization. 

As the third example of optimization let us consider 

the following definitions: 

a kF Ae1 => B kFae1 1 
a a 

1 kF s 1e 2 
,. s 1 kF e2 

kFa .. 
kFbBe1 ~ C kFb e 1 1 

b b 1 kF s 1 e 2 ~ s 1 k P e2 

kFb ~ 
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And let the initial configuration be 

(1) 

The corresponding graph of states is represented in 

Figure 15. 

0----
e + 0 

b 

Figure 15 

The configurations in the graph are: 

(2) k Fb eb 1 
( 3) k Fa el 1 
( 4) B ez 

(5) s2 ez 

( 6) C ez 

( 7) s3ez 

This graph of states is far from being perfect, in any 

sense of the word. For example, the following set of walks is 

unfeasible: 
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1=2[3,4[ 3W3 ]1,7[ 2W2 ] 

where 3W3 and 2w2 are any walks staring with vertcies 3 and 2, 

correspondingly. Still worse, any walk of the form 

where the number of arcs in the walks 3w3 and 2w2 are not 

equal, is unfeasible. This is the reflection of the organization 

of the procedure as a double passage of the argument. 

Let us however apply the compilation process with the 

strategy of driving from without ~·Jithin On the first step, 

the call of Fa will be driven, and we receive three new config

urations: 

(2} 

(3} 

(4} 

kFb B kFa e 1 1 1 
kFb s2 kFael l 1 

kFb 1 

Now the external call can be driven in all the three con

figurations, and in the result we come to the starting configura

tion (1}. Thus we see that the graph is complete and stop the 

process. The graph is represented in Figure 16, and the passive 

configurations are: 

Figure 16 
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This graph of states is perfect. It can be further 

simplified by excluding 

program in Refal is 

the vertex 3. The corresponding 

1 kC (Ae1 ) * c kC1 (el) 1 
1 kC (Be1 ) ~ c kc1 (e1 ) 1 
1 1 1 kC (s 2e 1 ) ~ s2 kC (e1 ) 

kCl ( ) ~ 

So, in the resul t of compilation we have transformed a 

double-pass procedure into a one-pass procedure: an essential 

optimization and an important one. 

4.6. Generalization and Induction 

A generaZization of a set of expressions S is any 

expression G such that for any expression E, if E E s, then 

E c G. If G is an L-expression, we call it an L-generaZization. 

The same terms will be used with respect to cZasses (we recall 

that when it is a question of syntactic recognition, 

pattern expressions and classes may not be distinguished); 

one may also consider generalization of restricted classes, 

and allow generalizations to be restricted classes too. 

Speaking of restricted L-classes (or of pattern L-expressions 

with restrictions) we shall assume that they are s-restricted. 

(see Section 4.3 and Theorem 4.3). We shall be interested 

mostly in L-generalizations. 

An L-generalization L will be referred to as tight, if 

there exists no L-generalization L' such that L' c L • 
The following example shows that a tight L-generali-

zation is not unique. Let 

{XXX, XX} 

be a set of two (object) expressions (in examples like this, the 

comma will be used as separator, and therefore not allowed to 

enter expressions). The following three expressions are tight 
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L-generalizations: 

e 1xx 

xe1 x 

xxe1 

Indeed, consider any of the three expressions. If it is not 

tight, then a tighter generalization exists, which can be 

produced by a contraction. The variable e 1 may be contracted 

either into an empty expression, or into an expression which 

has at least one term. In the first case, the expression XXX 

from the original set will not be covered, in the second case 

the expression XX will not be covered. Therefore all three 

generalizations are tight. 

Moreover, the operation of taking any possible tight 

L-generalization of two expressions is not associative in the 

following sense. Let a tight L-generalization L of two expres

sions E1 and E2 be found, and let L' be a tight L-generalization 

of L and E3 • Then, L' will not necessarily be a tight generali

zation of the set {E1 ,E 2 ,E 3 }. To give an example, again let 

E1 be XXX and E2 be XX. Let E3 be X(Y)X. We take e 1xx as the 

generalization L. Generalizing L and E3 we obtain e 1x, which 

is not a tight generalization for the set {E1 ,E 2 ,E 3 }. The tight 

generalization will be xe1x. Ergo: when we need a tight 

L-generalization of a set of expressions, we should consider 

them all together. 

Notwithstanding these unpleasant properties of tight 

L-generalizations, they are extremely useful for the theory of 

compilation. The following property of L-generalization is 

crucial for certain applications: 

Theorem 4.5. In a universe with a finite number of symbols, 

any class has only a finite number of L-generalizations. 

To prove it we will first consider L-generalizations of 

terms (i.e. pattern expressions which are terms and represent 

terms, e.g., X, s 1 , etc.). A generalization of one or several 

terms which is a term itself will be called a t-generalization. 
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If the number of different symbols is finite, then we 

can write every s-variable as a specified s-variable, and 

we do not need restrictions which forbid a symbol variable 

to take certain values (we just exclude these values from 

the specifier). Consequently, the following lemma covers all 

possible cases of t-generalizations: 

Lemma 1. The following propositions are true: 

(1) Any t-generalization of a symbol S is either the 

symbol itself, or has the form s(P). , where P includes S. 
1 

(2) Any t-generalization of a symbol variable s(P)i has 

the form s(Q). where P c Q. 
J -

(3) Any t-generalization of a class of the fo~ (E) is 

a class of the form (E'), where E' is an L-generalization of E. 

Three more le~mas are obviously true: 

Lemma 2. An L-generalization of an empty expression is 

either empty, or an unrestricted (in the sense of s-restric

tions) e-variable. 

Lemma 3. If an expression has the form T E where T is a term 

different from an e-variable, then its L-generalization either 

starts with an e-variable, or has the form T'E' , where T' is 

a t-generalization of T, and E' is an L-generalization of E. If 

an expression has the formE T, where Tis a term different 

from an e-variable, then its L-generalization either ends with 

' an e-variable, or has the form E'T' , where T is a t-generaliza-

tion ofT, and E' is an L-generalization of E. 

Lemma 4. If an expression starts with an e-variable, its 

L-generalization starts with an e-variable: if an expression 

ends with an e-variable, its L-generalization ends with an 

e-variable: if an expression starts and ends with an e-variable, 

its only L-generalization is e 1 • 
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Using these lemmas we can algorithmically construct 

all possible L-generalizations of a given class. The process 

will consist of a finite number of steps, and at each step 

we will have a finite number of choices. Instead of giving 

a formal definition of the algorithm, we shall consider an 

example of its work. 

We denote by <E> the set of all possible L-generalizations 

of an expression E, and by <T>t the set of all t-generalizations 

of a term T. The set of all those L-generalizations of an 

expression E which start with an e-variable will be denoted 

by <eE>; and <Ee> will mean the set of those L-generalizations 

which end with an e-variable. 

Let us construct the L-generalizations of the expression 

xe1Y in the universe with three symbols: X, Y and z. 
We start with using the first part of Lemma 3, i.e. 

processing our expression from left to right (it could be 

the other way around). As a result of the first step we have 

two possible sets of L-generalizations: 

(1) <X>t <e1Y> 

(2) <exe1Y> 

The number of possible t-generalizations is always finite. 

In our case 

<X>t ={X, s(XY) 2 , s(XZ) 2 , s(XYZ) 2} 

Exploring the possibility (1), we use Lemma 3 for <e 1Y>. 

The first possibility is 

(1.1) 

i.e. 

where 
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We have obtained a set consisting of 16 generalizations, 

such as 

Xe1Y 

xe1s(XY) 3 

s(XYZ) 2e 1s(YZ) 3 

etc. 

If we choose the second possibility in the exploration 

of (1), we get: 

(1.2) 

which by virtue of Lemma 4 is 

<X>t el 

This gives us four more generalizations. 

Continuing in the same manner the exploration of the 

possibility (2), we receive two more sets of generalizations: 

(2.1) <exe1 ><Y>t = e 1 <Y>t 

(2.2) = e 1 

Generating variables in the process of generalization, we 

first make all of them different, which gives us the widest 

classes with respect to possible values of s-variables. Then 

we consider all possible pairs of s-variables and produce new 

classes by contraction, if corresponding pairs in the original 

expression consisted of identical symbols or were variables 

with identical indexes. We can expand this procedure 

to include e-variables also. We will then receive 

generalizations in which some e-variables may 

occasionally coincide, but which in all other 

respects are L-expressions. We shall call such expres-

sions LE-generalizations. 

We have considered generalization of unrestricted classes. 

If there are restrictions, we can cancel any combination of them. 

We also can introduce new restrictions if it is in agreement 

with the original expression. In our example, we can add the 
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restriction \\ s 2 ~ s 3 , since their projections in the 

original expression X and Y were different. According to 

the definition of s-restricted expressions, there are two 

types of restrictions that can be used: 

\\ s. ~ s. 
1 J 

\\ s. ~ 0 
1 

Since the number of e-variables and the number of pairs of 

s-variables are finite, manipulation with restrictions can 

give only a finite number of additional generalizations. 

It should be noted that if we did not restrict general

izations with L-expressions, every expression would allow an 

infinite number of generalizations. Indeed let E be an 

expression which does not contain variable 

Eex 

Eexex 

Eexexex 

Then 

and so on ad infinitum, will be different generalizations of E. 
From the finiteness of the number of L-generalizations 

it follows 

Theorem 4.6. There exists an algorithm which for every set 

of s-restricted classes gives the set of its tight L-generali

zations. 

The algorithm, if we ignore restirctions, is as fast as 

the GPA. Essentially it differs from the above algorithm 

only in that we redefine t-generalization to become a unique 

operation and make some pruning of the production tree. The 

following rules define t-generalization on a pair of expres-

sions when possible: 

( 1) t 
s(SlS2)i < s1 , s 2> = 

( 2) t s({S1 } u P) . <S 1 ,s(P)i> = 
1 

( 3) 
t s(P u Q.) • < S ( p) • 1 S ( Q) • > = 

1 J 1 

( 4) t 
<(El),(E2)> = {<El,E2>) 
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Associative extension defines t-generalization on a set of 

any number of expressions. When t-generalization becomes 

impossible, we either change the direction of motion, or 

(if we already are moving from right to left) generate an 

e-variable and finish the process. 

The following theorem may be useful: 

Theorem 4 .7. If all of the expressions to be generalized 

have an e-variable on the main level of parenthesis structure, 

then their tight L-generalization is, on the main level, unique. 

The proof of this theorem is left to the reader. 

Using L-generalization we can formulate simple but power

ful strategies of compilation. This is the simplest one (the 

points below refer to the five questions ~bout a strategy 

listed in Section 4 .4 ) • 

(1) The from without within strategy is used to 

determine the subexpression to be driven. 

(2) We try to stop driving at a given vertex of the 

graph of states only if a contraction is necessary, and only 

if there has already been, on the path to the current config

uration C, another configuration C' with the same determiner. 

If C ~ C', we loop Con C', otherwise we take a tight 

L-generalization G = <C,C'>, come back to the vertex C', and 

redo the graph generalizing C' to G. 

(3) When we loop in accordance with p. (2), and config

uration C' is a part of a larger configuration, we perform a 

decomposition, separating C' as a vertex in the graph of states. 

(4) There is no necessity to declare any configurations 

as basic a priori. Should some be so declared, corresponding 

provisions must be added to pp. (2) and (3). 

(5) The list of basic configurations is not expanded 

during the compilation process. When it is finished, one may 

make the list of basic configurations a posteriori. 

129 



It is easy to see that this strategy always leads to a 

finite complete graph of states in a finite number of steps. 

Indeed, no path in the graph may contain more than two config

urations with the same determiner. On the other hand, only 

those symbols may appear in the compilation process and must 

be taken into account which appear in the original Refal program. 

Therefore our universe has a finite number of difffrent symbols, 

and we cannot general·ize one and the same configuration more 

than a finite number of times because of Theorem4 .5. 

As an example of this strategy, consider the compilation 

process for the function 

kFe 1 
,. 1 kF ( ) e 1 j_ 

1 kF1 (e2 -) 1 kF (e 2) +e1 
,. 

el 
1 1 

l kF (e2 )sxel ,. kF (e 2sx) el 

kF1 (e2 ) ,. 
e2 

Our starting configuration is kFe11. Immediately, it 

turns into kF1 ( )e1 JL. It is the first appearance of the 

determiner F1 , therefore we continue driving. Next step we 

obtain configuration kF 1 (-)e1 JL on the first branch. Now we 

have to generalize. The only tight L-generalization for these 
1 two configurations is kF (e 2 )e1 JL. This is how we automati-

cally find the correct format and easily complete the compila

tion. It of course gives the original definition because it 

is perfect. 

The strategy we described ("L-generalization strategy") 

tries to make only those generalizations which are necessary 

in order to convolute an infinite graph of exact states into 

a finite graph of generalized states. It tries to avoid excessive 

overgeneralization. Of course it uses rather simple and crude 

means for that purpose, the technique of L-generalization. 

More subtle methods of generalization will lead to more perfect 

(less interpretive) programs. But we have reason to expect 

that even this technique will be quite adequate for a vast 

number of applications. One of the features of the compilation 
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strategy described is that different calls of the same function 

appearing in the different branches of the graph of states may 

be generalized to different configurations. Thus we can use the 

same function with a very specialized argument, and with a 

general argument in the same program without being afraid of 

undesirable interference. It should also be noted that although 

the number of possible L-generalizations of a given configuration 

C may be, according to Theorem 4.5, very large, the number of 

generalization steps in the compilation process is very unlikely 

to be large, and is always incomparably less than the full number 

of L-generalizations. For in each step we produce a proper 

generalization of the preceding configuration, so that the 

maximum number of steps is the number of members in the longest 

sequence of the form: 

C c G c G' c G" c ... c e 
X 

and not the number of possible generalizations of C. 
L-generalization may also be used for a direct (i.e. 

without a compilation process) transformation of a function by 

induction. This method is a thorough imitation of human 

reasoning by incomplete induction followed by a strict proof 

by mathematical induction. 

consider a function definition 

Let us compute 

A1 , A2 , etc. 

argument -value 

<t> Ll • Rl 

<t> L 2 => R2 

the function ¢> with several specific arguments: 

For each of these arguments we construct an 

form: 

etc. 

where Z. is the concretization of <t> A. 1 for all i. 
1 1 
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Now we LE-generalize these forms, and this will be our 

tentative form for the function ¢. We also could start 

with a generalization based on two values, then add one more 

and compare the new tentative form with the preceding one, 

repeating this procedure until we get a stable tentative form. 

If it is not trivial, (i.e. not just (ex) = e 1 ), we try to 

transform the definition of function S using the discovered 

form. In the right side of the tentative form we turn all 

free variables which do not appear in the left side into new 

functions of the variables found in the left side. This is 

our hypothesis. 

Suppose, e.g., that the tentative form is 

(e ) = L¢ 
X 

with the right side (which of course is an L-expression): 

( L ¢ ) ABC e l s 2 ( e 3 ) 

The hypothesis is: 

¢ ex 1 = ABC ~1 ex 1 ~2 ex 1 (~3 ex 1 ) 
In the general form the hypothesis is: 

¢ex 1 = L¢ II {(Vi~ ~i ex 1 )}i 

Now we take the first sentence defining ¢ and substitute the 

hypothetical expression for all ¢-calls in the right side R1 • 

If we denote ¢-calls entering R1 by ¢ Ej 1 (for a number of j), 

then we get a new right side 

R1 = R1 II{(¢ Ej 1 ~ L¢ II { ( v. ~ ~i Ej l)} i ) } . 
1 J 

If, e.g., the first sentence is 

¢ 1 e => ABC ex 1 ( ¢ e 1) X X 

then R1 will be 

(Rl) ABC e 1 ( ABC ~l ex l ~2 e 1 ( ~3 e l) ) 
X X X 

Now we try to recognize Rl as L¢. If we succeed 

(without any contractions or restrictions), then the first 

sentence is in agreement with the hypothesis. As a result 
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of the recognition process we receive a list of values assigned 

to all of the variables V .• They will generally include 
. . 1 

function calls ~ 1 EJ 1 (and possibly calls of other functions). 

We denote this as 

v1. := v. ({~i Ej 1} .. ) 
1 1) 

Since R1 is the result of one-step concretization of ~ L1 l, we 

get the following sentences for each of the functions ~i: 

~i Ll• Vi ({~iEjl}ij) 

In our example: 

~1 1 e = ex X 

~2 1 ex = 1 

~3 1 e = X 
ABC ~1 ex 1 ~ 2 ex 1 ( 3 

~ ex l ) 
If all the sentences defining function ~ allow this 

transformation, we will receive a new definition of the 

function~ using auxiliary functions ~i. Note that in 

each of the sentences defining the new functions ~i , the left 

side is identical to the left side of the corresponding sentence 

in the definition of ~. 

As a special case, the 

any free variables at all. 

tentative form may not contain 

Then no auxiliary functions will 

be.introduced and justification of the transfortation will consist 

consist of checking the identity of Ri to L~ for all sentences 

defining ~. Consider, for example, this function: 

T 

We perform driving and receive values for ~ 1 and for ~ s 1 1 , 
which both are T. We take their tight L-generalization, which 

is also T. Thus L~ is T. For the first sentence, ~lis 
obviously, T, and identical to L~. For the second sentence, 

we find after making the necessary substitution, that R2 is 

also T, i.e. also identical to L~. Therefore, we transform 

the definition of ~ into 

~ e 1 => T . 
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4.7. Mapping on the Computer 

The most general principle ofmapping of the Refal machine 

on a target machine {computer) is: to each configuration of the 

Refal machine there corresponds a control point in the program 

for the computer, and to each variable in the graph of states of 

the Refal machine there corresponds a variable in the computer 

program together with an information field in the computer 

memory and an access method to use this information. 

The linkage between the Refal machine and the computer 

is established by the concept of mapped variable. 

variable, then the mapped variable is 

V. in M 
1 

If V. is a 
1 

where M is a mapping of this variable, i.e. an object which 

encodes all directions necessary to have access to the value 

of the variable. The concrete form of M depends, of course, 

on convention. The access method used must be encoded, and 

some specific information must be provided, such as numerical 

or symbolic word addresses etc. A configuration, in which 

all variables are mapped, will be referred to as a mapped 

configuration. E.g., the mapped configuration 

6 C {s1 in A23) {e2 in A24, A25) 

may signify that when control in the computer is at the point 

corresponding to configuration c6 of the graph of states of 

the Refal machine, the value of the variable s 1 is stored in the 

word A23 (symbolic address) , and the value of e 2 is stored 

in the field beginning at A24 and ending at A25. 

To start turning a graph of states into a program for a 

computer we must somehow map the input configuration. In fact, 

the mapping of the input configuration should be an integral 

part of the exact formulation of the job. To define the final 

program uniquely, one must specify not only the input {initial) 

configuration, but also the way the input data is stored in 

the computer. The same is true for the output configuration: 
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the program will vary depending on the representation of the 

output data we choose. 

A compilation task must include a program P in Refal, 

and two mapped configurations: the input configuration Cin and 

the output configuration Cout. We will join these two config

urations into the i/o quasisentence: 

cin ~ cout 

E.g., the i/o quasisentence 

tion 4.1 might be 

k /L/ GROSS(CAT); ADD(DOG) 

for the problem considered in Sec-

(e in Rl, R2) ~ e in Rl, R3 
X y 

which means that the input string e should be taken from the 
X 

field with the boundaries stored in registers Rl and R2, while 

the boundaries of the output string should be stored in Rl and R3. 

The i/o quasisentence may be a useful tool even if 

variables are unmapped. Like a normal sentence, it begins with 

a concretization sign on the left side paired with the sign ~ 

which separates the two sides, and the right side is the product 

of ~he concretization of the left side. But unlike the case of 

a normal sentence, the variables in the right side of a quasi

sentence are different from those in the left side and Should have 

differing indexes. We shall make one exception, though. We 

shall use a variable in the right side with the same index 

as a variable in the left side, if we know for sure that the 

value of the right side variable will always be the same as the 

value of the left-side variable. Another distinction of the 

quasisentence is that the left side may contain nested concreti

zation brackets. A quasisentence may also be likened to a 

contraction in that the former, as well as the latter, defines 

the variables entering the right side through the variables 

of the left side: a definition of computed vari~les. 
The graph of states may have more than one passive configura

tion by which the concretization process may end. In this case we 

take an L-generalization of these configurations as the output 

configuration. Hence it may be necessary to add to the graph of 

states some transformation arcs leading to the output 
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configuration. The arcs will bear assignments resulting 

from the recognition of a given finishing configuration 

as the output configuration. The recognition will always 

be possible because the output configuration is a generali

zation, and will always lead to unique assignments because 

it is an L-expression. 

Transformation of a Refal program (or a graph of states 

of the Refal machine) into a program for the target machine, 

i.e. the mapping process in the general sense, includes 

procedures of two types: mapping proper,which refers to vari

ables and configurations, and translation of arcs anq other 

subgraphs of the graph of states (when all of the variables 

are mapped) into instructions for the target machine. The main 

unit in the translation process is a translation statement. 

It consists of two parts separated by a horizontal bar, the top 

part being an element of the graph of states, and the bottom 

part being its computer equivalent (translation). ~he final 

result of the mapping process, as well as intermediate results 

and some prerequisites, are translation statements. 

For a subgraph with mapped input and output configurations 

the translation sentence is: 

<i/o quasisentence> 

<corresponding computer program> 

If \..e make a mapping simultaneously with the compilation of the 

grath of states of the R3fal machine, the configurations of i/o 

quasi sentences will be expressed in terms of the original 

Refal program. If \..e first compile a gratil of states and W'len 

this part of the job is finished proceed to map, then configura

tions in quasisentences will appear in a standard notation 

(normal form). 'lranslation of external fmction calls is also 
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performed with the aid of corresponding translation statements. 

Suppose, e.g., that the target machine has an instruction for 

addition which in the assembler language (serving as the 

target language) is written in he form: 

ADD, Al, P.2 -+ A3 

(a three-addresse8 machine) . Let us use + as the determiner of 

the external function perofrming the operation designated by 

ADD, and let the format be 

k + (Nl) (N2 ) 1 
where N1 and N2 are the numbers to be added. (We ignore the 

type of numbers they are an0 their representatnon, although 

the user of cour~e should know this). The translation state

ment which would allow us to use this external function might he: 

k + (e1 in Al) (e2 in A2) ~ e 3 in A3 

ADD, Al, A2 -+ A3 

The essence of the mapping process is: starting with the 

configurations already mapped, move along the arcs and then map 

yet unmapped configuratjons in such a way so as to avoid 

unnecessary moves of the information in the computer. Contrac

tions are translated into co~ditional statements and definitions 

of new variables, whereas assignments are translated into 

assignments. Decompositions will become procedure calls. 

The full state of the Refal machine is not represented, 

generally, by a configuration, but by a vertical segment, i.e. 

a composition of a number of configurations (a stacy of function 

calls). The configurations (vertices, to ~e precise) of a 

graph of states fall into nonrecurrent, which do ~ot appear in 

the vertical segments gener.'tted by them, and recurrent, which 

do appear there. Recurrent configurations, in turn, fall into 

static and dynamic ones. A configuration is static if it 
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appears only on the top of any of the vertical segments 

generated by it. Otherwise it is dynamic. Static recurrent 

configurations corresponj to iteration, and should re 
programmed as nonrecursive procedures. Dynamic conrigura

tions correspond to "recursion proper" and must be 

programmed as recursive procedures. Analyzing the graph 

of states, it is easy to break down all active configura

tions into nonrecurrent, static and dynamic. 

The graph of states is a sort of flow chart of the 

future program, written in a special language. This language 

is rather abstract and doesn't specify some important features 

of the computer program (the mapping of configurations) , so 

we have some freedom of action for program optimization. 

Mapping is essentially code gener«tion, with a graph of 

states as the source program. Methods and techniques of 

efficient code generation developed ry different authors using 

different source languages can and should be used for mapping. 
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CHAPTER 5. METASYSTEM TRANSITION 

5.1. Metasystem Levels. 

Consider some functions defined in a certain object space. 

Consider different procedures of (equivalency) transformation 

of these functions. To speak of transformations we have some 

representation of functional definitions. In Refal, functions 

are defined by sequences of sentences. While we do transfor

mations manually, we deal with sentences as objects of a 

different nature than object expressions the elements of 

the object space of the functions being transformed. To 

computerize functional transformations we introduce new func

tions which deal with objects representing functional defini

tions. We call these functions metafunctions with respect to 

the original functions. Construction of such functions is a 

metasystem transition. A metasystem transition may be repeated 

unlimitedly. The original functions defined in the original 

object space will be referred to as functions of the ground 

(zero) metasystem level. Functions applied to transform (or 

generate) these functions will be referred to as being on the 

first metasystem level. Functions transforming the functions 

of the first metasystem level are said .to be on the second 

metasystem level, and so on. 

The principal idea of the present work is to construct 

a formal system, in which 

the formalized operations. 

language of this system. 

metasystem transition is one of 

Refal has been conceived as the 

Since functions in Refal may be 

defined only on object expressions, the representation of 

functional definitions to be used in a metasystem transition 

must transform sentences (and their parts: free variables, 

pattern expressions, function calls) into object expressions. 
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Th~representation, Metacode A was defined in Section 1.3. 

(We shall just say "metacode", for there won't be any other 

metacodes used.) 

The metacode is designed in such a way that a metasystem 

transition does not expand the full set of symbols used (other

wise it couldn't be performed unlimitedly by the Refal machine, 

whL:h doesn't generate new symbols). But it is convenient to 

use special symbols for the images of free variables, as a part 

of shorthand notation. 

On the ground metasystem level, we have such free variables 

as e 1 , sa , etc., which represent sets of object expressions. 

On the first metasystem level these variables will be repre

sented as object expressions *El, *SA, etc. In shorthand 

notation we will write a combination of three object signs 

*El as E1 ; combination *SA will become Sa , etc. These 

symbols will be called nonterminal symbols (or just nonterminals) 

of the first order. On the first metasystem level, nonterminals 

E1 etc. (as well as sign combinations *El etc.) are dealt with 

as normal object symbols and expressions, but when we are 

coming back to the ground level, we interpret them again as 

sets. 

Sure enough, the first metasystem level has its own 

free variables, which have the usual form e 1 , sa , s 1 , etc. 

When we make a metasystem transition to the second level, they 

turn into first-order nonterminals E1 (i.e. *El) etc. First-order 

nonterminals of the first metasystem level turn on the second 

level into combinations *VEl, *VSA, etc., which will be called 

nonterminal symbols of the second order and represented in 

shorthand notation as Ei , s~ , etc. Generally, a nonterminal 

E~ turns into E~+l in a metasystem transition. The absence 
l. l. 

of a superscript means the superscript 1. 

The author believes that formalization and computerization 

of the metasystem transition will have far-reaching consequences 

because repeated metasystem transitions is the essence of 

evolutionary processes and, in particular, it is a powerful 

instrument of creative human thinking (see [2]). To solve a 
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problem we first try to use some standard system of operations, 

rules, etc. If we fail, we start to analyze why we failed, 

and for this purpose we examine the p~ocess of appLying our 

rules and operations. This is a metasystem transition. We try 

to construct a metasystem with respect to the ground level 

system of rules and operations, which would give us some new, 

more elaborate rules and operations as the instruments to 

succeed in solving the problem. 

If we fail once more, we analyze the processes on the 

first metasystem level, which means that we make a second 

metasystem transition. This time we try to create instruments 

which would help us, on the first metasystem level, create 

instruments to solve the ground level problem. This transition 

from the use of an instrument to an analysis of its use and 

creation of instruments to produce instruments may be repeated 

again and again, and it stands behind the two and a half 

millennia of the development of contemporary mathematics. 

For a computer system to match the human being, it must model 

this process. 

We may construct a high tower of metasystem levels, but 

our ultimate goals will stay on the earth, expressed in terms 

of the ground metasystem level (the proof and use of all of 

the mathematics is ultimately with such tangible things as 

numbers and geometrical figures). As a complement to climb

ing up the metasystem stairway there must be some ~eduction 

of higher-level constructs to lower-level constructs. The 

specific rule of reduction will in each specific case be 

defined by the specific goal we pursued in making the metasystem 

transition. General laws and rules may also exist. This is one. 

Consider classes of expressions on the first metasystem level. 

The pattern expression which represents a class may include 

nonterminals, e.g. 

(1) E1 s 1 (A e 2 ) 

This is a class which includes such object expressions as 
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( 1 .1) 

( 1. 2) 

( 1. 3) 

El A (A ) 

El B (A BC+ 

El B (A E6 El s 2 END) 

etc. Each of these object expressions of the first metasystem 

level can be interpreted as a class of object expressions 

of the ground level by applying the inverse metacode transfor

mation. E.g. the first of these will be translated into 

(1.1') 

and so on. Now the question arises: what set of object 

expressions of the ground level corresponds to a class (1) on 

the first level? In other words, what is the union of all 

classes (1.1), (1.2), (1.3), etc.? 

The answer, as one can easily see, is very simple and 

may be expressed by the following ~eduction ~uZe: a class of 

classes is a class. To turn a class of the first metasystem 

level into the corresponding class of the ground level we only 

have to turn nonterminals of the first order into free vari

ables with new indexes. 

5.2. Graph of States as a Production System. 

On the first metasystem level the variables in the graph 

of states pass into nonterminal symbols. Contractions may be 

interpreted now as production rules for nonterminals. Assign

ments may also be interpretedas production rules but they are 

read from right to left and obey the corresponding law of 

composition (see Section 4.2, page 83 ). We introduce now 

a new type of nonterminal symbol in order to represent all 

information about an arc in the form of production rules. To 

each active nonterminal vertex V. characterized by configura-
. 1 

tion C1 we put into correspondence a nonterminal symbol Ki , 

which should eventually produce the set of all 

possible concretizations of Ci. The transition 
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from an active vertex V. to another (active or passive) vertex 
l. 

by a dynamic arc is a contraction for the nonterminal symbol Ki , 

because it generally limits the set attached to (eventually 

produced by) K. by changing K. into an expression which 
l. l. 

either is more specific already, or, at least, is closer to 

the completion of concretization. 

Example 1 

Consider as an example (not for the first time already!) 

the function which turns pluses into minuses, with the graph of 

states in Figure 17. 

e -+ 
1 

Figure 17 

The first horizontal arc here will be represented by 

two successive productions: 

(El -+ +El) (Kl -+ -Ex) 

The vertical line from c2 to c1 will become 

(Kl + Ex) 

We can combine (informally, for the time being) these two 

production sequences into one: 

( 1) (El -+ +El) (Kl -+ -Kl) 

Analogously, the second and third horizontal arcs will 

generate sequences: 

(2) 

( 3) (Kl -+ D) 
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(Nonterminal symbol Sa in the production for E1 in (2) is 

primed, as was the variable s in the corresponding contrac
a 

tion. Soon we shall see why this is important and how it is 

used.) 

Production sequences (1), (2) and (3) are not independent, 

because the arcs in the graph of states were not independent: 

the quasiinput set that corresponds to each arc depends on 

the preceding arcs. But we can transform the graph of states 

to make all arcs independent by adding necessary restrictions 

to the contracticns on the arcs. As we saw in Section 4.3, 

these restrictions generally have the form of a constPiction sum: 

( 4) u ••• u L 
n 

where constPiction 

reduced to the form: 

tePms L· for each i = 1,2, ••• ,n may be 
1 

67 1r. 
1 

with all contractions preceding restrictions. Moreover, 

restrictions\\ o~. may belong only to one of the four types 
1) 

described in Section 4.3, and correspond to a set known to be 

nonempty (Theorem 4.3).Both qi and ri may be zero (although 

not simultaneously). 

If sum (4) has more than one term, we shall introduce 

an additional dynamic arc for each term; each additional arc 

will lead to a new (additional) vertex. Each of the additional 

vertices will have to be explored, thus the graph of states may 

become essentially larger as a result of this transformation. 

Restrictions on free variables will pass into restric

tions on nonterminals, which we shall write immediately 

after the corresponding contraction. In our example the 

second arc (or path, to be exact) will change into: 

( 2 I ) ( E S 1 E ) (\\ S -+ + ) 1 -+ a 1 a 

144 



Using primary production sequences corresponding to the 

paths of the graph of states we may build sequences corres

ponding to walks by mere concatenation of primary sequences. 

E.g., to the walk 

1,2[1,3[1,3[1,4]]] 

the following production sequences corresponds: 

( 5) 

(El + +E1 ) (K + -K ) 
l l 

(\ \ s + +) 
a 

Essentially, this is a driving operation, hence the 

primed nonterminals behave like primed variables in driving: 

they generate a nonterminal with a new index, which should 

be substituted for all (primed and unprimed) entries of the 

original nonterminal in the primary production sequence (path). 

If we perform, step by step, all the substitutions called 

for in the production sequence (5), we shall see that it is 

equivalent to the following production sequence: 

which clearly provides the definition of our original function 

for a special class of arguments. 

From now on, we shall call production sequences like (5) 

and (6), corresponding to walks, just walks. Equivalency trans

formation as of (5) into (6) will be referred to as normaliza

tion. Unlike our previous notation for walks, which served 

only to refer to a graph of states reproduced elsewhere, our 

new walks are selfsufficient objects, which are constructed 

and transformed by certain rules, and have an interpretation. 

Our target now is to build productions for walks so as 

to examine the set of all walks. For this purpose we introduce 

one more type of nonterminal, nonterminal symbols of second 

order, which we shall denote as Wi (instead of the standard E~) 
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in order to stress that they generate sets of walks. To 

distinguish productions of the second level (W-productions) 

from productions of the first level, we shall use the double 

arrow • in recording these productions. 

To each active nonterminal vertex v. we put into 
1 

correspondence the nonterminal symbol W. , which eventually 
1 

generates all walks beginning at vertex V .• Now we can rewrite 
1 

the whole graph of states as a production system of second 

order, where to each horizontal a~c exactly one W-production 

corresponds. For the graph of states in Figure 17 the produc

tion system will be: 

(7.1) wl • (El -+ +El) (Kl -+ -Kl)Wl 

(7.2) wl • (El -+ S'El) (\\S -+ +) (Kl -+ SaKl)Wl a a 

(7.3) wl • (El -+ 0) (Kl -+ D) 

Production rules (7.1) and (7.2), corresponding to the 

paths which lead to active vertices, end with nontermimal 

W-symbols requiring continuation of the walk. Production 

(7.3) corresponds to a path leading to a passive vertex and 

does not have in the right side W-symbols; it consumates 

the process of the production of a walk. 

Production system (7) is a classical context-free 

grammar, generating the set of all possible (in the given 

graph of states) walks. The graph of states in the original 

form is regarded as a function definition. To use it we assign 

some values to the input variables, and generate in the 

process of computation a unique walk, because at each branch 

we must take a unique dynamic arc. Now we regard the graph 

of states as a production system, and at each branch we make 

an arbitrary choice as to which arc to take. ~hus we can 

produce any walk. Normalizing this walk we obtain: 

{1) the input set for this walk defined by contrac

tions for the input variables; 

{2) the output set, i.e. the set of all possible results 

of concretization of the starting configuration; 

{3) the mapping of the input set on the output set, 

(2) and {3) being defined through the contraction for the 
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starting K-symbol. 

Therefore we receive a nonrecursive one-step subfunction of 

the original function. It is identical to the original 

function on the input set and undefined outside. 

This is the subfunction for those arguments which take the 

chosen walk in the process of computation. Its definition 

by the normalized walk is essentially the same as in a Refal 

sentence with no concretization signs in the right side (the 

only difference is that restrictions are indicated explicitly). 

Consider now the case when there are composition loops 

in the graph of states. To the subgraph represented in 

Figure 18 the following W-production will correspond: 

c 

Figure 18 

Here C is the record of constrictions borne by the dynamic 

arc i, i+l. Should this arc be transformational, then 

assignments will take the place of C. 

Thus a composition loop adds the assignment of its 

starting K-symbol to the computed variable, followed by a 

bracketed W-symbol for the walk representing concretizations 

of the inner configuration. The bracketed nonterminal will 

produce walks, therefore every walk finally produced by Wi 

will not be a simple sequence of first-level productions, 

but an expression (a tree) of productions. This should be 

reflected in the rules of normalization. We use brackets 

(instead of parentheses) to structure these expressions for 

the sake of convenience only. From the formal point of view, 

brackets are the same as parentheses. 
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Example 2 

As a further example let us take the function of double 

scanning considered (and transformed) in Section 4.5 (page 120): 

a e 1 '* kFb kFa e 1 11 
a kF Ae1 • a B kF e 1 1 
a kF s 1e 2 '* s 1 kF a 

e2 1 
kFa '* 

kFbBe 1 '* c kFb e 1 1 
b b 1 kF s 1e 2 '* s 1 kF e2 

kFb '* 

The graph of states for this function is represented in 

Figure 15 (page 121). The production system for it is: 

(8.1) wl • (K3 +- E ) [W3] (Kl -+ K2) w2 b 

(8.2) w2 '* (Eb -+ BEb) (K2 -+ CK 2 ) w2 

(8.3) w2 '* (Eb -+ S)Eb) (\\ s3 -+ B) (K2 -+ S3K2) W2 

( 8. 4) w2 • (Eb -+ D) (K2 -+ D) 

( 8. 5) w3 • (El -+ AE ) (K 3 -+ BK 3 ) w3 1 

(8.6) w3 '* (El -+ S2El) (\ \ s2 -+ A) (K3 -+ S2K3) W3 

(8.7) w3 '* (El -+ D) (K 3 -+ D) 

To establish the rules of the walk normalization 

must give a more systematic 

Walks are composed of 

restrictions, and brackets. 

treatment of walks. 

first-order productions and 

In the process of a walk 

we 

prcduction we are dealing also with nonterminaL waLks, which in 

addition contain second order nonterminals W.. First order 
l. 

productions are bidirectional substitutions for first order 

nonterminals E. , S. , K. • A bidirectional substitution 
l. l. l. 
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consists of the antecedent, which is a nonterminal, and the 

consequent, which is an expression. The antecedent may be 

either on the left, or on the right side of the substitution; 

it is separated from the consequent by the arrow ~ or ~ , 

its direction being from the antecedent to the consequent. 

There are three types of bidirectional substitution: 

contractions, assignments and Peplacements. We have familiar

ized ourselves with contractions, restrictions, and assign

ments pretty well already. Replacements have the form of a 

contraction for a K-symbol, but their meaning is different. 

A replacement does not define the variables entering the 

consequent, as a contraction for an E-symbol does. Neither 

does it restrict the input set, as contractions for both E

and S-symbols, and restrictions do. Like assignments, 

replacements are used to attach a value to the antecedent, 

but this is a value (replacement) for a nonterminal symbol 

alPeady defined. Moreover, a replacement will be applied to 

exactly one entry of the antecedent nonterminal, not to all 

of the entries identical to the antecedent, as is the case 

for assignments. 

We call a walk tePminal, when we want to stress that 

it does not contain W-symbols (is not nontePminal). A 

terminal walk may be interpreted as a function definition. 

The process of interpretation is the reproduction of the 

steps the Refal machine will make when concretization takes 

place as indicated in the walk. 

By metasystem reduction, we interpret nonterminal s
and E-symbols as corresponding free variables in the graph 

of states. Nonterminal K-symbols are interpreted as configura

tions of the Refal machine. The full state of the Refal machine 

is given when a vertical segment is given, as well as the 

values of all the variables in all configurations of the 

segment. But we have only one walk, and we have no way to 

derive from it the full list of all configurations in the 

graph of states~ Still worse, even for those configurations 
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which appear in the walk, coded by K-syrnbols, we have no way 

of knowing what their full lists of arguments are. This becomes 

dramatically evident when an argument is present in the defini

tion of a function and all auxiliary functions, on whic~ nothing 

actually depends. Even if we know all possible walks in the 

graph of states, we shall never suspect that this argument is 

present in all configurations. A more realistic case is when 

an argument does have an impact on the process of concretiza

tion, but not along the walk we are examining. 

In the course of interpretation, we will maintain a stack 

of variables as a model of the full state of the Refal machine. 

The stack of variables will be a sequence of fields, each field 

being in correspondence with a configuration in the vertical 

segment representing the full state. A field is a sequence of 

assignemtns, in which the consequents are object expressions. 

To determine the value of a variable we, as is usual with stacks, 

find the last assignment for this variable, ignoring the bound

aries between fields. The procedure of interpretation is 

such that a variable appears in the stack either when it is used 

as an input variable, or when it is defined as a generalization 

or computed variable. Before it appears in one of these two 

capacities (if at all), the variable is ignored in the process 

of interpretation, because it does not influence the evolution 

of the configuration in the Refal machine. 

Besides the stack of variables, we shall keep track of 

the replacement rule, which is initially empty (nonexistent), 

appears at some stage of interpretation, undergoes transformations, 

and eventually provides the final result of interpretation: a 

replacement 

K. ~ E 
1 

where K. is the starting configuration, and E is the result of 
1 

its concretization. It is convenient to represent the stack of 

variables as a column of assignments, with horizontal bars 

separating fields, and with the replacement rule positioned at 

the top (beginning) of the stack. In the following, the 

replacement rule will be considered as a part of the stack. 
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In the process of interpretation \ole scan the walk from 

left to right performing the following. (At the beginning the 

stack is empty.) 

(1) A contraction. If the antecedent is not defined we 

declare it an input variable and obtain its value through an 

input procedure. If the antecedent is defined, i.e. there is 

an assignment for it in the stack of variables, we take its 

value from the stack. In both cases, we then apply the contrac

tion to the value of the antecedent variable. If there are 

variables in the right side (consequent) which are not defined 

or redefined in the contraction, we either take their values 

from the stack of variables, or, if there is no corresponding 

line, declare them input variables and use the input procedure. 

(We recall that an e-variable appearing in the right side of 

a contraction is always (re)defined. A primed s-variable is 

defined, a nonprimed one is not defined.) If the contraction 

succeeds, we update the stack of values (in particular, new 

lines may be added, if new variables are defined in contrac

tion). If it fails, we stop the interpretation \vith the 

conclusion that the exact input state (see Section 4.5, page 

111) is outside the input set for the interpreted walk. 

(2) A restriction. We check the condition, using the 

values of the variables from the stack. If it is not satisfied, 

we stop the process. A variable on either side of the restric

tion, for which there is no line in the stack, is treated as 

an input variable. 

(3) An assignment. We change the last line for the ante

cedent variable in the stack if it is there, otherwise we add a 

new line. The values of the variables in the consequent (left 

side) are taken from the stack or through the input procedure, 

as described in (1). 

(4) A replacement. We replace the values of the variables 

in the consequent (right side) by their values. Then we examine 

all the consequents in the stack of variables (including the 

replacement rule) and find the last nonterminal K-symbol with 

the same index as at the antecedent of the current replacement. 
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Then we replace it with the consquent of the current replace

ment. 3y the last K-symbol we mean the last in time. 'lb find 

it easily we shall mark each K-symbol appearing in the conse

quents in the stack with its sequential number written as a 

superscript. If there is no K-symbol with the same index to be 

found in the stack, we write the whole current replacement 

as the replacement rule in the stack. 

(5) A left bracket. At the end of the stack, we add a 

bar separating fields. 

(6) A right bracket. We eliminate the last field in 

the stack. 

( 7) 'Ihe end of the walk. ve eliminate the assignments 

am leave only the replacement rule in t'1 e stack. This is the 

final product. 

Let us come back to Example 1 for an illustration. 

Consider the walk (5). ~ke +XY as the input value for e 1 • 

Let us follow the process of interpretation. 

At the first step we execute the contraction (E1 ~ +E 1). 

Since the stack of values is still empty, we declare E1 in the 

left side as an input variable, get the value +XY for it (input 

procedure) , and start the stack of values by writing in the line 

+XY + El 

Immediately, we appiy the contraction, which is successful and 

changes this line into 

XY + El 

Now we execute the second production the replacement 

(K1 ~ -K1 ). There is no replacement rule in the stack yet, 

therefore we put this replacement in the stack, which becomes 

Kl ~ -Kf 

XY + El 

Execut.ing the third production, we once more change the 

value of E1 and define a new variable sa. The stack becomes: 

Kl ~ -K/ 

y + E 
1 

X + S a 
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'text we check the restriction (\\ Sa -+ +) , which holds 

because the value of Sa differs from + • Executing the replace

ment (K1 -+ SaKl) , we first turn the variable Sa in the right 

side to its value found in the stack: (K 1 -+ XK1 ). Now we find 

the last (and only) symbol K1 in the consequents of the stack, 
1 which is K1 , and replace it by XK 1 . The stack becomes: 

2 
K1 -+ -XK1 

y ~ El 

x ~ sa 

Proceeding in this way we ultimately get the result: 

Kl -+ -XY 

Consider now a more complicated example, where a 

function invokes itself with an argument which includes a call 

of the same function. 

Example 3 

4> A e 1 ,. B 4> el cp el 1 l 
4> el ,. el 

We take AA for the argument e 1 of function cp. The follow

ing sequence of view-fields results from concretization: 

The 

in Figure 

cf> A A 1 
3 cf>Act>AlJ. 
Bcf>ABcf>cf>lj_l 

B\j> AB 4>11 
B 4> AB 1 
B B 4> B cf>B1j_ 
B B cp B B 1 
B B B B 

graph of states for the function cp 

18. 
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The 

wl ... 
~~1 ... 
w2 ... 

Figure 18 

corresponding production system is: 

(El -+ AE1 ) (Kl ~ Ex) [Wl] (Kl -+ K2) 

(\ \ El -+ AE1 ) ( Kl -+ El) 

(ElEx ~ El) (K2 -+ BK1 ) wl 

B e 
y 

w2 

one can see that the nonrecurrent nonterminal symbol 

w 2 can be eliminated (we do it informally at this time), which 

transforms the production system into: 

w 1 

w1 .,. (\\ El -+ AE1 ) (Kl -+ E1 ) 

The walk which will be taken by the Refal machine with 

the initial view-field ¢ A A 1 , consists of twenty productions 

Below we reproduce the process of interpretation of this walk, 

giving the stack of variables at each stage (after performing 

the substitution). 
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1 2 3 4 5 

E1 -+ AE K1 + E [E1 -+ AE1 K1 + E [\ \ E1 -+ AE1 1 X X 

A + E1 A + E1 A + E1 A + E1 A + E1 

K1 + E K1 + E K1 + E Ki + Ex 1 X 1 X 1 X 

0 + E1 D + E1 0 + E1 

K2 + E K2 + Ex 1 X 1 

6 7 8 9 10 

K1 -+ E1] K1 -+ BK1 E1Ex + E1 \\ E1 -+ AE1 K1 -+ E1] 

A + E1 A + E1 A + E1 A + E1 

K1 + E BK3 + E BK3 + E No B + E 
1 X 1 X 1 X Change X 

0 + E1 0 + E1 0 + E1 

0 + E 0 + E 0 + E 
X X X 

11 12 13 14 15 

K1 -+ BK1 E1Ex + E1 E1 -+ AE1 K1 + E 
X 

[\ \ E1 -+ AE1 

K1 -+ BK~ K1 -+ BK4 K1 
4 

K1 
4 

K1 
4 

1 -+ BK1 -+ BK1 -+ BK1 

A + E1 AB+ E1 B + E1 B + E1 B + E1 

B + Ex B + E B + E K5 + Ex K5 + Ex X X 1 1 

16 17 18 19 20 END 

K1 -+ El] K1 -+ BK1 E1Ex + E1 \ \ E1 -+ AE1 K1 -+ E1 

K1 -+ BK4 
1 K1 -+ BBK~ K1 -+ BBK6 

1 No K1 -+ BBBB 

B + E1 B + E1 BB + E1 Change 

B + E B + E B + E 
X X X 
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A walk is said to be in normal form if: 

(1) it has no assignments, no composition loops; 

(2) it has exactly one replacement, which makes it end; 

(3) there is no more than one contraction for each variable. 

Any walk may be brought to a normal form -- normalized. 

The normalization process is, essentially, interpretation of 

the walk with an unknown exact input state. We scan the v1alk from 

left to right, but instead of checking constrictions we accumu

late them at the beginning (left end) of the walk; and instead 

of maintaining a stack of variables, where all their values are 

kept in their final form (as object expressions) , we accumulate 

assignments contain~ng free variables. 

First we consider a walk without composition loops. It is 

a sequence of constrictions, assignments and replacements. We 

note the following. 

(1) Because of the absence of composition loops, the 

assignn.ents may not contain non terminal K-symbols. 

(2) Nonterminal K-symbols appear in the walk exactly in 

the same order they will appear in the stack during interpreta

tion. If we make it a rule that we never transpose replacements 

in the process of normalizatioJ;>we can be sure that to use a 

replacement we should apply it to the nearest consequent on the 

left. 

(3) An assignment which ends a walk may be eliminated, 

because it will have no effect on the interpretation. 

The principal idea of normalization is: keeping replace

ments in their positions relative to one another, move constric

tions to the left, and assignments to the right, by commuting 

(transposing) them with neighboring substitutions; ultimately, 

the assignments are eliminated at the right end, the constric

tions accumulate at the left end and get simplified according 

to the rules of Section 4.3, and replacements, when they are 

not separated any more by other productions, combine into one 

final replacement. 

(*)A we~ker form: those replacements which involve the same 
K-symbol(s). 
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The range of a bidirectional substitution in a walk is 

constituted by all those substitutions whose final effect will 

be influenced by the substitution in question. It is the part 

of the walk stretching in the direction opposite to the 

direction of the arrow that will be influenced by a given sub

stitution. Therefore, the range of a constriction or replace

ment is to the left until the beginning of the walk, and the 

range of an assignment is to the right until the end. A walk 

can be thought of as something to be applied to the list of 

input variables placed at the left end; this is why constric

tions and replacements constitute the final normalized 

walk, and assignments are thrown away. 

Let us now formulate commutation rules for bidirectional 

substitutions. In the following, Vi is an s- or e-variable 

(nonterminal symbol) , Ri is any expression, possibly containing 

nonterminal K-symbols, Ei is any pattern expression (i.e. 

not containing K-symbols), L. is any L-expression; i, as well 
1 

as j, x, etc. are arbitrary indexes. 

Assignment-replacement 

(ARP) (E.-+- V.) (K.-+- R.) • (K.-+- (E.-+- V.)// R.) (E.-+- V.) 
l. l. J J J l. l. J l. l. 

Assignment-contraction 

(AC.D) (E.-+- V.)(V.-+- L.),. (E.-+- L.) 
1 l. 1 l. 1 l. 

This rule is written in a symbolic form. By E. -+- L. we m~an 
l. l. 

that Ei should be syntacticaZZy recognized as Li' and the 

result should be represented as a sequence of constrictions 

for the variables in Ei followed by a sequence of assignments 

for the variables in 

(9) ••• (V. -+- L. ) 
l.X l.X 

L.: 
1 

. . . (\ \ V. -+- L. ) • • • (E. -+- V. ) ••• 
l.Y l.y l.Z l.Z 

As a result of recognition using the GPA) we may receive 

more than one class constituting the intersection Ei n Li. 

Then for each of the sequences (9) we make a separate copy 

of the walk and continue normalization of each walk independently. 
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Thus we see that normalization of one walk may result in 

several normalized walks. Essentially, (AC.D) is the rule 

of driving. 

In the sequence (9) all constrictions precede all assign

ments; therefore this commutation rule, like the other rules, 

takes us one step further along the way of normalization. In 

some cases, though, we may retain the form E. ~ L. as a sort 
l. l. 

of contraction, for the sake of brevity. Like normal contrac-

tions, this form defines the values of some variables on the right 

side through the variable(s) in the left side. 

Consider now the case of i ~ j: 

(E. + V.) (V. ~ L.) 
l. l. J J 

Both substitutions are placed in the range of one another; 

therefore both consequents are subject to modification. But 

we are going to show that it will always suffice to modify only 

one consequent. 

If Ei contains Vj , but Lj does not contain Vi , the 

commutation rule will be: 

(AC .1) (E.+ V.) (V. ~ L.) ... (V. ~ L.) (E. II (V. ~ L.) + V.) 
l. l. J J J J l. J J l. 

and this is a most usual case when representation E. of a value 
l. 

in the stack of values must be updated because a variable V. 
J 

present in Ei undergoes a contraction. 

Consider the other possibility: when Vi enters Lj. Suppose 

V. is an e-variable, e .• Then e. cannot enter L. , because it 
l. l. l. J 

is different from ej , but all other e-variables in Lj must 

be new, hence may not be identical to e. , which has been in 
l. 

use before. Thus, V. is s(P) .• This is an example, when the 
l. l. 

assignment does influence the contraction: 

(A + s 1 ) (s 2 ~ s 1 ) 

Can this combination appear in an actual walk? In a walk result

ing from a production system without compositions it cannot. 

Because the contraction for s 2 may appear only in the driving of the 

preceding configuration. If in that configuration s 1 was 

assigned the value A, it must have disappeared from the config-
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uration (being replaced by A), thus it cannot appear as an old 

variable in any subsequent contraction. But, as we shall see 

later, an assignment may appear on a given level of a walk 

as a result of a aontPaation made in a function loop on a 

deeper level. E.g., the following sentences 

<P sl s2 '* ¢1 (sl) (s2) (¢2sl 1> 1 
1 

<P (s 1 > (s 1 > (s 3e 4 ) '* .•. 

will produce the combination in question. 

The commutation rule for the case when the assignment 

influences the contraction is: 

(AC. 2) ( E . + V. ) ( V . + L . ) '* ( V . + ( E . + V. ) I I L . ) (E. + V. ) 
1 1 J J J 1 1 J 1 1 

Can it be that both substitutions influence one another? 

We have established that if the assignment influences the 

contraction, V. is s(P) .• Therefore, E. is syntactically a 
1 1 1 

sywbol, i.e. either a specific symbol, or s(Q)x. But for the 

contraction to influence the assignment, V. must enter E .• 
J 1 

Therefore, xis identical to j, and both E. and V. are s(Q) .• 
1 J J 

But since V. is an s-variable, L. must be syntactically a symbol, 
J J 

and since s(P). must enter it, it must be identical to s(P) .• 
1 1 

Our case becomes: 

( s ( Q) . + s ( p) . ) 
J 1 

Which of the two AC rules should be applied here? Undoubt

edly, (AC.2), not (AC.l). If the left substitution were a "real" 

assignment, there could be no contraction later using s(P)i, 

because it would have been replaced by S(Q)j. Therefore the 

assignment is a transformed contraction, and the case should 

be covered by Rule (AC.2). Applying this rule and cancelling 

an identity substitution, we get the rule 

(AC. 3) (s(Q). + s(P) .) (s(Q). + s(J-) .) ,. (s(Q). + s(P) .) 
J 1 J 1 J 1 
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Finally, we can sum up the AC commutation rule for 

different variables in the following way: if the assignment 

influences the contraction, apply Rule (Ac.2) or (Ac.3); 

otherwise, apply Rule (AC.l). 

Assignment-restriction 

Since a restriction \\V. + L. does not (re)define any 
J J 

variables, but only checks a condition for V. , it is 
J 

commutable with any substitution which does not define V .• 
J 

Thus for i ~ j 

(AR) ( E . + V. ) (\ \ V . + L . ) '* (\ \ V . + L . ) ( E . + V. ) 
1 1 J J J J 1 1 

For i = j we formulate a symbolic rule, like we did in 

the case of contraction: 

(AR.D) (E. + V. ) (\ \ V. + L • ) ,. (\ \ E. -+ L . ) ( E . + V. ) 
1 1 1 1 1 1 1 1 

Using the technique described in Section 4.3 we transform 

symbolic restriction (\\ E. + L.) into a set,or several sets 
1 1 

of standard restrictions for the variables in E .• 
1 

Replacement-contraction 

(RPC) ( K . + R . ) ( v . + L . ) .. ( v . + L . ) ( K . + R . II ( v . + L . ) ) 
1 1 J J J J 1 1 J J 

Replacement-restriction 

{RPR) (K. + R.) (\ \ V. + L.) ,. (\ \ V. + L.) {K. + R. ) 
1 1 J J J J 1 1 

This completes the case of no composition loops. We turn 

now to the general case. 

A composition loop consists of an assignment for the 

computed variable of the loop and a bracketed walk: 

{Rx + Ex) (W] 

Unlike other assignments, an assignment for a computed vari

able contains exactly one K-symbol. Hence the rule: the 

position of computed var:iable assignments with respect to one 

another and to replacements must not be changed. Therefore 
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other assignments should be commuted with computed variable 

assignments like they are commuted with replacements: 

(CM.l) ( E1· + V. ) ( R + E ) ~ ( (E. + V. ) / /R + E ) (E. + V.) 
l. X X l. l. X X l. l. 

The main rule of dealing with brackets may be formulated 

as the "tPanspaPency pPinciple": the left bracket is transpar

ent, and the right is not. 

Assignments (not for the computed variable, of course) 

enter brackets from the left,to be used in all lower-level 

loops (global variables) • A copy of each assignment jumps over 

the brackets, to be used on the main level: 

(CM. 2) (E.+ V.)[W] ~ [(E.+ V.) W] (E.+ V.) 
l. l. l. l. l. l. 

Inside the brackets, assignments move to the right and ~isappear 

at the right bracket together with those assignments which 

were borne inside the brackets (local variables) • 

Contractions borne inside the brackets are global, not 

local. They move to the left, and get out through the left 

bracket (the principle of transparency). A PeVePsed copy of 

the contraction, i.e. an assignment which expresses the old 

variable through the new ones, is put behind the right bracket: 

(CM. 3) (R + E )[(V. + L.)W] ~ (R + E )(V. + L.)[W)(L. + V.) 
X X l. l. X X l. l. l. l. 

Restrictions born inside the brackets get out through 

the left bracket. Replacements go out through the left bracket 

and are applied to Rx in the computed variable assignment. 

When the brackets are empty, they are eliminated At that time 

R will contain no K-symbols, so that the assignment for the 
X 

computed variable Ex becomes a regular assignment, and normali-

zation continues. 

The rules we formul~ted are enough to normalize any walk, 

but to facilitate the process of normalization we introduce 

one more concept: the conjunction of substitutions of the same 

type but for different variables. The operation of conjunction 

is represented by joining the operands with the plus sign, and it 
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means that all of the substitutions conjoined should be 

applied simultaneously. 

Let, e.g., variable e 1 have value X, and variable e 2 -

value Y. A sequence of two assignments, e.g. 

(10) 

means the composition of the constituents. As a result of 

reading it from left to right, e 2 will take the value XA, and 

then e 1 will take value XAB, because at the time the second 

assignment is used, the value of e 2 has been changed by the 

first assignment. When we use the conjunction 

(11) 

we form new values for all variables simultaneously. The 

resulting value for e 2 will be the same (because in (10) the 

first assignment is out of the range of the second anyway), 

but e 1 will take a different value: YB. To represent (10) as 

a conjunction (to conjoin the substitutions) we take into 

account their interaction: 

(12 = 10) 

In general form, the rules for conjoining two assign

ments are: 

(one variable) 

(different 
variables) 

v.) 
1 

(E.+ V.)(E. + V.),. (E.+ V.)+((E.+ V.)//E. + V.) 
1 1 J J 1 1 1 1 J J 

The rules for conJo1n1ng constrictions were presented 

in Section 4.3 (although we did not use this term at that time). 

Replacements are never conjoined in the process of normalization, 

but whenever we have a pair of adjacent replacements we immedi

ately use the composition rule: 

(Ki + C lKjC 2 ) (Kj + Rj) ,. (Ki + C1 RjC 2 ) 

where cl and c2 are multibrackets. 
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Conjunction is obviously associative and commutative. 

It is convenient to agree that the operation + ties closer 

than concatenation. The conjunction rules for a pair of 

substitutions can be easily generalized to any number of 

constituents by adding a sort of associativity law for 

composition (concatenation) and conjunction. Thus normali

zation becomes an equivalency transformation over expressions 

built of bidirectional substitutions using two operations: 

concatenation and conjunction. The rules of transformation 

are: commutation rules for substitutions of different type, 

and conjunction rules for substitutions of the same type. 

Consider an example of normalization. 

tion system (8) in Example 2. Let us form a 

Remember produc

walk by using 

(.1), (.6), (.7), production rules in the following 

(.3), (.4) • It will be: 

sequence: 

1 • 2 3 4 5 6 
(K 3+ Eb) [(E1 -+ s 2E1 ) (\\s 2-+ A) (K 3-+ s 2K3 ) (E1-+ 0) (K 3-+ 0) ] 

(Kl-+ K2) 7 (Eb-+ S)Eb) 8 (\ \ S3-+ B) 9 (K2-+ S3K2) 10 (Eb-+ 0)ll(K2-+ 0) 12 

(The superscripts are sequential numbers of productions for 
1 2 

easy reference: P , P , etc.) 

First we take P 2 and P3 out of the composition loop by 

the transparency principle and Rule (CM.3). Contraction P2 

generates an assignment immediately outside the right bracket, 

but since there is no variable E1 in its range (i.e. the 

remaining part of the walk until its end), we mentally commute 

it with every production, and eliminate it at the end of the 

walk. 

Now the beginning of the walk is 

(El -+ S2El)2(\\S2-+ A)3(K3+ Eb)l[~ 3-+ 

Taking out replacement P 4 and substituting 

transform the latter into 

1 
(S2K3 +- Eb) 

4 
S2K3) ... 
it into Pl, we 

while P4 disappears. 

P4 , we make brackets 

Treating P5 and P6 as we treated P 2 and 

empty and transform the first line repre-

senting the walk into: 
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(El + 8iE1)2 (\\82 + A)3 (El + 0)5 (82 + Eb)l 

Here we can conjoin P 5 and P 2 , which transforms P2 into 

2 
(El + 82) 

and kills P5. 

Now we move Pl, which became a regular assignment, 

the right. It commutes with p7 and combines with P8 into 

(8 2 + 8jEb) 

to 

by Rule (AC.D). The result of driving is two assignments: 

(82 + 83)13(0 + Eb)l4 

which are now to be moved to the right instead of one assign

ment P1 • 

P14 combines with P11 into a trivial "contraction" 

(0 + D) 

and dies at the end of the walk. 

By Rule (AR.D), P13 and P9 combine into 

(\\ 82 + B) 15 (82 + 83) 13 

Restriction P15 moves to the left, while P13 transforms P10 : 

(K2 + 8 K )10 
2 2 

and dies too. 

Now we have a sequence of replacements 

(Kl + K2) 7 (K2 + 82K2)10 (K2 + 0)12 

Combining them into one, we receive finally the normal form: 

(El + 82) (\\82 +A) (\\8 2 +B) (Kl + 8 2 ) 

Normalizing the walk in Example 3, we get: 
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5.3. Set Selectors. 

A set selectoP is a function defined on a subset of the 

full set of expressions, and such that its value is identical 

to its argument when the argument is any expression for which 

the function is defined. So, both the domain and the range 

of a set selector are the same set of expressions, and on this 

set the function returns its argument as the value. We shall 

say that the selector defines this set. 

Selector 

a L '* L 

where L is an L-expression, defines the same class as L. To 

define a set which is the union of several L-classes, we write 

the corresponding number of sentences: e.g., set selector 

T s 1 ,.. s 1 

T(e1 ) .. (e1 ) 

defines the set of all terms. 

A selector definition may contain "negative" sentences: 

e.g., the set of all symbols different from A may be defined 

by selector: 

a A ,. k? 1 
(l s '* 1 

Here the question mark "?" is the determiner of a function which 

is not defined (this simply means that no sentence in the algo

righm has "?" as the determiner). Accordingly, when the argu

ment of the selector function is A, the Refal machine will have 

an abnormal stop. With any other symbol, it will return the 

argument. 

A selector definition may be recursive, such as 

v 1 ex .. 1 v ex 1 

which defines the set of all sequences of l's including the 

empty sequence. If we were to exclude the empty sequence, we 
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would modify the definition in this way: 

v 1 ~ 1 

v 1 ex ~ 1 v ex 1 
To define more complicated set selectors one may intro

duce a hierarchy of auxiliary selectors, much in the same manner 

as when using the Backus normal form. It is especially easy 

to transform a BNF into an equivalent selector definition 

if the BNF meets certain requirements, which we will presently 

formulate. 

To each alternative in a BNF we can relate a aovePing 

L-alass. Let us take as an example the first line in the 

syntax of ALGOL-60 numbers as defined in the famous RepoPt on 

the AlgoPithmia Language ALGOL 60: 

<unsigned integer> ::= <digit>l<unsigned integer> <digit> 

Since a digit is one of ten symbols 0123456789, we represent 

the first alternative by the L-expression 

s(Ol23456789) 
X 

For the second alternative we construct, as a rough approximation, 

the L-class 

e s(Ol23456789) 
X y 

which is obtained by replacement of a metavariable whose values 

generally are expressions from the Refal viewpoint, by an 

e-variable. In the general case, for an alternative which 

corresponds to a set S of terminal expressions we can take as 

a aovePing L-alass any L-class L such that S c L. 

Suppose now that these rough approximations are sufficient 

to separate the alternatives for one metavariable in the BNF. 

More precisely, let it be possible to order the alternatives 

and the corresponding sets s. in such a way that for each i: 
1 

s. n Ll = ¢ 
1 

s. n L2 = ¢ 
1 . . . . 

s. n L. 1=¢ 
1 1-
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where Lj are covering classes for sj. 

Then we can define the set selector corresponding to the 

metavariable in question bv making L. the left side of the i-th 
- 1 

sentence (i.e. parsing the argument as the covering L-class), 

and applying the corresponding set selectors to define the 

free variables in the right side. For unsigned integers 

this gives: 

k/UNSIGN-INT/ s(Ol23456789) 1 

k/UNSIGN-INT/ e 1 s(Ol23456789) 2 ~ k/UNSIGN-INT/ e 1 1 s 2 

Let us examine from this point of view the rest of the 

syntax of ALGOL-60 numbers: 

<integer> ::=<unsigned integer>l+<unsigned integer> 

!-<unsigned integer> 

<decimal fraction> ::= .<unsigned integer> 

<exponent part> ::= 10 <integer> 

<decimal number> ::=<unsigned integer>j<decimal fraction> 

<unsisned number> 

<number> 

!<unsigned integer> <decimal fraction> 

::=<decimal number>j<exponent part> 

!<decimal number> <exponent part> 

::=<unsigned number>j+<unsigned number> 

!-<unsigned number> 

The definitions of integer, decimal fraction, exponent 

part and number meet our requirement, although those for 

integer and number need reordering. The definitions of decimal 

number and unsigned number do not satisfy the condition. But 

they can be rearranged to satisfy it. 

What we need of course is unsigned number which is a 

string composed of three elements in fixed order: (1) unsigned 

integer or empty, (2) decimal fraction or empty; 

(3) exponent part of empty, with a restriction that all three 

cannot be empty. Therefore, there are three stages in the 

process of parsing, to which three recursive metavariable 

definitions must correspond: (1) when we are inside the unsigned 

integer, a decimal fraction and exponent part still may be 

encoutnered, (2) when we are inside the decimal fraction, an 

exponent part may be encountered, (3) when we are inside the 
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exponent part, there will be no subsequent parts. We will 

assign to the first stage metavari3ble < ife>, and to the 

second stage metavariable <fe>. For the third stage we can 

use the already existing metavariable <integer>. This part 

of the BNF becomes: 

<unsigned number> ::= <digit><ife>l .<digit><fe>i 10 <integer> 

<ife> ::= <digit><ife>l.<digit><fe>i 10<integer> 

1 <empty> 

<fe> ::= <digit><fe>i 10<integer>l<empty> 

This BNF meets our criterion. Metavariables 

<decimal fraction> and <exponent part> become unnecessary, 

and the definition of the set selector /NUMBER/ will be: 

k/NUMBER/ + e - + k /UNSIGN-NUM/ e 1 X X 

k/NUMBER/ - e => 
X 

- k /UNSIGN-NUM/ ex 1 
k/NUMBER/ ex => k /UNSIGN-NUM/ e 1 X 

k/li_'miGN-NUM/ s(Ol23456789) 1e 2 • 51 k/IFE/e 2 

k/UNSIGN-NUM/ .s(Ol23456789) 1e 2=> .s1k/FE/e 2 

k/UNSIGN-NUM/ 10e 1 • lO k/INTEGER/e1 1 
k/IFE/ s(Ol23456789) 1e 2 ~ s 1 k /IFE/ e 2 1 
k/IFE/ .s(Ol23456789) 1e 2 => .s1k/FE/e2 1 
k/IFE/ lO e 1 ~ lO k /INTEGER/ e 1 1 
k/IFE/ • 

k/FE/ s(Ol23456789) 1e 2 • s 1k/FE/e2 1 
k/FE/ lO e 1 ~ lO k /INTEGER/ e 1 1 
k/FE/ => 

k/INTEGER/ + e 1 • + k /UNSIGN-INT/ e 1 1 
k/INTEGER/ -e1 

k/INTEGER/ e 1 

~ - k /UNSIGN-INT/ e 1 1 
k /UNSIGN-INT/ e 1 1 
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It is easy to build the intersection of two sets defined 

through their set selectors. If selector cr1 defines set 51 , 

and selector a2 defines set 52 , then the selector defining 

the intersection 51 n 52 is simply 

a ex ~ crl cr2 ex 1 1 
But it is impossible to define the complement and the union 

of sets without reshaping the definitions of corresponding 

selectors. Very often it is more convenient to deal with 

classical recursive predicates as definitions of sets. Let a 

predicate P be given, which takes the truth value T if and 

only if the argument belongs to set 5. A selector for 5 can 

be built without intervening into the definition of P. We define 

a universal function £: 

k £ s e - k £ 1 (ks e 1) e 1 p X p X X 

k 1 
£ (T) ex - e 

X 

Now, function a defined by 

a e ... k £ P e 1 X X 

will be a set selector for the set 5 defined by the classical 

predicate P. 

Just as we use free variables to represent classes of 

expressions, we may use set selector calls to represent more 

sophisticated sets. The expression a e J stands for any e 
X - X 

which is an element of the set defined by selector cr. We can 

limit the domain of a function by applying a set selector to 

the function's argument. Let ~ be a function, and a a selector 

defining set 5. It may happen that we are interested in 

function ~ as applied only to elements of 5. Or we may know 

for sure that in some program the function ~ will be applied 

only to such expressions which are again elements of 5. Then 

we define a modified function 
1 

~ ex • ~ a ex l 1 
and in the process of compilation, or making equivalence trans

formations in any other way, we use ~l instead of ~- It may 
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lead to a very significant simplification of the resulting 
program. 

As an example, let us consider the following theorem: 
if X is a string of l's, then 1 X is identical to X 1. To 
formulate it in Refal we introduce the set selector 

a 1 e ~ 1 a e 1 
X X 

and the predicate of identity: 

k=() ()~T 

k = (s1 e 2) (s1 e 3) ~ k (e2) (e 3) 1 
k = e ,.. F 

X 

Then we form the predicate which verifies the proposition 
stated in the theorem: 

kC1 lexJ ~ k=(l a ex1> (a exl 1)1 

The theorem will be proven if we transform this definition into 

kc1 (e ) ~ •r 
X 

Let us use the compilation process. By the outside-in 
strategy, we find that the first subexpression to be driven is 
the second call of a ex 1 • The driving produces the follow-

ing transitions and configurations: 

(1 + 2) e + 0 
X 

( 2) k = (1) (1) 1 

(1 + 3) e + 1 e 
X X 

(3) k = (1 1 a exl> (1 a ex 1 1) 1 
Configuration c2 immediately becomes T ; configuration 

c3 is also transitory and passes into c1 • Thus we obtain: 

k c1 ( > • 

kC1 (lex) • kC1 (ex) 1 
This definition is transformed by induction (see Section 4.6) 
into 
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kC1 (e ) ~ T 
X 

which proves the theorem. 

Set selectors can also be used to define parametric sets, 

i.e. sets depending on a parameter. A parametric set selector 

has the format: 

k F ( P) E 1 
where F is a determiner, P a parameter, and E the argument proper. 

The value of this function when it exists will always be identical 

to E. For instance, this is the definition of the set of all 

strings built by the repetition of the same symbol (which is a 

parameter) : 

a (s ) ~ 
a 

a(s )s e ~ sacr(s )e 1 a a x a x 

One can see that the above theorem and its proof can be 

easily generalized for this set of strings. 

5.4. Covering Context-Free Grammars. 

The production systems we introduced in Section 5.2 are 

two-leveled. As they are defined (an the second metasystem level), 

they are context-free grammars producing certain objects. These 

objects (walks) are productions themselves, but of a different 

nature. They constitute the first metasystem level and produce 

input and output expressions on the zero level. First-level 

grammars are not context-free, because productions on this level 

appear in groups as the result of free choice on the second 

level, and once having appeared, they must be used in the process 

of walk in~erpretation. But we can build covering context-free 

grammars for input and output sets by "disassembling" produc

tions of the first level. We will allow combining these produc

tions freely. By doing so we certainly may only expand the set 

of produced expressions. These "covering" sets will give us 

first approximations to exact sets. 
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We shall discuss here onlyoutput sets. The output 

expression ultimately results from performing a series of 

replacements. So, as "the very first" approximation, we can 

collect all the replacements scattered throughout the right 

sides of the second-level production system, and ignore all the 

rest. Then we change nonterminal s- and E-symbols into 

s- and e-variables, and add restrictions if there are any. 

In Example 2 (Section 5.2) the resulting covering grammar 

will be: 

Kl -+ K2 

K2 -+ 0 

K2 -+ C K2 

K2 -+ s 3K2 \\ s 3 -+ B 

This is already something significant. 

To construct a better grammar we should take into 

account that nonterminal symbols other than those corresponding 

to input variables may (and usually do) have more restricted 

ranges of values than the sets of all symbols and expressions. 

Therefore we add·to our "dissassembled" system all the 

assignments for these nonterminals, which can be found in the 

original second-level system. In this process, we turn 

assignments into productions by swapping the sides and changing 

the direction of the arrow. This amounts in fact to the 

following way of interpreting a walk: first we move along the 

walk from left to right performing replacements; on coming to 

the end we reverse the direction of movement and apply a~sign

ments, which, being read from right to left, work now as 

contractions for nonterminals entering the result of conreti

zation. 

What should we do with contractions in this approach? 

We ignore them when moving from left to right since we are 

not interested in the input set. But when we are ~oving back

wards we must remember that contractions not only limit the 

input set, but also very often define new variables. If we 
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ignore it, we will not be able to ultimately reduce nonterminal 

symbols to terminal elements: symbols, parentheses, and free 

(input) variables. 

Variables defined in the right side of a contraction are 

certain functions of the variable in the left side. If we 

introduce special functional designations for variables involved 

in elementary contractions, we will be able to replace a contrac

tion for the left side variable by a set of assignments defining 

the right-side variables. At least this is true with respect 

to the four contractions which define new variable by breaking 

down an e-variable into two parts. The functional designations 

we choose are presented in the following table: 

Contraction Eguivalent Assignments 

E. -+ SjEk l. 

R, r 
+- Ek) (cr (E.) +- s.) (£ (E.) 

l. J l. 

E. -+ EkSj l. 

r R, 
+- Ek) {cr (E.) +-S.)(£ (E.) 

l. J l. 

E. -+ (Ej) Ek l. 

R, r 
+- Ek) {1T (Ei) +-E.)(£ (E.) 

J l. 

E. -+ Ek{Ej) 
l. 

r R, 
+- Ek) (1T (E.) +-E.)(£ (E.) 

l. J l. 

All eight functions (which will be referred to as spLit 

functions) are defined so that if the required split of the 

argument is impossible then the function call has no value, 

and the expression in which this function call appears is 

declared to correspond to the empty set ~ (not to the empty 

expression D!). A production containing such a function call 

in its right side should be cancelled. 

So we introduce split 

sides of the productions in 

But there will be no split 

expressions produced by the 

in the argument of a split 

function calls into the right 

the covering context-free grammar. 

functions in any of the terminal 

grammar. When all nonterminal symbols 

function are replaced by terminal 

elements, its value can be easily computed. This is obvious 

when the argument consists of symbols and parentheses only, e.g. 

crR, {ABC) = A 

,f(X(YZ)) = YZ 

etc. When there are free variables in the argument, one should 
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remember that in a context-free grammar they represent corres

ponding full sets of values, and not some unspecified values, 

as is the case in driving. Also the value of a splitting 

function is a set, and no mapping is required between the 

argument set and the value set. Thus there will be no contrac

tions. Not only 

= s. 
1 

where i is any new index, but also 

R, 
cr (els2) = si 

etc. 

Using the definition of splitting functions, we can always 

transform the grammar so as to eliminate function calls from 

the final product. We are helped in this enterprise by the 

fact that we are after all building a covePing grammar: if 

worse comes to the worst, we replace the unyielding function 

call by the appropriate full set s , or e • 
X X 

Turning again to Example 2, we disassemble the W-production 

system into the following context-free grammar: 

(1) 

( 2) 

( 3) 

( 4) 

(5) 

( 6) 

( 7) 

( 8) 

( 9) 

( 10) 

(11) 

Kl 

K2 

K2 

K2 

K3 

K3 

K3 

Eb 

Eb 

s3 

s2 

-+ K2 

-+ C K2 

-+ S3K2 \\ s 3 -+ B 

-+ 0 

-+ B K3 

-+ S2K3 \\ s 2 -+ A 

-+ 0 

-+ K3 

r 
-+ e: ( Eb) 

-+ crR.(Eb) 

-+ crR,(e1 ) 
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The nonterminal symbol E1 corresponds to an input variable 

and has been therefore changed into the free variable e 1 . 

Production (11) is immediately transformed into 

Now (6) becomes 

K3 ~ s 2K3 \\ s 2 ~A 

and (11) can be cancelled. 

For s 3 we have only one production (10), which is non

recurrent; thus we substitute it into (3) and cancel (10). 

Now let us transform the productions for Eb. Nonrecurrent 

production (8) expresses Eb through K3 • Recurrent production 

(9) may be cancelled. Indeed any chain of applications of (9) 

will ultimately end with an application of (8). The combined 

result of the last two applications will be 

r 
Eb ~ £ (K3) 

Unfolding K3 , we use (5), (6) and (7) with the result 

Eb ~ K3 

Eb ~ K3 
r 

(The third production is annihilated, because £ (D) is ¢.) 
This shortens by one the length of the chain of the applica

tions of (8). Since this procedure may be repeated any number 

of times, we come to the conclusion that the effect of the two 

productions (8) and (9) is exactly the same as that of one 

production ( 8) . 

Using (8) we transform (3) into 

( 3 I ) 

For the function call in (3') we obtain by unfolding K3 : 

(12) 

(13) 

o£(K 3 ) ~ B 

o£(K 3 ) ~ s 2 \\ s 2 ~ A 

Combining (3') with (12) we get no production because of the 

restriction; combining it with (13) we get 
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{3") K2 -+- s 2K2 \\ s 2 -+- A \\ s 2 -+- B 

Production {2) can now be submerged by (3"), and we finally 

get: 

Kl -+- K2 

K2 -+- s 2K2 \\ s 2 -+- A \\ s 2 -+- B 

K2 -+- 0 

The covering output set thus obtained is by the way equal to 

the exact output set. 

To make covering grammars still more precise, we intro-

luce check functions in addition to split functions. Check 

functions have the form ~{C), where C is a contraction or 

restridtion for nonterminals, e.g., ~{Sa-+- B), ~{\\s1 -+- B), 

~ {E -+- 0) etc. 
X 

A check function has value 0 if the condition 

specified by the argument is satisfied, otherwise it has no 

value and the expression in which the function call appears 

will correspond to the empty set ¢ of terminal expressions, as 

in the case of an unfeasible split. 

We use check functions to take into account constrictions 

when disassembling a production system. If a path has a constric

tion C in it, we can add ~(C) to the consequent of any replace

ment or assignm.ent in this path. Consider the following example, 

which will be used in Section 5.5. 

Example 4 

1jJ 
4 B B 1)J 11 A e 3 ~ e3 

1jJ 
5 

~ c B 1jJ 11 A e 3 e3 

1jJ p6 ~ 

B Zex ~ Z B 8 ex 1 
B sa ex ~ sa8 ex 1 
8 ... 

The production system corresponding to this definition is: 
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wl ... (E3 -+ 4 A E3 ) (Kl -+ B K2) (Kl +- Ex) [Wl l w2 

wl ... (E3 -+ ASE3) (Kl -+ c K2) (Kl +-Ex) [Wl]W2 

wl ... (E3 -+ P6) (Kl -+ 0) 

w2 ... (E -+ Z Ex) (K 2 -+ z B K2 ) w2 X 

w2 ... (E -+ S 'E ) (\ \ S -+ Z) (K2 -+ SaK2)W2 X a x a 

w2 ... (Ex -+ 0) (K 2 -+ 0) 

Disassembling it into a context-free grammar for the 

output set, we obtain: 

(1) Kl -+ B K2 

( 2) Kl -+ c K2 

( 3) Kl -+ 0 

( 4) K2 -+ z B K2 z;(cr~(E ) -+ Z) 
X 

( 5) K2 -+ S K2 l;(\\s -+ Z) 
a a 

( 6) K2 -+ 0 

( 7) E -+ Kl 
X 

( 8) s -+ cr~(E ) 
a X 

Substituting (7) into (4) and using (1), (2) and (3), we 

see that the check function in (4) never says yes, therefore 

we eliminate rule (4). From (8), (7) and the rules for K1 
again, we obtain: 

sa -+ B 

sa -+ c 

Therefore we receive three productions for K2 , whose right sides 

are completely identical to those for K1 • Identifying K1 and K2 , 

we finally get: 

K1 -+ B K1 

K1 -+ C K1 

Kl -+ 0 
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In equivalence transformation, covering context-free 

grammars for output sets may be used in the following way. 

Suppose we have a composition, e.g. 

1 2 
kC ( kC (e1 ) (e 2 ) l) (e 3 ) l 

Suppose we simplified the definition of c2 as we could, and 

we did our best to drive the composition as a whole, yet could 

not avoid the necessity of decomposition. Then we may construct 
2 a covering context-free grammar for C , and define the corres-

ponding set selector a 2ex 1 . N0\'1 intead of driving the outer 

configuration just as it is defined: 

we will drive the configuration 

1 2 
kC (a exl) (e 3 ) 1 

exploiting in this way some properties of the argument e resultx 
ing from concretization of c 2 • An example of using this 

technique will be given in Section 5.5. 

5.5. Differential Metafunction. 

Walk normalization defined in Section 5.2 applies to 

terminal walks, and produces walks in normal form. We intro

duce now the function T, the equivalence transformation of a 

walk, which may be applied to both terminal and nonterminal 

\<Talks. Function T is such that if Wt is a terminal walk, 

then T Wt l is a walk which has the same normal form as wt. 

If W is a nonterminal walk, it represents a set S of terminal 

walks. Then for any Wt e S, T Wt 1 shall have the same 

normal form as wt. Since normalization leaves the walk invari

ant with respect to interpretation, the equivalence transfor

mation will also have this property. It will be presumed in 

the following that function T is such that it makes the walk 

"closer", in some sense, to the normal form. In particular, 

for a terminal walk Wt the result of the concretization of T Wt 1 
should always be identical to the normal form of Wt (although 
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the process of transformation should not necessarily be exactly 

the same as described in Section 5.2). 

We presume furthermore that there is a definition of the 

function T in Refal; however, we shall deal with it informally, 

appealing to our understanding of the normalization process and 

generalizing it for the case when there are some nonterminal 

W-symbols in the walk under transformation. There is only one 

difference to mention between the equivalence transformation 

we are going to use and the normalization process as described 

in Section 5.2. It concerns composition loops. We recall 

that a composition loop is a construction of the form 

{1) {K.+E)[W.] 
~ X ~ 

where w. is the nonterminal symbol for a walk with the head 
~ 

K-symbol K. 
~ 

{indexes i and x are arbitrary). In the normali-

zation process, replacements borne by w. and coming up to the 
~ 

left bracket from inside are immediately used in the consequent 

of the assignment for the computed variable E • In the equiva-x 
lence transformation we shall always keep the initial form of 

this assignment {changing, possibly, only the index i of the 

K-symbol) • Instead, we shall add new assignments for E • 
X 

Specifically, let the loop become: 

{ 2) {K. +E) [{K.-+ C1K.C 2 ) W.] 
~ X ~ J . J 

where c1 and c 2 are multibrackets, and j may be equal to i 

or different from it. Instead of transforming it into 

(3} {C1K.C 2 + E ) [W.] 
J X J 

we shall reshape it in this manner: 

{ 4) {K. ~- E ) {C1E C2 + E ) [W.] 
J X X X J 

which is equivalent to (3) provided that cl and c2 do not 

contain E (if they do, a renaming procedure will be needed). 
X 

Since after normalization ~·J. will not contain E , we trans-
J X 

pose the second assignment and transform finally (4) into 

(5) ( K . + E ) [W. ] ( C 1E C 2 + E ) 
J X J X X 
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Let a function F be given by its graph of states G. 

A set w of all walks in G corresponds to F. A function of will 

be referrned to as the diffePential metafunction, or 

metadePivative of F, if it is defined on the set W, and for 

each walk We W, concretization ofw l gives the normal form 

of W. If of is a set selector for W, then the metaderivative 

will be defined by the sentence: 

Consider Example 1 from Section 5.2. Function F is: 

kFsael ~ sakFe1 l 
kF ~ 

Its graph of states is in Figure 17, and the production system 

defining set W is given by the rules (7), page 146. It is 

easy to turn this production system into a selector definition, 

because it is a context-free grammar, with the right sides 

which are nonoverlapping L-expressions with respect to 

nonterminal W-symbols (see Section5.3): 

f 
-+ +El) (Kl -+ -K )e ... (El -+ +El) (Kl 

f a (E1 -+ -Kl) a e 1 1 w w 

f a (E1 -+ S~El) (\\Sa-+ +) (K1 -+ SaKl)ew ~ 

(El -+ S'El) (\\S -+ +) (Kl -+ SaKl) 
f a ew a a 

f a (E1 -+ D) (Kl -+ D) ... (El -+ D) (Kl -+ D) 

This gives us immediately the metaderivative of. 

The argument of the metaderivative, as we have defined 

it, is an exact copy of a walk before normalization. It may 

l 

be very long, and that is inconvenient, We now generalize the 

concept of metaderivative so that it may be defined on any 

set of expressions which are in one-to-one correspondence with 

walks -- the codes of walks; as we shall see later, it is only 

the output set of the metaderivative that matters. Let us code 
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the arcs of the graph of states which lead to active vertices 

by the letter A with superscripts, the arcs leading to passive 

vertices will be coded by P with superscripts. This gives us 

a convenient representation of walks which we shall use in 

the arguments of af and of. Let the arc in the first production 

be A1 , in the second A2 , and in the third P 3 • Then function af 

{which now is not, strictly speaking, a set selector, but 

rather a set genePator for walks) becomes: 

=> {El -+ +El) {Kl 
f 

-+ -K1 )a ew 1 

{El -+ S'El) {\\S -+ +) {Kl -+ SaKl) 
f l ... a e a a w 

=> (El -+ 0) {Kl -+ 0) 

A fundamental property of the equivalence transformation 

T is that parts of the argument may be subject to a preliminary 

transformation without changing its overall result: 

{6) = 

where wl , w2 and w3 are walks {terminal or nonterminal, or 

empty). Using the definition of of, executing one step of 

driving, and using { 6) ' get a definition f which we of o , 

does not depend on 
f a 

#1.1 of Ale => T{El -+ +El) {Kl -+ -K ) of e 11 w 1 w 

#1.2 of A2e => T{El -+ S 'El) {\\ S -+ +) {Kl -+ SaKl) ofe 
w a a w 

#1.3 ofPl .. {El -+ D) {Kl -+ D) 

Any expression from the output set {range) of function of 

may be interpreted as a walk, and corresponds therefore to a 

one-step subfunction of the function F. Let us introduce a 

Refal function which will interpret walks. Its determiner will 

be <, and the format: 

{7) k <W> E l 
Here W is the walk being interpreted, E is the argument of 

the subfunction, and the sign > separates the walk from the 

argument. We define the function < so that the result of the 
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concretization will be the value of the subfunction (i.e. the 

consequent of the final replacement, not the whole replacement), 

which is of course identical (when it exists) to the result 

of concretization of kFE 1 . 
We shall use <W> symbolically as the "determiner" of 

the subfunction it represents. The expression in the angular 

brackets may contain function calls. We may write e.g. 

< cSf pl 1 > 

This may be viewed as the determiner of a function defined by 

the sentence: 

k< (El + D) (Kl + D)> ( ) :$ 

Or we may write 

Then function F1 will be defined by: 

1 kF (+e1 ) :$ K? 1 

kFl ( s +) :$ s -
a a 

By a variable form we mean a sequence (possibly empty) 

of terms (V.), where V. is an s-ore-variable, e.g. 
1 1 

(el) (sa) (e2) 

For each point in a walk the valid variable form is defined 

which comprises all variables defined at that point. For each 

walk the input variable form is defined, which comprises all 

input variables and can be found as described in Section 5.2. 

Functions corresponding to walks (and later, to walk sets) 

will be defined in the format 

k V input-variable-form 1 
where V is a regular determiner, or a "determiner" as in (7). 

Since a walk is essentially a replacement for the head 

K-syrnbol, we can write symbolically: 

(8) W. = (K. + k<W.> input-variable-form 1) 
1 1 1 
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Indeed, walk W. in its normal form consists of a conjunc-
1 

tion of contractions and restrictions, which may define some 

new variables, followed by a replacement for the head symbol K., 
1 

which may use new variables in the consequent. The right side 

of (8) is a replacement for the same nonterminal K. , of which 
1 

the consequent is doing with a function call the same job, 

as the normal form walk does with constrictions. In fact, 

equality (8) is a metasystem reduction rule. We make a meta

system transition when we consider the space of walks and 

functions defined in it, like T and of. To come back we 

express walks through functions in the original space of zero 

level expressions. 

If a number of functions are defined on nonoverlapping 

sets, we call the union of these functions a function which 

is defined on the union of the domains, and takes a value using 

an appropriate function. The metaderivative function of defines 

an infinite number of one~step functions 

etc., which have 

F is the union of 

<of Pl 1 > 

<of A.J. Pl 1 > 

<of A2 Pl 1 > 

<of AlA2Pl1 > 

nonoverlapping domains. The original function 

this infinite set of functions. Symbolically 

F = J < of w 1 > 

w 
which gave us reason to call of the metaderivative. Function of 

defines the breaking down of the original function F into a 

(generally infinite) set of elementary "differentials" - one-

step subfunctions corresponding to different walks (paths taken 

by the computation process). The argument of the metaderivative 

function is a walk in some representation. The value is the 

corresponding one-step function. The full set of values - the 

range of the metaderivative is a definition of the original 

function as dissected into elementary pieces: one-step subfunctions. 
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The potentiality of taking metaderivative for equivalence 

transformations is that these pieces may be regrouped in 

different ways, bringing about different finite (recursive} 

definitions of the original function. 

Let us generalize our symbolism by considering arbitrary 

sets of walks. If {W.} is any set of walks for the same head 
l. 

symbol K. , then a function will correspond to it, which is 
l. 

the union of all functions corresponding to the elements of 

the set. Our notation for this function will be: 

<{W. }> = 
l. f 

{W. } 
l. 

<W.> 
l. 

A set of walks may be represented with the help of free 

variables, e.g. 

f 
<a 

Rule (8} is now generalized to 

(9} {Wi} = (Ki ~ k<{Wi}> input-vaPiable-foPm l } 
In particular 

( 9 I} ofe 1 = (K. ~ kF input-VaPiable-foPm lJ w l. 

Consider the transformation of the range of a metaderiva

tive function into a definition of the original function in 

Example 1. 

The metaderivative function of is defined by three 

sentences #1.1 to 1.3. Nonterminal K1 relates to the original 

function F. The first sentence contributes the set 

f 
T(El ~ +El} (Kl ~ -Kl}o ew 11 

to the range of the function of. Using (9'} and performing 

the equivalence transformation T we get: 

(10.1} 

The general rule of how to transform a walk into a 

sentence is: treat nonterminals Si and Ei as corresponding 

free variables, and apply the walk to the "skeleton" of 

the sentence: 

# kF input-VaPiable-foPm ~ K1 
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Thus we receive: 

Treating 11.2 in the same way, we get a "normalized" 

nonterminal walk 

( 10 • 2) 

It cannot be translated into a sentence because of the restric

tion, so let us regard it, for the time being, as another arc 

on the graph of states with independent arcs. The thjrd arc 

will be simply 

(10.3) 

So, we have constructed a graph of states for the function 

F, which is no worse than a list of sentences. How to trans

form sets of independent arcs into sequences of sentences 

where restrictions are only implied is a different problem 

(which is neither difficult, nor terribly important). We might, 

e.g., decompose all contractions into elementary contractions, 

which would replace (E1 ~ +E1 ) by 

(El ~ S~El) (Sa ~ +); 

then "take out of the brackets" the first contraction in (10.1) 

and (10.2), and then establish that the restriction (\\sa~+) 

in (10.2) becomes unnecessary if the corresponding sentence is 

placed after (10.1), because (10.1) includeG the contraction 

(S ·~ +) • 
a 

In this example we did not apply any equivalence trans-

formations to the metaderivative function; we only came over 

to metaderivative, and then back to the original function, 

receiving the same (not counting small format differences) 

definition. But the reason for introducing a metaderivative is 

of course to subject it to transfomations and then return to 

the zero level with a new definition of the original function. 

When transforming metaderivative functions, we shall extensively 

use property (6) of the function T, and its consequence: 

f f 
T o ew 1 1 = o ew 1 
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These properties in fact make it unnecessary to keep in the 

record explicit invocations of the function 1. It is much 

more convenient to skip them and keep in mind that whenever 

there is a possibility to transform a walk by the function 1, 

this should be done immediately. 

We also introduce another technical device. It will often 

facilitate equivalence transformations of walks if in the represen

tation of the walk we keep constrictions separated from the 

rest of the walk. We shall achieve this by using the follow-

ing format for walks: 

C(constPictions} the Pest of the ~alk 

This representation will be u~ed in parallel with the unformat

ted representation, so as not to encumber the record with the 

format when it is not needed. Even without any comments, we 

cannot confuse one representation for another, because a 

formatted walk always begins with the letter C, while an 

unfor·matted walk begins with a parenthesis. 

Consider Example 2 from Section 5.2. The walk space is 

defined by the production system (8}. Our first task is to 

code the arcs of the graph of states. In addition to horizontal 

arcs leading to an active or passive vertex, which we agreed 

to code by Ai and Pi respectively, we see here a composition 

loop, reflected by the presence of square brackets in (8.1}. 

We shall encode a combination of a horizontal arc and a composi

tion rule by a superscripted c followed by a pair of parentheses 

enclosing the code of the inner walk in the loop. 

This means that to formulate such a convention we need a 

free variable representing the inner walk. In our case: 

Cl(ew} ::= (K3 + Eb} [ew] (Kl + K2} 

The rest of the conventions will be: 

Al :: = (Eb + BEb} (K 2 + CK2} 

A2 :: = (Eb + SjEb} (\\ s 3 + B) (K 2 

p3 : : = (Eb + 0} (K2 + 0} 
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means 

A4 : : = (El -+ AE1 ) (K 3 -+ BK3) 

As : : = (El -+ SiEl) (\\82 -+ A) (K 3 -+ S2K3) 

p6 :: = (El -+ D) (K 3 -+ D) 

To illustrate these conventions, the code 

Cl(P6)P3 

To each of the nonterminals W. , i = 1,2,3, a metaderiva-
l. 

tive function 6i will correspond. We are of course interested 

in 61 which is the metaderivative of the original function a. 

Functions 61 and 62 are metaderivatives of the respective 
'1' f t' b d a T f · d t' 1 aux1. 1.ary unc 1.ons F an F • rans orm1.ng pro uc 1.0n ru es 

into sentences defining metaderivatives, and ignoring function 

T as explained above, we get the following definitions: 

#2.1 61c1 (e.3)e 2 :$ (K 3 + Eb) [6 3e 31J (Kl-+ K2)6 2e 2 1 
#2.2 62A1e 2 :$ (Eb-+ BEb) (K 2 -+ CK 2)6 2e 2 1 
#2.3 62A2e 2 :$ (Eb-+ SjEb) (\\s 3 -+ B) (K 2 -+ s 3K2)6 2e 2 1 
#2.4 62P3 ~ (Eb -+D) (K2 -+D) 

#2.5 

#2.6 

#2.7 

63A4e3 

63A5e3 

63P6 

• (El-+ AE1 ) (K 3 -+ BK 3)6 3e 3 l 
:$ (El-+ SiEl) (\\s2-+ A) (K3-+ S2K3)63e3 1 
• (El -+ D) (K 3 -+ D) 

·ro transform function 61 , \ole use the compilation process 

augmented by the rules of the equivalence transformation T in 

the walk space. Our goal is to obtain a definition, which (1) 

would be interpretable on the zero level as a recursive defini

tion of the original function a, and (2) would correspond to a 

more perfect graph of states than the original definition of a. 

The first objective will be attained if the configuration 

being interpreted is of the form 

(11) L ( K1 -+ C n K . C ) { W . } 
N J r J 
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where L is a list of contractions and restrictions, Ci and Cr 

are multibrackets, {W.} is any nonterminal walk for the head 
J 

symbol K. , and j may be either 1 or different from 1. Using 
J 

rule (9) we interpret such a configuration as the arc 

L (K1 -+ C i k<{Wj}> input-variabZe-form l Cr) 

Therefore, to receive a self-sufficient recursive definition, 

we shall try to find in the process of compilation such 

configurations of the form (11), where {W.} is a configuration 
J 

already met previously. 

The second objective is attained almost automatically, 

because as we drive the metaderivative function we consider 

longer and longer walks; those which are unfeasible will 

be turned into D by function T. 

our initial configuration is 61e 1 1 . Using #2.1 we 

change it into 

3 2 
( 12 ) ( K 3 + Eb) [ 6 e 3 1] ( K l -+ K 2 ) 6 e 2 1 

(Contraction (e1 -+ c1 (e 3)e2) has been made.) 

After each step of driving we use the equivalence trans

formation in the walk space, driving the invisible function T. 

Whenever it is allowed by the rules of the equivalence trans

formation to move a substitution in the desirable direction 

(i.e. contractions, restrictions, and replacements to the left, 

and assignments to the right), function T will do it. In (12) 

we have only one movable substitution --- replacement (K1 -+ K2 ) 

(assignment (K 3 + Eb) is part of a composition loop) . To see 

whether or not we can commute a substitution with a functional 

loop, we mentally substitute for the bracketed nonterminal 

walk its equivalent according to rule (9), in this case: 

3 3 
6 e 3 1 = (K3 -+ k <6 e 3 1 > (E1 ) 1 

We see that the loop does not contain nonterminals K1 or 

K2 , therefore we commute our replacement with it. Configuration 

(12) is transitory and passes into 

3 2 
( 13) ( K l -+ K 2) ( K 3 + Eb) [ 6 e 3 1 ] 6 e 2 1 
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Now we drive subexpression o3e 3 1 in (13). Three continua

tions are possible, according to three sentences #2.5 to 2.7. 

Let us examine the arc with the contraction (e 3 ~ A4e 3), #2.5: 

(14) (Kl ~ K2 ) (K 3 + Eb) [(El ~ AE1 ) (K 3 ·~ BK 3 ) o3e 3 ll o2e 2 1 
A straightforward transformation of (14) by the rules 

produces: 

3 2 
(15) (El ~ AE1 ) (Kl ~ K2 ) (K 3 + Eb) [o e 31J (BEb + Eb) (AE1 + E1 )o e 21 

The result of concretizing o2e 21 does not include E1 , 

as one can establish by analyzing #2.2 to 2.4. Therefore, we 

commute assignment (AE1 + E1 ) with o2e 21 and eliminate it. 

But we cannot move assignment (BEb + Eb) further to the right, 

because o2e 21 is not independent of Eb. According to the 

strategy inside from outside, function T will demand that o2e 21 
be driven. Again, three continuations are possible. The one 

corresponding -to #2. 2 and contraction (e2 ~ A 1e 2 ) produces: 

(16) (E 1~ AE1 ) (K1~ K2 ) (K 3+ Eb) [o 3e 31J (BEb+ Eb) (Eb~ BEb) (K2~cK2 )o 2e 21 
The assignment and the contraction for Eb are annihilated, 

the replacement (K 2 ~ CK 2 ) drifts left and gets used in the 

replacement (K1 ~ K2 ), the result being 

(17) (El ~ AE1 ) (Kl ~ CK2 ) (K 3 + Eb) Lo 3e 3 1 ] o2 e 2 1 
Two compilation strategies may be formulated, which 

will lead to a successful transformation. The more straight

forward one is just L-generalization, as described in Sec

tion 4.6. Comparing (17) with (13), we find an L-generaliza

tion 

(18) 

Repeating the compilatjon process for the new initial configura

tion (18) we find out that the specific part of (18), which is 

common for (13) and (17): 

( 19) 

is recurrent and self-sufficient. In the final result, the 

original function a will be found identical to the function 
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corresponding to the walk set (19), for which we will have 

received a recursive definition. One can see that the necessity 

of introducing an auxiliary function (which is in fact identical 

to the original function a) in this approach reflects the fact 

that it is the configuration kFbkFae11 1 , corresponding to 

the walk set (19), that is recurrent, and not function a corres

ponding to the walk set {13). 

The more sophisticated strategy is to try to leave on 

the right, when moving contractions and replacements to the 

left, as many of the original substitutions unchanged as 

possible. The purpose is to make {W.} in the form {11) as close 
J 

to the original function as possible. Thus instead of combining 

the two replacements: 

{Kl ~ K2 ) (K 2 ~ CK 2 ) 

we shall commute them, transforming this composition into the 

composition: 

{Kl ~ CK1 ) {Kl ~ K2 ) 

which is equivalent to it. {It is not difficult to formulate 

algorithmically this transformation.) 

Now the whole configuration (13) becomes recurrent, 

Gathering all the contractions we have made, we obtain the 

following sentence for function o1 : 

#3.1 o1c1 (A4e 3 )A1 e 2 ~ {El ~ AE1 ) (Kl ~ CK1 )o1c1 {e 3 )e2 1 

There are three possible contractions for e 3 and three 

possible contractions for e 2 , so we receive eight more 

sentences in the same manner as we received #3.1. Some of 

them will have D in the right side. E.g., if on receiving 

configuration {15) we were to choose contraction (e2 ~ A2e 2 ) 

suggested by #2.3, we would receive a walk containing the 

following composition: 

(BEb + Eb) {Eb ~ S)Eb) (\\s 3 ~B) 

Transforming the first pair by RUle {AC.D), Section 5.2, we have: 

( B + S 3 ) {\ \ S 3 ~ B) 

which is unfeasible, so that function T turns the whole walk 
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into the empty expression. 

The full definition of function o1 resulting from the 

compilation process will be: 

#3.1 

#3.2 

#3.3 

#3.4 

#3.5 

#3.6 

#3.7 

#3.8 

#3.9 

o1Cl{A4e3)Ale2 ~ 

o1Cl{A4e3)A2e2 ~ 

o1Cl{A4e3)P3 ~ 

o1Cl{A5e3)Ale2 ~ 

o1Cl{A5e3)A2e2 ~ 

o1Cl{A5e3)P3 ~ 

o1Cl{P6)Ale2 ~ 

o1Cl{P6)A2e2 ~ 

o1Cl{P6)P3 ~ 

Transforming the range of this function into a function 

definition, we receive four sentences for the original function a: 

#4.1 

#4.2 

#4.3 

#4.4 

a{A e 1 ) ~ C a{e1 ) 1 
a{B e 1 ) ~ C a(e1 ) 1 

In the transformed definition of the metaderivative #3, 

it is very clearly seen what the transformation is: a regrouping 

of walks in the full set of walks. There are nine classes of 

walks, of which five classes are found to include unfeasible 

walks only, so that they may be discarded. In the remaining 

four classes, all walks are feasible. And there are some 

equivalence relations established between walks inside the 

classes. 

One might say: so what? The transformation we have 

performed was also performed in Section 4.5 without introducing 

a metaderivative, just by the compilation process. 
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It is true. But let us consider the following definition. 

Exam:ele 5. 

#5.1 a e 1 => kFb kFa ( ) el 11 
#5.2 

a kF (e1 )Ae2 => a 
kF (e1B)e 2 1 

#5.3 
a 

kF (e1 )sxe2 => a 
kF (e1 sx)e2 1 

#5.4 a kF (e1 ) => el 

#5.5 
b kF Be1 => C kFbe1 1 

#5.6 kFbsxel => sx kFb el 1 

#5.7 kFb => 

Let us first try to transform function a by driving. 

In configuration 

( 20) 

the strategy f~om without within demands that we drive the Fa 

call. The result will be three configurations, of which the 

first is 

(21) 

In this configuration the Fa call is to be driven again. 

One can see that no matter how many steps of driving an Fa 

call we perform, there will be configurations like (20) and (21) 

in the graph of states (and in fact their number will grow), 

which do not allow driving the Fb call. Therefore, acting on 

any compilation strategy we shall have to decompose (20) or its 

successors, so that the new graph of states will be no more 

efficient than the original. 

At the same time we notice that function a is equivalent 

to function a from Example 2. The difference in its definition 

is only that one of the auxiliary functions, Fa, is defined 

not by ~eaursion -- in the sense this term is used in programming 

-- but by ite~ation. The simple method working in Example 2 

does not work in this case. 

Let us compute the definition of the metaderivative 

function o1 : 
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#6.1 1 1 o c {e 3 )e2 => {D + E2 ) (K 3 + 
3 

Eb ) l o e 31] ( K l -+ K2)o2e2 1 
#6.2 02Ale2 {Eb -+ BEb) (K 2 

2 => -+ CK ) o e21 2 

#6.3 o2A2e2 => {Eb -+ S J Eb) { \ \ S 3 -+ B) {K 2 -+ 2 s 3K2)o e 2 1 

#6.4 o2p3 .. {Eb -+ D) {K 2 -+ D) 

#6.5 o3A4e3 => {E1 -+ AE1 ) {E 2B + E2 ) 3 o e 3 1 
#6.6 o3A5e3 => {El- S~El) (\\S2 -+ A) {E 2S 2 + E2) 

3 o e 3 1 
#6.7 o3P6 => (El -+ D) (K3 -+ E2 ) 

We start to transform o1 the same way we did in Example 2. 
. . .r3 f h ( 4 ) ~ . Dr1v1ng u e 3l or t e case e 3 -+A e 3 , r.6.5, we aga1n move 

out of the brackets the contraction {E1 -+ AE1 ), but instead 

of the replacement we had in Example 2, we now have an 

assignment, which can be neither taken out, nor commuted 

with o 3e 31: 
3 [{E2B + E2 ) o e 3 1] 

Therefore, the implied function T will demand a driving of o3e 3l. 
This demand would be repeated infinitely should we comply 

with it, which means that configuration o3e 31 must be separated 

by decomposition -- just as in the case of the original function. 

So, let us separate function o3 and try to transform it 

into something more manageable. Compute o3 for several simple 

arguments with the view of using the L-generalization technique: 

{P6) C { {El -+ D)) {K3 -+ E2) 

{A4P6) C { {El -+ A) ) {K 3 -+ E2B) 

{A SP6) C { (El -+ S~) {\ \ s 2 -+ A)) {K3 -+ E2S2) 

{A4A4P6) C ( {El -+ AA)) {K3 -+ E2BB) 

The algorithm of L-generalization gives a generalizing 

configuration 

C{ec) {K3 -+ E2ex) 

The induction hypothesis is: 

3 C 1 X 1 (22) o e 3 l = C{I/J e 3 ) {K3 -+ E2 1/J e 3 ) 
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Substituting this into #6.5 in accordance with the 

general algorithm described in Section 4.6, we have: 

#6.5' k C{~c A4e 31> {K3 + E2 ~x A4e 3 1) • 
C{{El + AE1 )) {E 2B + E2 ) C{~ce 31> {K3 + E 2 ~x e 3 1) 

To transform the walk in the right side, we have to 

transpose the assignment for E2 : first with C{~ce3 1 ) , and 

then with the remaining replacement. The first transposition 

will not change any of the parties, because the constrictions 

depend only on E1 , not on E2 • We leave it unformalized, 

in order not to be buried in details. A way to formalize {by 

which we always mean to perform algorithmically) this and 

like transformations is to make the format of a walk still 

a bit more sophisticated by including into it the list of 

nonterminals on which the constrictions depend, e.g. 

C((nonterminals) constrictions) the rest of the walk 

Then in the process of L-generalization we would receive a 

generalized form: 

C{ {E1 ) ec) 

which will enable function T to transpose it with the assignment. 

Making the other transposition by rule {ARP), Section 5.2, 

we change the replacement into: 

{K3 + E2B B ~X e3 11 
where the function B is performing the substitution //E 2B + E2 : 

B E2 ex -E2 B B e 1 X 

B sa ex -sa B ex 1 
B ~ 

{In fact, ~ 3e 31 does not include symbols E2 , but the algorithm 

does not yet know it.) 

After merging the constrictions, which have now become 

adjacent, we obtain from #6.5' the recursive relations: 

~c A4 e3 • {El + AEl) ~c e3 1 

~x A4 e3 ~ B B ~x e3 1 
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Processing #6.6 and #6.7 analogously, we receive the 

following complete definitions of functions C X 
1jJ and 1jJ : 

#7.1 1/JcA4e3 ~ {El -+ AE ) c 1 1 1/J e3 

#7.2 1/JcA5e3 ~ (El -+ S2El) (\\ S2 -+ A) c 
1/J e3 1 

#7.3 1/JcP6 ~ (El -+ 0) 

#8.1 1/JxA4e3 ~ B B X 
1/J e3 11 

#8.2 1jlxA5e3 ~ s2 B 1/Jx e3 1 1 

#8.3 1jlxP6 ~ 

We cannot simplify the definition of 1/Jx by driving, so 

we try the techniques described in Section 5.4, which makes 

use of covering context-free grammars. In Example 4, 

Secti•Jn 5.4, we found that the covering grammar for 1/Jx will be: 

K2 -+ B K2 
1 1 

K2 2 
1 -+ S2Kl 

K2 -+ 0 
1 

(In Section 5.4 we used symbol C instead of s 2 to avoid confusion; 

here we use K-symbols of the second metasystem level.) 

This corresponds to the set selector: 

We change 1jlxe31 in the right sides of the sentences into 

cr 1/Jx e 3 1 1 • Now, composition Bcrex1 1 may be transformed by 

driving and L-generalization into an identity function, so that 

the definition of 1/Jx becomes: 

#8.1' 1jlxA4e3 ~ B 
X 

1/J e3 1 
#8.2' 1jlxA5e3 ~ s2 1/Jx e3 1 
#8.3' 1jlxP6 ~ 

and ( 22) becomes the new definition 3 of o : 

#6.X 3 c 1) (K3 -+ E2 1/Jx 1) o e 3 ~ C(ljJ e 3 e 
X 
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Now we once more try to transform function o1 by driving. 
1 

The initial configuration is o e 1 1 . Using #6.1 and #6.X, 

we turn it into 

(23) ~c e3 1 {Kl ~ K2) (~x e3 1 + Eb) o2 e2 1 
{It was taken into account here, that ~c e 3 1 depends only on 

E1 and its offshoots, and o2e 21 depends on Eb and its offshoots.) 

We drive now configuration (23) as we did configuration 
4 

(13) in Example 2. The effect of combined contractions (e3 ~ A e 3 ) 

(see #7.1 and #8.1') and (e2 ~ A1e 2 ) (see #6.2) is: 

C 1 X 1 2 {24) {E1~ AE1 )~ e 3 (K1~ K2 ) (B~ e 3 + Eb) (Eb ~ BEb) (K 2~ CK2 )o e 21 

The clash of an assignment and a contraction for Eb 

produces the assignment 

(~X e3 1 + Eb) • 

Taking the replacement (K 2 ~ CK 2 ) to the left as far as possible 

and keeping old substitutions unchanged, the same way as we did 

in Example 2, we obtain the recursive relation 

which is exactly the same as #3.1 in Example 2. Proceeding in 

this manner, we reproduce the full text of definitions #3.1-3.9. 

Returning to the object space, we obtain the efficient defini

tion #4 for a. 

Taking the metaderivative of a function of several variables, 

we can treat some of the variables as parameters; they will 

remain free variables, while all of the other variables will be 

transformed into nonterminals. Thus different variables find 

themselves assigned to different metasystem levels. We refer to 

this procedure as a metasystem split of variables. Its importance 

for the equivalence transformations will be demonstrated in the 

next section in the context of taking the metaintegral. With 

respect to the metaderivative, the notion of metasystem split 

leads to partial differentiation. We use notation 
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to represent the most general set selector for partial meta

derivatives. Here e is the free variable which has walks as 
w 

its values. Function F depends on n variables e 1 ,e2 , ••• ,em' 

em+l'"""'en. We treat the last n-m of these as parameters, 

thereby defining a function of m variables e 1 , ••• ,em. 

It is the walks in the graph of states of this function that 

are values of e • 
w 

We do not include the equivalence trans-

formation into the definition of the partial metaderivative. 

Thus the metaderivative function of which was used above 

may be defined using this notation as 

of e3 ~ Tk ace 3 > F{E1 > 11 

5.6. Integral Metafunction. 

Let us try to prove the commutativity of addition by 

equivalent transformation of the corresponding recursive 

predicate F: 

Example 6. 

#9 

#10.1 

#10.2 

#11.1 

#11.2 

#ll. 3 

kF { e 1 ) {e2 ) ~ k={k+{e1 ) {e 2 )1) {k+{e2 ) {e1 >1 ) 1 
k+{e1 ) {0) ~ el 

k+{e1 ) {e21) .. k+{e1 ) {e2 ) ll 

k= { 0) { 0) .. T 

k=e • F 
X 

Driving the right side of #9 by the inside from outside 

strategy, we come to the necessity of a split according to #10: 

{cl) k = {k + {el) {e2) l> {k + {e2) {el) 1 ) 1 
{l -+ 2) {e2 .,. 0) (Kl -+ K2) 

( 1 -+ 3) (e2 -+ e 21) {K1 -+ K3) 

(C2) k = (e1 ) (k + (0) (e1 ) 1 ) 1 
(C3) k = (k + (e1 ) (e2 ) 11) (k + (e2l)(e1 > l) 1 
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Configuration c 2 is easily transformed by driving and 

induction: 

(2 -+ D) (el -+ 0) (K -+ 
2 T) 

(2 -+ 4) (el -+ e 11) (K 2 -+ K4) 

{C4) k = {e1 1) {k + (0) {e1 ) 11) 1 
{ 4 -+ 2) (K4 -+ K2) 

·rranslating this graph of states into a Refal program, 

we have: 

kC 2 (0) ~ T 

kC 2 (e11) ~ kc 2 <e1 ) 1 

which by L-generalization and induction is transformed into 

kC 2 (e1 ) ~T 

Configuration c 3 , however, does not yield itself to a 

transformation which would make some later stage equal to a 

previous stage. Driving c 3 according to the inside from 

outside strategy, we make a contraction for e 1 resulting 

from 

(3 -+ 

(3 -+ 

(C5) 

(CG) 

#10: 

5) 

6) 

(el -+ 0) (K 3 -+ K5 ) 

(e1 -+ e 11) (K3 -+ K6 ) 

k = (k + (:))(e2 ) 1 )(e2 > 1 

k = (k + (e1 1) (e2 ) 1) (k + (e 21) (e1 ) 1) l 

Configuration c 5 is analogous to c 2 and can be as easily 

transformed into T, but a further driving of c 6 will only 

lead to accumulation of ones. Attempting an L-generalization 

will lead to an extremely general configuration 

which cannot be shown to be always T because it is not. 

We may try a more sophisticated technique of generaliza

tion. Transform configurations c 1 and c 6 by metacode. They 

become object expressions: 
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*K(=(*K(-+(E1 ) (E 2 ))) (*K(+(E2 ) (El)))) 

*K(=(*K(+(E11) (E 2))) (*K(+(E 21) (El)))) 

Making an LE-generalization now, we get this class on the first 

metasystem level: 

By metasystem reduction it corresponds to the class 

on the ground level, which is quite a clever generalization; 

its concretization can give only T. Unfortunately, this does 

not bring us closer to the solution of the problem. We express 

ex through itself by simultaneous recursion by e 1 and e 2 , but 

with e 2 ~ 0 we receive a configuration 

k = (e 1ex) (k + (Oex) (e1 > 1 ) 1 
which again expresses the commutativity of addition, and is no 

easier to transform than c1 . 

In search of a solution, let us compare our approach with 

the approach of axiomatic formal arithmetic. What we express 

by adding digit 1 on the right to a number is usually expressed 

in formal arithmetic by adding a prime '. Variables are 

represented by small letters. The axioms for addition and the 

basic axioms for equality are close analogues to our recursive 

definitions. Besides, there is an additional axiom for equality 

(transitivity), and the axiom of induction. The syntax of formal 

arithmetic leads to more compact expressions than in Refal, 

which is, of course, a consequence of its narrow specialization. 

We notice first of all that our transformation of configura

tion c2 is a proof of the theorem: 

(Tl) 0 + X = X 

We notice also that this theorem was never set as a subgoal: it 

just appeared as a by-product when we were applying our general 

algorithm of equivalence transformation. This exemplifies the 

fundamental distinction of our method from the axiomatic proof. 
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The axiomatic method is synthetic, its working principle is 

construction. Using this method, we set a goal: to construct 

a demonstration, which is a certain formal object. To achieve 

this goal we set subgoals, which in their turn generate 

subgoals, etc. Our approach is analytic, we only examine 

how configurations turn into one another. 

Configuration c3 in formal arithmetic looks like 

(T2) (x + y)' = y' + x 

Our goal is to transform it into c1 : 

(T3) X + y = y + X 

If we could prove that 

(T4) y'+ X = (y + x) ' 

then we would combine (T4) and (T2) by the transitivity axiom 

into: 

(TS) (x + y) ' = (y + x) ' 

which because of #11.2 turns immediately into (T3). Setting (T4) 

as a subgoal, we prove it easily by induction, both in formal 

arithmetic, and in Refal. 

This course of action provides a speedy proof of commuta

tivity of addition in formal arithmetic, but guessing (T4) as 

a subgoal with the subsequent use of transitivity of equality 

(which for us is only one of the recursive functions!) goes 

against the grain of our method. We shall try a different 

approach. 

We received c3 through contractions for e 2 • Let us perform 

one more step of driving with the contractions for e 2 : 

( 3 ..... 7) (e 2 -+ 0) (K2 -+ K7 ) 

(e 2 -+ e 21) (K2 -+ K8 ) 

k = (e1 l)(k + (Ol)(e1 ) 1) 

k = (k + (e1 ) (e 2 ) lll) (k + (e 211) (e1 ) 1 ) 1 
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Configuration c7 , like c2 , is easily transformed into T 

by driving and induction. We may perform several more steps 

of driving, and we will find that whenever we have our original 

configuration F with any specific number replacing e 2 , i.e.: 

kF{e1 ) {0) 1 
kF {e1 ) {01) 1 

kF{e1 ) {011) 1 

which is 

which is 

etc., we are able to transform it into T by applying our equiva

lence transformation. Thus the idea occurs to us: by analyzing 

the process of transformation of such configurations, to prove 

that any of them will be reduced to T; it is equivalent to 

transforming the original configuration into T. 

The formalism which exploits this idea rests on the 

concept of integral metafunction, or just metaintegral. In 

this case we are interested in the metafunction which will 

be denoted as: 

k J F{El) {e2) 1 
We read it: the metaintegral ofF over e 1 • This is a function 

which depends only on e 2 , because E1 is just a symbol {although 

nonterminal) • For any value E of e 2 , the value of this function 

is an expression which can be interpreted as a full definition 

of the function F1 : 

kF1 {e1 ) ~ kF{e1 ) {E) 1 
of one argument e 1 • 

As an expression representing the definition of a function, 

we shall use the list of primary walks in the graph of states 

of this function, and not just the metacode of the definition. 

There are two advantages to this: first, walks are independent 

{i.e. interpretation of one does not depend on another); second, 

it allows us to define a function given by a configuration, 

without attaching to it any determiner. Consequents of all 

substitutions in walks should be written in metacode. Recall 
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that by primary walks we mean walks corresponding to the arcs 

in the graph of states; they may be terminal or nonterminal. 

The list of all primary walks completely defines the graph of 

states. Indeed, if K. is the antecedent of the first replace-
~ 

ment on the top level of the walk, then this arc starts from 

vertex Vi; if the consequent of the last replacement on the 

top level contains K. , then the arc leads to an active 
. J 

vertex VJ; if the last consequent does not contain nonterminal 

K-symbols, the arc leads to a passive vertex (which need not 

be numbered). We 3hall separate walks by commas. In addition, 

we allow the taking out of parentheses of the common parts 

of walks on the left, so that 

is equivalent to w w1 , ••• ,w w 
c c n 

To give an ex~mple, the definition of addition, #10, will be: 

(E 2 -+ 0) (Kl-+ E1 ), (E 2 -+ E 21) (Kl-+ K1 1) 

This representation of a function definition is a generali

zation of the representation we used in Section5.5 for functions 

defined by one terminal walk. We generalize correspondingly 

the definition of the interpretation function < • From now on 

it will be applicable to any function definition, and if VF 

is the definition of function F, then 

(2) k<VF> input-variable-form 1 = kF input-variable-form 1 
We also generalize the definition of function T: it will 

be applicable now not only to one walk, but to any list of walks. 

Thus by T we shall mean some function which performs an equiva

lence transformation of a function definition. In virtue of 

this definition: 

( 3) = 

The full metaintegral is the metaintegral over all free 

variables in a function form, e.g., 

k J F(El) (E 2 ) 1 
where F is any function of two variables. The full integral is 

a constant which represents the definition of the function, e.g. 
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(4) k J + (El) (E 2 ) => (E 2 -+- 0) (Kl -+- El), (E 2 -+- E21) (Kl -+- K1 1) 

We assume that the full metaintegral of each used 

function is given (this only means that the function is 

defined). Then we can find any metaintegral by putting 

before the full metaintegral assignments (e. ~E.) for those 
1 1 

variables over which there is no integPation, e.g. 

(5) k I F(El) (e2 ) ... (e2 ~ E2 ) (k J F(El) (E 2 ) 1 
r I ( 6) k J F(e1 ) (E 2 ) ... (el ~ E1 ) (k F(El) (E 2 ) 1 

( 7) k I F (e ) (E ) (e ) ... (e ~ E ) (e ~ Ez) (k J F (Ex) (Ey) (Ez) 1> X y Z X X Z 

The metaintegral over no variables is by no means equiva

lent to the original function (there is no integPal, but meta 

remains) . The function 

with any specific e 1 = E has a value, which is the defini

tion of a function of no variables, whose value is defined 

and coincides with the result of concretization 

kF (E) 1 
if and only if this concretization is possible. 

If there is metaintegration over some of the variables 

in the argument of a function, a metasystem split of vaPiables 

occurs. Let e 1 represent the variables over which there 

is no integration, and e 2 represent the integrated variables. 

Then for any e 1 , the metaintegral function will give us 

something which defines the value of the function with this e 1 

and all possible e 2 • This is why we call this metafunction 

integral. The values of the differential metafunction 

define the function on certain minimal, in a sense, subsets 

of arguments. The values of the integral metafunction define 

the function on the full set of values of those variables 

which were removed from the object space. Thus: 

k J F(El) ••• (En) 1 = J k a (ew) F(El) ••• F(En) 1 
ew 
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Computing a metafunction (differential or integral) takes 

us one level up in the metasystem stairway; computing an 

interpretation function brings us one level down. To describe 

different schemes of using metasystem transition we use 

MST-formuZas (MST stands for "metasystem transition") • 

An MST-formula for a function F is a definition of F 

in Refal, which is functionally equivalent to the original 

definition, but expressed in terms of: (1) computing a meta

function, (2) making equivalence transformation of a definition, 

and (3) interpreting a definition. 

Our examples will be for a function of two e-variables. 

The process of direct computation of a function call in the 

Refal machine is described by the formula: 

(9) kF(e1 ) (e 2 ) ~ k <k I F(E1 ) (E 2 ) 1> (e1 ) (e 2 ) 1 
Introducing a designation 

VF = k I F(El) (E2) 1 
for the initial definition of function F, we put it in a shorter 

form: 

( 9 I ) 

The process of interpretation of a walk dependent on the 

initial values assigned to the input variables is the same as 

the interpretation of this same walk modified by adding 

corresponding assignments at the beginning. This applies also 

to a set of walks, i.e. to a function definition. Therefore, 

(9) may be also written in an equivalent form: 

(9") kF(e1 ) (e 2 ) ,. k< (e1 +- E1 ) (e 2 +- E2 ) (VF) > 1 
where the process of interpretation does not require any addi

tional information. 

Using a metaintegral over no variables we may write the 

same MST-formula in one more form: 

(9'' 1 ) kF(e 1 ) (e 2) => k<k J F(e1 ) (e2 ) 1> 1 

which very clearly expresses the inverse relationship between 

metaintegral and interpretation. 
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The interpretation function < is the definition of the 

Refal machine in Refal. It is convenient to think of this 

definition as written for another copy of the Refal machine, 

which is "observing" the activity of the first, pe~fo~ming 

machine. Then l-iST-formulas should be thought of as written 

for the observing machine and defining the use of the 

performing machine. If we look into the right side of (9) 

and its equivalents, we read: take the definition of function 

F in Refal, assign some specific values represneted by e 1 
and e 2 in the observing machine to nonterminals E1 and E2 
representing free variables in the performing machine, and 

start the performing machine. 

Now consider a metasystem split of variables. This is 

a formula for a direct interpretation of a metasystem integral 

over one of the variables: 

(10) kF(e1 ) (e 2 ) => k <k J F(E1 ) (e 2 > 1> (e1 > 1 
It may be read: take a specific e 2 and put it into the defini

tion ofF; then interpret this definition with a specific e 1 . 

One can see that there is no essential difference between 

this plan of action and the one given in (9). It can be shown 

formally. Using (5) for the metaintegral in (10), and taking 

a variable inside the angular brackets as we did in passing 

from (9') to (9"), we obtain: 

( 10 I) 

which because of (1) is equivalent to (9"). 

For significant new results some equivalence trans forma-

tion T must be used. We may introduce T both in ( 9) and in 

( 10) ' obtaining, correspondingly: 

(11) kF (e1 ) ( e 2 ) ... k<-r k 
1, 

F(El) (E 2 ) 1 1> (el)(e2) 1 
( 12) kF (e1 ) ( e 2 ) .. k<T k 

J 
F (E1 ) (e 2 ) 1 1> (el) 1 

These MST-formulas describe the use of equivalence transforma

tion: take a function definition, apply T to it, and put the 

result into the Refal machine; then obtain the values of 
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variables and start the machine. The methods of the 

compilation theory, as described in Chapter 4, were all 

algorithmical. They can be formalized into a Refal program 

defining function T; it will be implied in the following 

that T is of that kind, if the opposite is not stated. 

No function T is of course omnipotent. If a function 

definition is "bad in T's judgement", it will improve it. 

Otherwise it will leave it unchanged as "good enough". In 

the case (11) these considerations are applied directly to 

the initial definition of function F. In the case (12), 

however, function T processes the result of a metasystem 

split of variables: the definition of a function of one 

variable expressed through the function F of two variables 

with the second variable taking a certain value. Thus even 

if the definition of F is quite "good", the definition to be 

processed by T in (12) will be normally "bad". Formula (12), 

if read in more detail than above, says: take a specific 

value of e 2 {an object expression), form the metaintegral, 

transform it by T exploiting the fact that E2 in the defini

tion is substituted by an object expression, and then use 

this definition to compute the overall result as a function 

of e 1 . 

For a simple example let us take function + as F. Let e 1 
take value 011, and e 2 value 0111. The metaintegral in (12) 

is: 

(13) 

For a human being it is easier to deal with configurations 

than with walks. Applying T to (13) is equivalent to driving 

k + (e1 ) (0111) 1 
which gives 

without any contractions. Therefore, the result of concretizing 

the T call will be 
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Now we face a problem of concretizing the function < , 

which has not been formally defined. In the case when the 

contents of the angular brackets is an object expression, 

concretization of < is very simple: we just use the 

contents as the definition of our function: 

k<(K1~ E1lll)> (e1 ) ~ e 1111 

substituting 011 for e 1 , we get the result: 011111 . 

Now we make the second metasystem transition. Let us 

consider the transformed metaintegral in (12) as a function 

0f e 2 : 

(14.1) 

Hence formula (12) is represented as 

( 12 I ) 

Function /MIFl/, whose computation is an equivalent 

transformation, will now be subject itself to the same 

equivalent transformation by using the equivalent of (11) 

for a function of one variable: 

( 11 I) 

From (11 1 ) and (12 1 ) we receive a new MST-formula: 

(14.2) kF(e1 ) (e2 ) ~ k<k<1k J /rliFl/(E2>11> <e 2> 1> (e1 > .L 

which, together with (14.1), defines a new equivalence 

transformation. 

If function 1 is formally defined in Refal, as it should 

be; we need not bother about the understanding of how formulas 

(14) work; we just use them and see what happens. As it happens, 

the metasystem transition largely widens the scope of function 

definitions which yield themselves to significant improvement. 

We will show it even for such a "good" function as + , which 

is characterized by a perfect graph (this means that the effect 

will not be achieved by the compilation process alone, but 

generalization and induction will be used). Since we do not 

have a formal definition of 1, we shall use our human under

standing of equivalence transformation. 
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Function T which begins the computation in formula (14.2) 

makes the equivalent transformation of function /MIFl/ 

defined by (14.1). Let us see what will be happening. The 

transformation will start with the compilation process. The 

initial configuration will be: 

For e 2~ 0 we receive a very simple passive configura-

tion: 

(Kl ~ El) 

For e 2 ~ e 21 we have the following sequence of configurations: 

T(e 21 + E2 )((E2 ~ O)(Kl ~ E1 ), (E 2 ~ E21) (Kl ~ Kll)) 1 
T(e 21 + E2 ) (E 2 ~ E21) (Kl ~ K11) (V+) 1 
T(e 2 + E2) (Kl ~ K1 l)(V+) 1 
T (Kl ~ K1 l)T(e2 + E2) (V+) 11 

(Here by V+ we denote the definition of function + which 

appears in all configurations.) 

We see that the initial configuration is recurrent, and 

the result is the following definition: 

k/MIFl/(0) • (Kl ~ E1 ) #12.1 

#12.2 k/MIF1/(e 21) • (Kl ~ K11) k/MIF1/(e 2 ) 1 1 
Computing several argument-value forms: 

I 
(0) = (Kl ~ El) 

(01) = (Kl ~ E11) 

(011) = (Kl ~ E111) 

we make an LE-generalization 

(Oe 2 ) = (Kl ~ E1e 2 ) 

with no variables in the right side different from the variable 

e 2 , which appears in the left side. This hypothesis checks 

true against sentences #12, and this gives us the final defini

tion: 
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#13 

The T function call on the second metasystem level (i.e. 

in the one in (14.2)) will give as output the graph of states 

corresponding to #13: 

2 2 
(E 2 -+ OE 2 ) (Kl -+ (Kl -+ E1 E2 ) ) 

Nonterminals of the second order appear here as the result of 

the metacode transformation; this shows cearly that we are on 

the second level. 

Now we just drive the MST-formula (14.2). Notice that 

driving the interpretation function < can be performed by 

using the same equivalence transformation function T again! 

The inner configuration, if represented in a no-argument form, 

is: 

2 2 
k<(e 2 + E2 ) (E 2 -+ OE 2 ) (Kl-+ (Kl-+ E1E2 ) )> 1 

The clash (e 2 + E2 ) (E 2 -+ OE 2 ) produces the contraction 

(e2 -+ Oe 2 ), which goes into the argument of function F, and 

the assignment (e 2 + E2), which modifies the replacement. The 

value of the interpretation function is the consequent of 

the final replacement for K1 , which results in the following 

sentence: 

Driving the second interpretation function call in the same 

manner, we get the final definition of addition: 

#14 

We return now to commutativity of addition, function F 

being defined again by #9. The metaintegral over e 1 is: 

+-
#15 k/MIFl/ (e2 ) ~ T (K1 -+ = (+ (E1 ) (e 2 )) (+ (e 2 ) (E1 )) (V -) 1 
We have used here a specialized metacode, which differs from 

the standard by the absence of concretization brackents. 

This is possible thanks to the rigid functional formats 

we are using; it is assumed, of course, that function T is 

modified correspondingly. Also, our representation of defini

tions is not standard: compositions of configurations are 
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written in their natural form, and not decomposed into a walk 

with the help of redundant variables. By v+= we have denoted 

the definition of functions + and = • 
We need now more insight into the performance of function T, 

in order to be able to deal with configurations involving T 

without having access to its formal definition. There are two 

aspects to the equivalence transformation. The first is driving, 

which we already understand well enough. The second is decision 

~aking and control of driving, i.e. the strategy of transforma

tion. We shall make use of two facts concerning the strategy. 

The first is that function T does not keep transitory 

configurations on any level of structure. Wherever a transitory 

configuration appears, it is immediately transformed into its 

successor, until it is either passive, or requires a contrac

tion. This may be taken into account by introducing a function, 

say a, which leaves its argument unchanged if it is not a transi

tory configuration, and drives it the necessary number of steps 

if it is transitory. We might then apply function a to every 

configuration in the argument of T. We shall not do this 

literally, in order to keep the record readable, but shall 

proceed as if this were done, i.e. use driving on the first 

metasystem level (with respect to E1 ) automatically whenever it 

does not require contraction. 

The second fact we need to know about the strategy is 

how a recurrent configuration is discovered and what happens 

next. After each step of driving, function T compares the new 

configuration with the preceding one, and if they are equal, 

it tries to use the principle of induction in its simplest form. 

Namely, if the definition at the moment is of the form: 

kCi ( 0) • Z 

kCi(evl) ~ kCi(ev) 1 

where Ci is any configuration, e is any variable, and Z is 
v 

any object expression, then it is transformed into 

kCi(e ) ~ Z 
v 
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One can see that it is a very primitive strategy, but it 

is sufficient for both T-calls (one on the first and the other 

on the second metasyste~ level) in this example. 

Bearing this in mind we set fort~ to transform function 

/MIFl/ defined by #15. To avoid confusion, we shall refer 

to the function T on the first metasystem level, which appears 

in the right side of #15,as 1 T, while the function Ton the 

second level, i.e. that which appears in the right side of 

the MST-formula (14.2) and whose performance we imitate, will 
2 

T • be referred to as 
1 Driving T we immediately split #15 into: 

k/MIFl/(0) ,.lT (Kl -+ =(E1 ) (+(0) (El))) (V+=) 1 #16.1 

#16.2 k/MIFl/(e 2l),.lT(Kl += 
-+ =(+(El) (e 2 )1) (+(e 21) (E1 ))) (V ) 1 

The right side of #16.1 is something which we very well 

know already: the theorem about the left addition of zero. 

It is easily 

computed by 

#16.1' 

transformed on the first metasystem level, i.e. 
1 

T : 

k/MIFl/(0) ,. (Kl -+ T) 

2 
The configuration in #16.2 is, with respect to T, 

transitory, because the next step of driving 1 T leads to a 

split over E1 on the first level, independently of the value 

of e 2 on the second level. The following configuration results: 

Function 2T will at this stage demand a decomposition 

to separate the recurrent subconfiguration 

It is again the left addition of zero, so that it is again 

easily transformed (although on the second metasystem level) 

into T. The configuration to which the arc with the contrac

tion (E1 -+ E11) leads should be compared with the preceding 
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configuration (in #16.2). Thus function 1T will generate a 

subfunction call: 

k/EQ/(=(+(E11) (e 2 )) (+(e 21) (E1 ))) (=(+(E1 ) (e 2 )1) (+(e2l) (E1 )))1 

where function /EQ/ is a predicate checking the esuality of 

expressions, not only numbers as = • By removing identical 

parts it will be right away transformed into configuration: 

Since driving this configuration necessitates a contraction 

of e~ , and the configuration proves recurrent, function 2 T 

will separate it by decomposition, and transform independently. 

In fact, it is theorem (T4), but with two variables split between 

two metasystem levels! 

Transforming 
17 (C ), we should not 

a in it, which cause 

the function of e 2 given by configuration 

forget that there are invisible functions 

driving in the arguments of function /EQ/ 
17 so that C behaves as if pluses were function calls, i.e. 

exactly as (T4): 

kc17 (0) ~ k/EQ/(E1 l) (E11) ~ T 

kc17 {e21) ~ k/EQ/(+(E11) (e 2 )l) (+(El) {e 2)ll) 

,. k/EQ/ { + (Ell) ( e 2 ) ) ( + ( E l) ( e 2 ) 1) 

~kcl7(e2)1 

t . 2 t f th. . t Func 1on T rans orms 1s 1n o 

Since the procedure of comparison gives a positive 

answer, the replacement of the second arc in (c16 ) will be 

(K1 ~ K1 ). The whole configuration becomes 

lT ( (El ~ 0) (Kl ~ T), 

(El ~ Ell) (Kl ~ Kl) ) (V+=) 1 

which turns into 

by induction. 
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The sentence fl6.2 will now become: 

#16.2' k/MIF1/(e 21) ~ (K1 ~ T) 

so that we can uniteit with #16.1' into one sentence: 

k/MIF1/(e 2 ) ~ (Kl ~ T) 

Therefore, the result of concretization of ~T will be 

2. 
( K1 ~ ( K1 ~ T) ) 

and by driving two interpretation functions in (14.2), the 

same way we did in the preceding example, we get the final 

result: 

kF ( e 1 ) ( e 2 ) ~ T 

which proves commutativity of addition. 

Formulas (14.1) and (14.2) define a new equivalence 

transformation, constructed on the basis of transformation T. 

P~t in words it is: take (14) as a new definition of F. 

Obviously, it can be written as a Refal program. 

5.7. Metasystem Analysis. 

The use of differential and integral metafunctions, 

as illustrated in Sections 5.5 and 5.6, opens a new approach 

to the problems of logic, mathematics and computer science, 

which we shall call metasystem analysis. In this section we 

only very briefly summarize some primary ideas of metasystem 

analysis, which still remains to be developed into a full 

theory. 

1. What in an axiomatic theory is a set of mathematical 

(specific for the theory) axioms, in metasystem analysis is 

a set of recursive function definitions. This set is called 

a mathematical machine. 

2. What in axiomatic theories is a set of logicalaxioms 

and rules of inference in metasystem analysis is a recursive 

function T of equivalence transformation of recursive func

tions. This function is called a logical machine, or just logic. 

3. The logical machine has a mathematical machine as input, 

and produces on output its model, which is another mathemati-
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cal machine. There are three elements, of which the operation 

of a logical machine is composed: 

(1) concretization (computation), including driving; 

(2) generalization (empirical induction) with a subsequent 

proof by mathematical induction; 

(3) metasystem transition. 

These also are basic elements of human thinking (see ~ion 5.1). 

4. Given a number of logical machines, we can unite them 

into one, more potent machine, which will make use of them 

all, and choose the best (in a specified sense) resulting 

model. 

5. Given a logical machine, we can construct a more potent 

machine using an MST-formula. An example was given in Section 5.6. 

We saw that while the original T could not prove the commutativity 

of addition, the new T did it. In Section 5.5 we saw an example 

when a transformation was achieved by taking the metaderivative. 

It is our hypothesis that with a certain minimum of computa

tional and generalizational capacities, all of the complica-

tion necessary to match and transcend human thinking in a 

computer may be achieved by multiple metasystem transitions. 

6. Both metaderivative and metaintegral functions may be 

used in MST-formulas, which can become very sophisticated. We 

note that even when a function is written in a format with only 

one variable, this variable can be factoPized, i.e. represented 

as a pattern expression including several new variables; then 

we can split these variables between two or more metasystem 

levels. In particular, the metaderivative function is naturally 

seen as a function of as many varjables, as many recurrent 

configurations are there in the graph of states. Thus while 

taking the metaintegral reduces the number of variables, taking 

the metaderivative usually increases it. This provides for 

many diverse MST-formulas. 
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7. Progress in mathematics is construction of more and 

more mathematical machines which model mathematical machines 

of lower hierarchic levels and phenomena of nonmathematical 

reality. Progress in logic is construction of more and 

more logical machines which are more and more potent in 

producing models. No logic is supreme, because a more potent 

one can always be constructed by a metasystem transition. 

A system producing new logic is a metalogic. If formalized 

into a deterministic or nondeterministic machine, a metalogic 

may not be supreme either, and for the same reason. There 

exists no ultimate criterion of the reliability of a logic 

or metalogic other than proof in practice and the resulting 

intuition. 

8. A logical machine is called an individual logic if its 

output is defined only when one specific mathematical machine 

is input. The usual axiomatic logic is, from the viewpoint of 

metasystem analysis, a system using only individual logics 

(called proofs) and a formalized metalogic (called formal 

logic). 

9. Starting with Godel's theorem, metasystem transition 

has been extensively used in logic and mathematics to obtain 

negative results (incompleteness, insolvability, etc.). We 

embark on using metasystem transition in a positive way: to 

actually expand (and in the needed direction) the range of 

possibilities of each specific machine, not only to show 

that it has limits. Although the range of each machine remains, 

of course, limited, the process of expansion itslef is unlimited 

as far as we can see it now. The GOdel theorem and other 

negative results set limits for those systems which do not 

incorporate metasystem transition. Our theory does incorporate 

metasystem transition as one of its formalized elements. This 

is why it is free from GOdel's limits. What other limits it 

has, if any, is not easily seen at the present time. 

10. To repeat metasystem transition unlimitedly, we must have 

a comprising system, which makes metasystem transition uniformly 

feasible on any level. As shown in [1], evolutionizing biosphere 
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is one of the systems of that kind, called there ultrameta

systems. We use Refal as an ultrametasystem -- a sort of 

characteristica universalis of Leibnitz. We try to create 

in the material of symbols a self-developing, evolutionizing 

system, which would model living structures. Using this 

model (or theory, as models made in the material of symbols 

are usually called) we shall possibly be able to better 

understand the nature and the limits of evolution. 

5.8. Algorithmic Impossibility of Ultimate Perfection. 

Theorem 5.1. There exists no algorithm which could transform 

any graph of states into an equivalent perfect graph. 

We shall prove this theorem by modeling the functions 

of formal arithmetic in Refal and showing that if we had an 

algorithm A referred to in the theorem, we would be able to 

decide any problem in arithmetic, which is impossible because 

of Church's theorem. 

There are three functions in formal arithmetic, which 

are modeled by three recursive functions: 

k = ( 0) ( 0) ... T 

k = (e 1) (e 1) ... k= ( e ) ( e ) 1 X y X y 
k = e ... F 

z 
k + (ex)(O) ... e 

X 
k+(e ) (e 1) ... k+ (e ) (e ) 1 1 

X y X y 
k X (e ) (0) ... 0 

X 

kx ( e ) ( e 1) ... k+(k (ex) (ey) 1 ) (ex) 1 
X y 

Using these functions we can model any predicate 

P(x1 , .•. ,xn) in arithmetic which does not include quantifiers. 

For such predicates P we can prove the following lemma. 

Lemma. If we have an algorithm A referred to in Theorem 4.5, 

we have the decision algorithm for all formulas of the form: 

( 1) 

and 

( 2) 
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Suppose indeed that we do have A. Then we form the 

graph of states of the function computing P, and transform 

it into a perfect graph. Consider all those passive terminal 

vertices in this graph, which are on the same bracket level 

as the head vertex, i.e. not a part of any composition loop. 

They fall into three types: 

(1) type T, comprising those configurations which always 

become T after the substitutions of free variables (if any) 

by their values (the input set corresponding to the vertex 

being not empty, because the graph is perfect); 

(2) type F, defined analogously for the truth value F 

(3) type T/F,for which two sets are not empty: the set of 

those exact input states for which concretization stops at 

the considered vertex Vi with the result T, and the corres

ponding set for the truth value F. 

There is a procedure which for each vertex Vi with con

figuration ci decides what type it is. If the vertex is T or F, 

then it obviously is of the respective type (1) or (2). Other

wise, we make use of the following facts, resulting from the 

impossilility for the predicate P to take on any value differ

ent from T or F: 

(a) If configuration ci includes any symbol at all it 

must be either T or F. The remaining part of the configuration 

must in this case be a string of e-variables, which always 

take only empty values, and we can therefore ignore them. 

There may be no more than one symbol, nor any parentheses in 

the configuration. 

(b) If the configuration is a string of free variables, 

then no more than one of them may be an s-variable, and at the 

end of concretization exactly one variable takes a nonempty 

value, which may be only T or F. 

(c) Since the input variables may consist only of symbols 

0 and 1, no variable resulting from contraction may enter the 

output configurations, all variblles in these configurations 
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must receive their values in assignments. Moreover, the left 

sides of these assignments cannot be variables defined in 

contractions, for the same reason. Thus any variable entering 

configuration Ci must receive its value, in the last analysis, 

through an assignment of a specific symbol T or F. 

Take a variable V , which enters configuration Ci. 
X 

With respect to this variable, we can classify each vertex in 

the graph as having type T, F, or T/F, depending on whether 

there is at least one walk passing through this vertex, in 

which V takes a given truth value. It is easy to see that 
X 

by tracing the graph not more than twice we ~an label each 

vertex at which V is defined with an indicator of its type. 
X 

This labeling affects also our vertex vi. 

We label the graph with respect to each variable enter-
. i . i 
1ng C • Then we determ1ne the type of C as a sort of conjunc-

tion of its types with respect to the entering variables by 

the rules: 

T & T = T 

T & F = F & T = T/F 

F & F = F 

T/F & anything = T/F 

The justification of these rules is based on the fact 

that the graph of states is perfect, and on (b) mentioned 

above. Suppose e.g. that with respect to one of the variables 
i v1 , the type of V is T. This means that there is at least 

one walk leading to Vi, on which v1 takes value T. Then 

because of (b), all other variables that possibly enter Ci 

must take empty values on this walk, and the result of substi

tution in Ci will be T. On the other hand, variable V1 is . 

never F, so that in deciding whether or not configuration c1 

may become F, we can discard v1 • Reasoning in this manner, 

we come to the above rules. 

On labeling all passive terminal vertices on the main 

level of the graph according to their types, we make the 

decision referred to in the lemma by this simple rule: 
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formula (1) is true if and only if all the vertices are 

of type T; formula (2) is true if and only if there is at 

least one vertex of the type different from F. The lemma 

is proved. 

To sum up, we have demonstrated that assuming the 

existence of the algorithm A we can define two procedures 

Da and De which give answers as to the truth of (1) and (2) 

correspondingly. These procedures can be defined as recur

sive functions in Refal. Their argument will be the 

definition of a given predicate P in Refal also. Thus to 

decide on the truth of (1) and ( 2) we only have to compute 

(Dl) k Da k I P(E1 ) (En) 11 
and 

(02) k De k I P(El) ... (E ) 
n 11 

Now consider the decision problem for: 

(3) (Exn+l) ••• (Exn+m) (Ax1 ) ... (Axn) (P(x1 , ... ,xn+m)) 

and 

( 4) (Axn+l} ••• (Axn+m) (Ex1 ) ... (Exn) (P (x1 , ... , xn+m)) 

Let us define function P 3 as 

k P3 (en+l) ••• (en+m) ,. k Da k I P(El) ••• (En) (en+l) ••• (en+m)11 

With any sp~cific set of arguments (en+l = xn+l) , ••• , (en+m=xn+m) 

predicate P will tell us whether predicate P is true for 

every set x1 , ... ,xn. Therefore, if we apply procedure De 
3 toP , i.e., compute 

(03) k De k I P3 (En+l) ••• (En+m) 11 

we shall know whether there is a set of xn+1 , •.• ,xn+m , with 

which P is true for any x1 , ... ,xn. Therefore, computing (03) 

is a decision procedure for (3). Analogously, 

(D4) k Dak I P4 (En+l) ••• (En+m) 11 

where 

k P4 (en+l) ••• (en+m} ,. k Dek I P (El} ••• (En) (en+l) ••• (en+m) 11 

is a decision procedure for (4). 
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It is easy to write the corresponding MST-formula for 

any alteration of universal and existential quantifiers. 

Since any formula in arithmetic can be written in normal 

prenex form, we have a universal decision procedure. This 

is impossible, and by contradiction this proves our theorem. 

This was an exercise in using metasystem transition for 

traditional negative purposes. 

5.9. Neighborhoods. 

Let a function F be given. The set of all expiEssions 

for which F is intended (not necessarily defined) constitutes 

the object space of function F. We shall refer to the elements 

of this set as points, and denote them by small Latin letters 

in this section. 

To each point a in the object space a unique walk 

corresponds, which is taken by the Refal-machine when it 

concretizes kF a l . By subwalks of a walk we mean parts 

of it generated by some number n of concretization steps, 

this number being referred to as the length of the subwalk. 

Consider the starting subwalk of length n of the point a. 

The set of all those points in the object space of a function 

F which have the same starting subwalk of the length n as point 

a is called the neighborhood of the n-th order of point a, 

and denoted as £n(a). The set of all points which have the 

same full walk as point a is referred to as its ultimate 
• 00 

ne1ghborhood £ (a). The ultimate neighborhood of a point a 

includes only points for which function F is defined (including 

point a itself). On the other hand, we can speak of starting 

subwalks for points in which function F is not defined because 

later in the walk an abnormal stop occurs, or the walk never 

ends. Thus neighborhoods of a finite order may be defined 

for points in which function F is not defined, and may include 

such points even if the point a itself is within the domain 

of function F. 
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The function which has points of the ~ject space 

as its arguments, and the corresponding walks as its values, 

is called the metaderivative of the second kind of function F. 

The right sides of the sentences which define it are the same 

as in the case of the metaderivative ("of the first kind") 

introduced in Section 5.5; the left sides are the same as 

in the original function F. E.g. I the function F: 

kF+e1 => -kFe 1 1 

kFsael => sakFe1 1 
kF => 

for which the metaderivative of the first kind was given in 

Section 5.5, #1, has this metaderivative of the second kind: 

f 
1'1 +el => T(El -+ +El) (Kl 

f 
-+ -Kl)/'1 el 11 

f 
T(El s I El) (\ \ s -+ +) (Kl 

f 11 1'1 sael => -+ -+ saKl)/'1 el a a 
/'lf => (El -+ D) (Kl -+ D) 

(Both metaderivative functions could be defined without intra-

ducing function T into the right sides; then we would apply -r 

to function calls of metaderivatives, as we did in the case of 

metaintegral.) Using the metaderivative of the second kind, 

we can find for each point the corresponding walk and deter

mine its input set, thus finding the ultimate neighborhood 

of the point. Equally easily we find neighborhoods of finite 

orders. 

A neighborhood of a point is generally a union of 

restricted L-classes. Picking up the class to which the 

considered point belongs, we receive an L-neighborhood of the 

point. Unfortunately, an L-neighborhood may not be unique, 

because although in any given partition of a neighborhood 

into s-restricted L-classes the classes are not overlapping, 

there may be more than one way to construct the paritition. 

As an example, consider a function defined by two sentences 

with the left sides: 
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kF e 1 

The neighborhood of the first order of a point which 

chooses the second sentence will be 

e 1 \ \ e 1 -+ Ae1 B 

Here are two ways to represent this set (which is restricted, 

but not an s-restricted L-class) as a union of s-restricted 

L-classes: 

First Re12resentation Second Re12resentation 

(Cl) 
1 

0 (C2) 
1 0 

(Cl) 
2 s2el \ \ s 2 -+ A (C2) 

2 els2 \\ s 2 -+ B 

(Cl) 
3 A (C2) 

3 B 

(Cl) 
4 Ae1 s 2 \\ s 2 -+ B (C2) 

4 
s 2e 1B \\s2 -+ A 

Consider expression AC as a point. If we build its 

L-neighborhood according to the first representation, it 

will be C~ ; according to the second representation, it will 
2 

be c2 • We note that in this particular case the second 

representation gives a better result, i.e. a larger neighbor-
1 2 

hood, because c4 c c2 ; thus we have good reason to choose 

C~ as the L-neighborhood. But consider point CD. The first 

representation gives C~ , the second representation gives C~ , 

and neither is more general than the other. 

Neighborhoods are useful for controlled concretization, 

by which we mean a concretization process which uses knowledge 

about future concretization steps. This knowledge may be 

such as: 

(1) concretization will never end, therefore there is no 

sense in continuing it; 

(2) concretization will certainly end, so that we can continue 

it in a usual (uncontrolled) way; in addition we may obtain 

an estimate of the number of steps required to bring it to an end. 

(3) although the stage of the process we are in~ repretitive, 

it cannot repeat but a finite numbe~ of times; this may encourage 
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us to continue concretization through this stage to see what 

will happen next; 

(4) no prediction can be made at this time. 

#1.1 

#1.2 

Consider e.g. a function 

kFAe1 ~ kFA 1 

kFe1 ~ e 1 

and suppose we concretize kFABC 1· After the first step we 

have kFA1. We continue concretization and after the second 

step receive kFA 1 in the view-field. We notice that it is 

exactly the same state of the Refal machine as we had at 

the preceding step, hence it will repeat itself endlessly, 

and concretization will never end. 

Consider another example: 

#2.1 kF(e1 )+ ~ kF(e1+)+ 1 

#2.2 kF(e1 )- ~ e 1 

and we start with kF(A)+ 1 in the view field. After the 

first step it will becoma kF(A+)+ 1, then kF(A++)+l, then 

kF(A+++)+ 1 and so on to infinity. However we have a differ

ent view-field at each stage, and the simple criterion used 

in the first example will not work. 

To make predictions about the behavior of a process 

becomes easier if the process is a repetitive application of 

the same transformation at each step. This is the case for 

a type of function, which we shall call while functions. 

The definition of a while function may consist only of 

sentences of two types: 

(1) kFL ~ kFR 1 

and 

(2) kFL ~ R 

Here by F we understand any determiner, L is an L-expression 

and R is a pattern expression. Sentences of both types 

define, essentially, a transformation of one pattern expres

sion into another: 
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(3) L ~ R 

the difference between them being that type (1) causes contin

uation of the transformation, while type (2) ends it. 

The graph of states of a while function has a very 

simple structure presented in Figure 19. 

Figure 19 

The walks in this graph have no composition loops and are 

concatenated as strings, not as expressions. The effect of 

any walk may be discussed in terms of the transformations (3). 

Although while functions in Refal are very special, 

they are sufficient to define any algorithm. Any function 

defined in Refal can be redefined as a while function using 

a simple mechanical procedure. The essence of this procedure 

is to code the whole view-field of the Refal machine as the 

argument of the new function, and imitate the operation of 

the Refal mach~ne, which is the same from step to step. One 

of the two components of executing a step in the Refal machine 

is the search of the leading concretization sign; this may 

be done using the multibracket techniques of an all-level scan 

described in Section 2.7. The other component, the applica

tion of sentences, may parallel very closely the original 

sentences; the difference will be that it will only affect a 

part of the argument. 

As an example, let us present the definition of function 

F of Section 5.6, expressing the proof of the commutativity of 

addition (see p. 197), as a while function: 
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#3.1 kF(e1 ) (e 2 ),.. kFl((=))+(e1 ) (e2 ) ((+(e 2 ) (e1 ))*) l 

#3.2 kFl( (=) )+(e1 ) (0) ex( (+(e 2 ) (e1 ) )*) 

,. kFl((=(e1ex)))+(e2 ) (e1 ) (*) 1 
#3.3 kFl( (=(e1 )) )+(e 2 ) (0) ex (*) ,. kF = (e1 ) (e 2ex) 1 
#3.4 kFl(ex)+(e1 ) (e 2l)ey,.. kFl(ex)+(e1 ) (e 2 )1 ey 1 

# 3 • 5 kF = ( 0) ( 0) ,. T 

#3.6 kF=(e11) (e 21) ,. kF=(e1 ) (e 2 ) 1 
#3."1 kF = e ,. F 

X 

(This definition is only a little longer than the original, 

but what a rlifference in readability!) 

Suppose we noticed in the course of a controlled concreti

zation that a subwalk W has a tendency to reproduce itself. 

Let point a be the argument at the beginning of the subwalk W 

(in any of its occurrences), and point a' the argument at the 

end of the walk. The effect of walk W is a transformation (3) 

of an input set L into an output set R. If the length of walk 

W is n, the set L is the neighborhood of the n-th order of 

the point a. Thus 

a ,. a' 

a E L 

a' E R 

Since immediately after the end of the considered occur

rence of W another occurrence of ~v begins (as we have assumed), 

point a' must also belong to L: 

a' E L 

What is the relation between the sets L and R? There are three 

possibilities, depicted in Figure 20: 

(a) 

(b) 

(c) 

R c L 

R :J L 

R :J R n L :J ¢ & IR :J L 
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(a) 

(b) 

(c) 

Figure 20 
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Consider case (a). All points of the neighborhood L 
of point a remain in the neighborhood L after transformation. 

This means that after any occurrence of subwalk '-J another 

occurrence of W will invariably follow, and concretization 

will never end. This gives us a criterion of endless concreti-

zation. In the exanple of #2, the neighborhood L is (e1 )+, 

and its transformation R is (e1+)+. Therefore R c L, and 

our criterion correctly predicts a nonstop computation. 

Ca3e.~ (b) and (c) we shall consider assuming that L is 

ones-restricted L-class. If it is a union L1 u L2 u ••• Ln 

then to each L. its R. will correspond, and instead of one 
~ ~ 

subwalk we shall have to consider n subwalks. 

Both in case (b) and (c) there are points in R which lie 

outside of L. Take one such point b' and consider point b 

we denote the neighbor-whose transformation it is. If by L' 
hood of point a corresponding to the doubled subwalk ~~, then 

b must be outside of L', because if it were in L' its first 

transformation should have been in L to repeat subwalk W. 

Thus L' C L. 

In case (b) there exists a substitution ~ such that 

( 4) L = R II ~ 

By substitution we mean here any constriction term (see Sec

tion 4 • 3) , e.g. 

II~= <II e 1 ~ sael) (II e 2 ~D)(\\ sa~ A) 

and it is only for the sake of brevity that we are using here 

the notation sign II for "positive" contraction. 

Applying substitution ~ to (3) and using (4) we have: 

( 5) L II ~ => L 

Let us denote by In(W) the input set of the sequence of 

n subwalks w. By definition, In+l(W) consists of all those 

points, which first are in the input set of the subwalk W and se

cond, after being transformed, hit the set In(W). Both condi

tions are reflected in the relation: 
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which can be taken as a recursive definition (necessary and 

sufficient) of the input sets In(W). For n = 1: 

( 6 I) r 1 (W) = L 

Because of (6) we can see (5) as the definition of £ 2 (a): 

(7) 2 
£ (a) = 

Making the substitution 6 again, we obtain 

( 8) 

and so on to infinity: in the sense that we may write such a 

formula for the neighborhood of any order n, while point a 

is not specified. But with any specific a we will sooner 

or later come to a contradiction. We saw that L' is a proper 

subset of L, so that substitution 6, which is the same on 

all steps, is not trivial. Therefore, we are building a 

sequence of different s-restricted L-classes which all contain 

point a. According to Theorem 4.5 there may be only a finite 

number of such classes. With some n, point a will find itself 

outside of the input set of the sequence of n subwalks w. 
Subwalk W may not be repreated endlessly, and this is true 

for any a. 

Consider this simple example. Subwalk w is 

sentence in the definition of function F: 

the first 

Here L is s 1e 2 , and ~ is e 2 • Case (b) is taking place. Since 

W is the only nonterminal subwalk in the graph of states, our 

criterion predicts a finite concretization process for any 

argument, without actually doing the concretization. 

case (c) requires a more detailed consideration, which 

will not be carried out here. Our aim in this section is only 

to present the basic ideas concerning neighborhoods and their 

use in the analysis of algorithms. 
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There is a useful hybrid between concretization and 

driving: driving of a point ~ith a neighboPhood. Consider 

a pattern expression E and a substitution ~, which turns 

evePy free variable present in E into an object expression. 

This pair will be referred to as a point with a neighborhood, 

or a "neighbored point". We shall denote a neighbored point 

as E II ~ without actually making the substitution. Should 

we do so, the result will be the "point": the "neighborhood" 

is E. 
The essence of the process is as follows. Suppose a 

point, i.e. an object expression, E0 is given. For the 

beginning, we convert it to a neighbored point by attaching 

to it the universal neighborhood e1: 

( 9) 

Then we start driving the neighborhood, but instead of examin

ing all branches resulting from different sentences, as in 

full driving, we choose at each step only one branch: that 

taken by the point. Thus each time when a contraction of a 

variable in the neighborhood becomes necessary we consult the 

substitutions defining the point. If the contraction, which 

we shall refer to as C, does not contradict the value taken 

by the variable according to the substitution, then it is 

carried out, which changes both the neighborhood and the 

substitution (without changing the point, naturally): the 

neighborhood narrows around the point. Applying a sentence 

we change, of course, the neighborhood without changing the 

substitution. If contraction C is impossible, it can be so 

because of two reasons. First, it may happen that the 

neighborhood as a whole is such that it does not allow 

contraction, i.e. no point of it will take this branch. In 

this case we do not change anything but just come over to the 

next sentence. Second, the neighborhood may allow contraction, 

but the point lies in that part of it which does not take 

the considered branch. In this case we start the process of 

narrowing the neighborhood around the point performing 

elementary contractions constituting C, and continue until 
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the moment when the narrowed neighborhood no longer allows 

the next needed elementary contraction. Then we come to the 

next sentence (branch). Acting in this fasion, we shall 

have at each stage of concretization a neighborhood of our 

roint, i.e. a set of points which have exactly the same 

experience in being treated by the Refal machine as the 

considered point E0 • It does not guarantee us though that 

the set includes aZZ such points. 

Driving of a point with a neighborhood may be used in 

controlled concretization, and also in the coopilation process 

to find generalized configurations. We shall give an example 

of the latter. 

Consider a function definition 

#4 0 kF e 1 ~ kF( )e1 1 

#5.1 kF(e1 )+e~ ~ kF(e1 ->e2 1 
#5.2 kF(e1 )sae2 ~ kF(e1sa)e2 1 
#5.3 

Let the initial configuration be kF 0e 1 1 (our goal is 

to just reproduce the definition by driving, because it is 

perfect). The algorithm of driving is dealing with metacodes 

of function definitions. The metacode of the initial configura

tion is 

(10) 

Instead of simply applying the algorithm of driving to (10), 

i.e. concretizing 

k /DRIVING/ *K (F0~ 1 l 1 
we are going to drive (10) as a point with a neighborhood. 

The reason is to bring to light all (or at least some) 

configurations which are indistinguishable from (10) in the 

eyes of the driving algorithm, and merge them into one 

generalized configuration. Reviewing the principles of the 

theory of compilation, we find this method of generalization 
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highly adequate: on the one hand, we move towards the goal of 

building a complete graph, so long as we succeed in generaliz

ing; on the other hand, we cannot lose efficiency by over

generalization and the resulting shift to interpretation, 

because the individual configurations merged into one are 

treated by the Refal machine the same as the generalized 

configuration. 

Doing driving by hand, it is more convenient to deal 

with configurations in their natural form (zero metasystem 

level) than in metacode, like (10); we have been accustomed 

to this representation already. But neighborhoods of the points 

of the first metasystem level like (10) are represented 

through free variables. When we step down to the zero level, 

we need some representation for these first-level free vari

ables, in ~rder not to confuse them with zero-level variables 

e 1 , ex, etc., which are images of nonterminals E1 ,Ex,etc. 

We shall call them metavariables and represent them as 

e 1 ,ex,etc. 

So we build the universal neighborhood of (10) : 

(11) 

and start driving. We try to apply #4. The result will 

depend on the first symbol of the value of the metavariable 

e1 . Thus the narrowing of the neighborhood becomes necessary: 

(12) kF 0e1 1 // e1 ~ e 1 

Now the whole neighborhood is driven through #4, and the new 

point with a neighborhood is: 

(13) ~ e 
1 

Each configuration which is potentially recurrent should 

be traced starting with the universal neighborhood, in order 

not to lose any chance of generaliz:tion. Configuration (12) 

proved transitory, and we lose interest in it. We now trace 

(13), starting again with maximum generalization: 
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(14) 

Driving through #5.1 implies three consecutive contrac

tions for el: 

(e1 + Fe1 ) <e1 + (e2 ) e 1 ) (e1 + + e 1 ) 

The first two of these lead to the narrowing of the neighborhood: 

(15) 

The last one cannot be done in the general form, because e 1 is, 

in fact, an object expression E1 (*El, to be precise), which 

is not identical to + • Since in order to discover it we had 

to examine the substitution in (15) this means one more 

narrowing is needed: 

(16) 

Now we must remember that the driving of a point with a 

neighborhood refers to the function /DRIVING/, not to the func

tion F. Driving will demand the contraction e 1 + +e1 , which 

will generate a new configuration 

(17) 

By metasystem Peduation (see Section 5.1) we treat the neigh

borhood in (17) as the configuration 

and compare it with the preceding configuration, resulting in 

the same manner from the neighborhood in (16): 

(Cl6) kF(e2) el J 
We see that c17 c c16 , which allows looping, Continuing 

exploration of configuration c16 , we easily reproduce the 

original definition. The important thing was to find configura

tion c16 , and this was done by driving with a neighborhood. 
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5.10. Supercompiler System. 

The supercompiler consists of two parts: a program which 

performs the equivalence transformation T, and a program which 

maps the resulting graph of states on the target machine. 

The first part is by far more important; the second part only 

transfers the algorithm from one machine to another (algorithmic 

equivalence as compared to functional equivalence in the case 

ofT), which may be accompanied by no more than a constant 

factor gain in efficiency. We shall indicate that the output 

of the equivalence transformation is a program for a machine 

different from the Refal machine by adding the superscript 

m to T; thus the supercompiler will be a Refal function Tm. 

To write MST-formulas in a situation involving a target 

machine different from the Refal machine, we shall use a nota

tion closely related to the interpretation function < for 

the Refal machine. T:7e wrote 

k· <P> A 1 
to represent the work of the Refal machine applying a function 

definition (i.e. a program) P to a list of arguments (input 

set) A. To indicate that a different machine is meant, we 

add the superscript m to the concretization sign k. Thus 

km <P> A 1 
will represent the process and the result of the target 

machine's work when loaded with program P and input data A. 

In the beginning of Chapter 4 we started reviewing 

the use of languages defined in the Refal system by their 

interpreting functions. Let us now complete the review 

assuming that we have the supercompiler Tm for a given 

target machine. 

Let L be the interpreting function of a language L, 

so that 

(1) 

is the application of a program ep in L to input data ed. 
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The most straightforward way to use the supercom p iler 

and the target machine is to translate the Refal program for 

L into the language of the target machine with the super

compiler and turn over the result to the target machine 

for execution. This is described by the MST-formula: 

(2) kL(ep) (ed) ~ km <Tm k I L(Ep) (Ed) 1 1> (ep) (ed) 1 

The expression in the angular brackets (the program for 

the target machine) does not depend on either ep or ed. 

One can compute it only once by the Refal interpreter, based 

on the definition of L, and then use it on the target machine 

each time when ep and ed are given. The transition from (1) 

to (2) may result in an essential gain in efficiency because 

of two reasons. First, the definition of the language L in 

Refal may be in a "heavy" interpretation mode, using a 

hierarchy of auxiliary functions. In this case the redundancy 

of the definition will be eliminated during the compilation 

process, and the resulting program will be much more efficient 

than direct concreti~ation of (1). This gain in efficiency 

is not connected with the transi~ion from the Refal machine 

to the target machine: we could achieve it inside the Refal 

system using equivalence transformation T according to 

the formula: 

(3) kL(ep) (ed) ~ k<Tk I L(Ep) (Ed) 11> (ep) (ed) l 
'1'he second source of the possible gain in efficiency is 

in transition from concretization in the Refal machine (which 

in practice is interpreted in a computer) to direct operation 

of the target machine. As mentioned above, this may multiply 

the efficiency by a constant factor. 

With all that, the use of the language L according to (2) 

remains interpretive, and therefore not fully efficient. 

Can we produce an efficient program for the target machine 

corresponding to a specific program in L (i.e. the value of e), p 
when only this program, but no input data ed , is given? 

Yes, we can. It is a metasystem split of variables. Consider 

the partial rnetaintegral 
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( 4 ) ki 1 (e ) ~ T mk J L ( e p) (Ed) 11 p 

and the corresponding MST-formula: 

( 5) kL(e ) (ed) ~ km<ki 1 (e >1> 
p p (ed) l 

When a program e is given, we compute function (4) on 
p 

the Refal machine: once and forever. It is an efficient 

compiled program for the target machine, to be used with 

any input data ed according to (5). 

So in function I 1 (e ) we have a compiler for the 
p 

language L. It may give high quality programs, but as it is 

defined, it works itself in the interpretation mode, depend

ing on the Refal machine. Can we build a compiler which would 

work fast and nice on the tarqet machine? Certainly. We 

make one more metasystem transition: 

(6) ki 2 ~ Tm k J Il (Ep) l 1 
(7) kL(ep) (ed) ~ km <km <ki 2 1> (ep) 1> (ed) 1 

Function I 2 of no variables can be computed on the Refal 

machine. It is a compiled compiler for the language L. 

According to (7), we first use the target machine to translate 

ep , then apply the result to input data ed. Note that to 
m 

produce this compiler we need only function T (the super-

compiler), applying it, as one can see comparing (6) and (4), 

to itself. 

Furthermore we can produce a compileP compileP implemented 

on the target machine, using the Refal interpreter with the 

function Tm only once. According to the definition of 

partial metaintegral, 
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The full metaintegral in the right side is the definition of 

the function L. Let us generalize function r 1 to Ifl, which 

includes the dependence on the functional definition: 

(9) 

Accordingly, 

Now the metaintegral we need for (6) is expressed through 

the generalized metaintegral as 

(11) 

Making the third metasystem transition, we receive the 

compiler compiler: 

( 12) 

which is used according to the formula: 

The compiler compiler (12) is as universal as the super

compiler Tm itself. It can be computed using the Refal 

machine only once. 
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Let us sum up the main features of the supercompiler system. 

(1) Refal is used both as the algorithmic language and as the 

metalanguage of the system. Formally, all algorithms are 

written in Refal, but in fact one can define any language 

through an interpreting function, and then write in that lang

uage. One can construct hierarchies of languages, defining 

one language through others. 

(2) The system includes a Refal interpreter, so as to debug 

progorams in the interpretation mode. This .makes the debugging 

process closest to the terms in which the program is written. 

(3) The system includes a supercompiler, which transforms a 

Refal program into an efficient program for a target machine. 

Counting on the supercompiler, we can program in a much freer 

style than we did in Chapter 2 when the program was expected 

to be interpreted. We can use very general algorithms, which 

are not efficient when executed literally, i.e. interpreted, 

but with the arguments partially specified, may be turned into 

efficient algorithms by the supercompiler. The use of-a lang

uage defined through its interpreting function is only one 

special case of this style. 

(4) Operations and algorithms not defined in Refal can be 

used as external functions, provided that translation statem~nts~ 

which show how these operations should be performed in the 

target machine, are available to the supercompiler. 

(5) One part of the supercompiler's job is the compilation 

process, which is one of the basic optimization tools. The uqcr 

may control this process by choosing a compilation strategy 

and modifying it depending on the results of compilation. Making 

a number of trials, an optimal point on the interpretation

compilation axis may be chosen, i.e. the desired trade-off 

between the size and the speed of the program achieved. 

(6) The second part of the supercompiler's job is the mapping 

of the Refal machine on the target machine. When the user 

programs in Refal, he defines his formal objects (data structures) 
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as Refal expressions, in a mathematical style. After debugging, 

which, as mentioned above, should be done with the Refal 

interpreter and in terms of Refal expressions, the user may 

partially or completely specify the mapping of the Refal 

configurations on the target machine. Different mappings 

may be tried to achieve better performance. Those configura

tions for which no mapping was indicated will be mapped auto

matically by the supercompiler. Since the mapping is made 

when the algorithm has already been formally defined, it is 

possible to adjust it to the algorithm in order to achieve 

high efficiency. In this way it is possible to free the user 

completely of so tedious a job as organizing and describing 

data for a real computer system. He will be dealing only 

with a mathematical model. 

(7) If an algorithmic language L defined in Refal is expected 

to be used for a class of problems, an efficient compiler 

from L can be produced automatically. It will be run on the 

target machine and will translate programs in L into the 

language of the target machine. The user of the language L 

may or may not know anything about Refal and the way the 

compiler from L was made. 

* * * * * * * * * * 
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covering context-free 

grammar 171,195 

covering L-class 166 



deadlock situation 

in projecting 

determiner 

differential meta

function -

see metaderivative 

differentials 

domain of a function 

domain widening 

18 

5 

183 

58 

62,63 

driving 

dynamic arc 

xi,S9-60 

76 

elementary contrac-

tions 

expression 

extended Refal 

external functions 

factorization of a 

variable for meta

system split 

feasible and unfeas

ible paths 

feasible and unfeas

ible walks 

format of a function 

94 

7 

7 

10 

214 

91 

112 

21 

formatted walk 

free variable 

(also variable) 

186,194 

from wi tl:out within 

strategy (also called 

inside from outside 

4,7 

and outside-in strategy) 

67,170,189,192 

functional equivalence 

(strict, nonstrict)SS-59 

functional loop 112 

243 

generalization 123 

generalization to 

(formatted) functions 

strategy 106-107 

generalization 

variables 

Godel theorem 

82,90 

215 

GPA - Generalized Pro

jecting Algorithm 43-48 

graph of states 175 

induction 131,170 

input state, set, 

class 111-112 

input variable 91 

input variable form 182 

inside from outside 

strategy: see 

from without within 

interpretation function202 

interpreting function 

of a language 69 

interpretive implementa

tion, principles of 15 

i/o quasisentence 135 

iteration as defined 

in Refal 28 

L-class 41 

leading sign k 8 

LE-generalization 127,208 

lengthening of e-vari-

able value 

L-generalization 

L-generalization 

strategy 

L-neighborhood 

18 

123 

129-130 

221 

logical machine (logic)213 



mathematical machine 213 

mapped variable and 

configuration 134 

mapping of Refal machine 

on target (object) 

machine 

Markov's normal 

algorithms 

memory-field 

75,134 

4 

9 

metacode A 12-14,140 

metacode B 

metaderivative (also 

differential meta-

12,14 

function) 

xii,l80,196-197,203,214 

metaderivative of the 

second kind 

meta function 

metaintegral (also 

integral meta-

221 

30,139 

function) xii,201,214 

metalanguage 

meta logic 

metasystem analysis 

v,l,69 

215 

metasystem level 

xiii,213 

139 

metasystem reduction 

141,149,232 

metasystem split of 

variables 196,203 

metasystem 

transition 

MST-formulas 

multibrackets 

ix,l39,215 

204,214 

34,35 

neighborhood 220 

nonterminal symbols 

(nonterminals) 140 

nonterminal walk 148,149 

normal form of a Refal 

program 111 

normal form of a walk 156 

normalization of walks 

145-146 

normalization rulesl57-161 

object expression 

object space 

object string 

8 

139,220 

7 

one-step (sub)function 

open e-variables 

order of a scan 

output set of a walk 

outside-in strategy 

see from without 

within strategy 

path in a graph 

of states 

147 

18 

22 

146 

89 

pattern expression 8 

perfect graph of statesll2 

point with a neighbor-

hood, driving of 

projecting algorithm 

229 

16 

projecting number 16 

productions for walks 145 

production system 142-

244 



quasiinput (exact) 

state, class 

quasiinput variables 

range of bidirectional 

substitution 

range of concretization 

sign 

reduction -- see meta-

system reduction 

redundant variables 

Refal machine 

replacement 

replacement rule (in the 

state of variables) 

representation arc 

reproduction of 

variables 

restriction, restricted 

91 

91 

157 

8 

88 

6,9 

149 

150 

82 

23 

class 95-96 

screening rule (A3) 56 

sentence 3 

set selector 165 

shorthand notation 11,140 

sign 1,7 

simultaneous substi-

tuions 42 

specification language viii 

specific sign 7 

specified variable 

specifier 

split functions 

7 

7 

173 

s-restricted class 102 

stack of variables (in 

walk interpretation) 150 

245 

stairway effect 

strict Refal 

structure brackets 

ix 

6,40 

(parentheses) 3,7 

submerging rule (A4) 56,57 

submission of configura-

tions 

subwalk 

supercompiler 

symbol 

84,93 

220 

vi,73,233 

1,7 

syntactic recognition 5,8 

syntax of Refal 7-8 

term 

terminal path 

terminal walk 

t-generalization 

tight generalization 

transitory configura-

tion 

translation statement 

transparency principle 

in walk normaliza-

tion 

ultrametasystem 

union of functions 

7 

91 

149 

124 

123 

78 

136 

161 

216 

183 

valid variable form 

variable form 

vertical segment 

view-field 

182 

182 

89,137 

9 

walk 111-112,145 

walk interpretation 149-

while functions 

workable expression 

W-productions 

223 

8 

146 
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