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Compare proving a theorem in an axiomatic system with the 
computation process when we are dealing with recursive function de­
finitions. The former is nondeterministic and requires either an ex­
haustive search or an heuris~ic technique to set subgoals which are 

likely to lead to the desired end. The latter is deterministic and 
straightforward. Obviously, we should try to substitute the proof by 
computation for the proof by constructing a demonstration if our aim 

is to facilitate computerization. The purpose of the present paper is 
to introduce a technique which, as we: believe, crucially increases 

the power of the proof by computation. 

1. Metasystem transition in formal arithmetic 

We shall illustrate our idea by examples from formal arithmetic. 
In the axiomatic arithmetic, 0 is a constant, x, y, etc. are variab­
les, and x• denotes the number which immediately follows x • The axi­
oms are those of the predicate calculus with equality, the axiom of 

induction, and a number of specific axioms, which may be, e.g., as 
follows: 

(1) 
(2) 

(3) 

~Y ,. x• .. y• 

X'=Y' ,. X=Y 
..., X'=O 

(4) X+O = 0 

(5) X+Y' = (X+Y)' 

(see (1]; universal quantifiers are implied; we will not use multipli­

cation.) 
In the recursive arithmetic the numbers are: 0, 01, 011, etc. 

The predicate of equality and the function of addition are recursive 

functions defined in some algorithmic language. OUr formalism is 
based on~ (see[2-4]). The definition of equality and addition 
in Refal is: 
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#1.1 k=(O)(O) ~ T 

#1.2 k=(exl)(eyl) ~ k=(ex)(ey) ~ 
#1.3 k= ex ~ F 

#2.1 
#2.2 

k+(ex)(O) ~ ex 

k+(ex)(eyl) * k+(ex)(ey) ~ 1 

Essentials of Refel can be seen here even without reading the 
description of the language. Functions are defined on expressions , 
meaning by an expression any string of symbols and parentheses having 
correct structure with respect to parentheses. A function definition 
is a sequence of sentences, which are replacement rules, with ~ se­
parating the right side from the left. A function call is represen­
ted by k ~ ~ .1 , where ~ is a function symbol and t is the argu­
ment. Concretization brackets k and ~ obey the bracket syntax, 
the sign ~ serves as ~ for the initial k in the left side of a 
sentence. ex, ey, etc. are free a-variables, which can take any ex­
pressions as values. Free a-variables: sx' sy, etc. take only sym­
bols as their values. In concretizing (evaluating) a function call, 
the first applicable sentence is used in each replacement step. The 
applicability of a sentence and the values of the free variables are 
determined in matching the function call with the left side. The Re­
fal machine transforms workable expressions in its view-field , step 
by step, using sentences until there are no k-eigns in the view-field. 

Consider the theorem 

(6) 0'' + 0''' = 0''''' 

of the axiomatic arithmetic. To prove it,we start from the axiom (5) 
with X=0'', and y=O 

(7) 0'' + 0' = (0''+ 0)' 

Using axiom (4) with X=O'', we have: 

(8) 0 1 I + 0 = 0' I 

From (7), (8), and the axioms for equality we derive: 

(9) 0'' + 0' = 0''' 

Preceding in this manner, we obtain a demonstration of (6) in two 
more steps. 

The analogue 
statement that the 
k+(Oll)(Olll)i is 

of theorem (6) in the recursive arithmetic is the 
result of the evaluation of the function call 

011111 • To prove this statement we only have to 
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put the former into the view-field of the Refal machine, to start the 
machine, and to check that when it stops, the contents of the view­
field is the latter. 

Consider now a statement with (implied) universal quantifiers: 

(10) ~ x• = 0 

which is an axiom in the axiomatic arithmetic. In the recursive arith­
metic it is equivalent to the statement that the concretization of 

(11) k=(exl)(O)~ 

is F with any ex • 
To formalize this statement, we introduce the function (predi-

cate) 

#3 kP1 ex ~ k=(exl)(O)~ 
OUr statement now is: the definition #3 is functionally equivalent 
to the following definition: 

#4 kP1e ~ F 
X 

(to be referred as an F-identity). 
We say that a program (algorithm) a/ in Refal is functionally 

equivalent to an algorithm Cl with respect to function jr , iff 
for every expression ~ from the domain of 1F according to a , the 
concretization of k ~ ~ 1. according to a/ produces the same result 
as according to a . The transformation of CZ into a,;" will be called 
an equivalence transformation. We note that the relation between Cl/ 
and a is not symmetric f thus it is not a II relation of equivalency" 
in the usual mathematical sense. The domain of a function may be ex­
tended as a result of an equivalence transformation. 

A system of rules for equivalence transformations in Refal has 
been formulated (see [3]). We shall not reproduce these rules in the 
present paper, but will use them in an informal manner. In addition to 
the rules of equivalence transformations, a strategy of applying these 
rules has been also formulated in (3], which results in an algorithm 
of equivalence transformation. We denote this algorithm Q without 
its formal definition. Instead we shall show in examples what it can, 
and what it cannot do. 

It is easy to transform #3 into #4. We have only to "drive" 
through the Refal machine a set of workable expressions represented 
by a general Refal expression, which may include, unlike a workable 
expression, free variables. We call this procedure driving • To drive 
expression (11), we notice that neither #1.1, nor #1.2 will be found 



applicable for concretization, whatever the value of ex is. Hence #1.3 
will be used, which gives F as the result. 

This was one of the simplest cases of driving. Generally, the 
Refal sentence used in concretization step will depend on the values 
of the free variables, which leads to branching. The branches will 
correspond to certain subsets of the set of all possible values of 
each variable involved. We call this subsets contractions of the ori­
ginal full set, and represent them as substitutions for variables. 
For example, the contraction (ex- Aex} defines:(l}the subset of the 
set of all expressions comprising all expressions which start with A; 
(2}the corresponding branching condition depending on the value of 
the variable ex;(3}the new value of the variable ex' which is the old 
value less the initial A • The set of all possible values of the new 
variable ex will again be the full set of all expressions. 

Consider the theorem: 

0 + X = 0 

which is proved by induction in the axiomatic arithmetic. In the re-
cursive arithmetic, this is equivalent 

#5 

into 

(12) 

kP2ex ~ k=(k+(O}(ex}~}(ex}~ 

the T-identitz: 

Let us put 
2 

tle~ 

2 
kP ex ~ T • 

to the transformation of 

into the view-field of the Refal machine. In one step we will have: 

(13} k=(k+(O)(ex)~}(ex}~ 

Apply driving to (13). The concretization of the function + call 
leads to the branching: 

{

(ex _.0): sentence #2.1 will be used 

(ex +ex): sentence #2.2 will be used 

If the first branch is taken, we easily come to T as the final re­
sult of concretization. Taking the second branch, we have 

(14} k=(k+(O)(ex)~ l)(ex 1}~ 

in the view-field as the result of the substitution for ex and the 
subsequent step of the Refal machine using ~2.2 • 

Now we use #1.2 to concretize (14}, which gives: 
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We have come to exactly the same configuration in the view-field as 

it was at an earlier stage (1)). The graph of states of the Refal ma­

chine which operates according to #5 is: 

(ex - 0) 
_::::.----...! T 

- e 1) X 

It is not difficult to recognize the structures of this kind, and 

transform them into: 

which corresponds to a T-identity. 
The equivalence transformation Q does it. In fact, it does on­

ly a little more: it knows how to produce simple generalizations re­

presentable in the form of pattern expressions. For example, two ex­

pressions: (ABC) and (AXYZ),may be generalized as (Aex). Using this 

generalization technique, Q performs a transformation which is equi­

valent to a one-time application of the induction principle to a hy­

pothesis produced by generalization. 

As our next example, consider the statement: 

(15) X + y = y + X 

expressing the commutativity of addition. In recursive arithmetic it 

corresponds to the transformation of the predicate 

#6 kPc(ex)(ey) * k=(k+(ex)(ey)~)(k+(ey)(ex)l)~ 

into aT-identity. 
Applying Q , we drive the function Pc call, and get 

(16) k=(k+(ex)(ey)~)(k+(ey)(ex)l)L 

in the view-field. The next step of driving produces the branching: 

(17) (ey- 0): k=(ex)(k+(O)(exhh 

(18) (ey - eyl): k=(k+(ex)(ey)~ l)(k+(eyl)(ex)l)~ 

Configuration (17) is transformed into T' by Q , as we saw in 

the ·preceding example. But configuration ( 18) causes trouble. The al­

gorithm Q will drive the second + call at the next step, which will 



650 

lead to a branching on the value of ex. The branch (ex -o) will 
produce a configuration which is transformed by Q into T , like (17); 
the branch (ex - exl) will produce the configuration: 

(19) k=(k+(exl)(ey)~ l)(k+(eyl)(ex)~ 1)~ 

which after one more step of driving using #1.2 transforms to: 

(20) k=(k+(exl)(ey)i)(k+(eyl)(ex)L)~ 

This configuration is not identical to (16). If we try to continue 
the transformation of (2) by Q, we only receive new configurations: 

k=(k+(exll)(ey)L)(k+(eyll)(ex)~)~ 

etc., but never come back to the original configuration (16). But the 
only way for Q to transform a definition using induction is to loop 
to the same configuration in the course of generalized computation -­
driving. Thus Q fails to prove the commutativity of addition. 

Turning to the axiomatic arithmetic, we can see that the failure 
of Q to prove th~orem (15) stems from the fact that a double induction 
loop is needed to prove it. Configuration (18) is: 

(21) (x + y)' = y' +X 

We firat prove by induction an auxilliary theorem: 

(22) Y'+X=(Y+X)' 

and then combine (22) and (21) by the transitivity of equality into 

(x + y)' = (y + x)' 

Using axiom (2), we come back to (15), which allows to close the second 
induction loop. Thus we have a loop nested in loop. The interaction of 
these two loops leads to the proliferation of new configurations in 
the straightforward computational approach,which dooms Q to failure. 

The fact that statement (22) can be proved as a theorem, and 
that it will be useful, must be guessed somehow, and (22) must be set 
as a subgoal if we use the axiomatic approach. In our approach, we 
look for a different solution. 

Suppose one of the free variables in the configuration (16), 
say e

1
, is given a certain value. Then only one induction loop will 

be needed for transformation, and Q will be able to do the job. We 
have already seen it for ey -o, configuration (17). Giving to ey 
the values 01, 011, ••• etc., we reduce (16) to the configurations: 

(23) k=(exl)(k+(Ol)(ex)L)L 
k=(exll)(k+(Oll)(ex)L)L ••• etc. 
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each of which can be transformed by Q into T , as the reader can 
easily verify. 

To prove the commutativity of addition for the case when both 
variables in Pc are arbitrary, we make a metasystem transition: we 
formalize Q as a recursive function in Refal (this will become a meta­
system with respect to recursive arithmetic) and consider statements 
about Q • Our idea is to prove that the application of Q to any of the 
configurations (23) will produce T .Should we succeed in proving 
this, we have proved that configuration (16) can be replaced by T al­
so. As the instrument of proof we choose the same algorithm Q which 
is applied to arithmetic statements. The big question is: will the 
new algorithm resulting from this self-application be more powerful 
than the original algorithm Q ? In particular, is it possible to prove 
the commutativity of addition in this way? 

It is shown in [3] that the answer to this question is positive. 
In Sec. 2 we define the basic concepts which serve to formalize meta­
system transition, and which lead, in particular,to the desired proof. 

2. MST-f.ormulas 

The concept of metasystem transition was introduced and taken as 
the basis for the analysis of evolutionary processes in the author's 
book (5}. It was the philosophical background exposed in [5]that gave 
a push to the work on the Refal project in the mid-1960s. The language 
Refal was designed as the means to facilitate the formalization of me­
tasystem transition. It finds a compromise between the complexity ne­
cessary to write non-trivial algorithms, and the simplicity necessa­
ry to formulate effective rules of equivalence transformations. 

Metasystem transition is one of the main instruments of creative 
human thinking. To solve a problem, we first try to use some standard 
system of operations, rules, etc.If we fail we start to analyze ~ 
did we fail, and for this purpose we examine the ~~ of applying 
our rules and operations. We construct a metasystem with respect to 
the ground-level system of rules and operations which would give us 
some new, more elaborate, rules and operations to solve the problem. 
If we fail once more, we analyze the processes on the first metasys­
tem level, which means that we make a second ruetasystem transition. 
This time we create instruments which would help us, on the first me­
tasystem level, create instruments to solve the ground-level problem. 
This transition from the use of an instrument to the analysis of its 
use and creation of instruments to produce instruments may be repeated 
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again and again; it stands behind the two and a half millennia of the 
development of contemporary mathematics. For a computer system to 
match the human being, it must model this process. 

Since functions in Refal may be defined only on object expres­
sions (i.e. not including free variables and concretization brackets), 
the representation of function definitions to be used in metasystem 
transition must transform sentences (and their parts: free variables, 
pattern expressions, function calls) into object expressions. We call 
this representation metacode • 

We need not describe the metacode in full (although it is very 
simple); let us only show how free variables are encoded. Note that 
metasystem transition may be repeated many times, thus generating a 
multilevel system. The original functions, such as+ , =, Pc , etc., 
will be referred to as functions of the ground (zero) metasystem !!­
!!!· Functions applied to transform (or generate) these functions, 
such as Q , will be referred to as being on the first metasystem 
level. Functions transforming the functions of the first metasystem 
level are said to be on the second metasystem level, and so on. 

Variables of the ground metasystem level, like ex, s1 , etc. re­
present sets of object expressions. In metacode (i.e. on the first 
metasystem level) they turn into non-terminals of ~ first order Ex' 
s1 , etc., which are not variables, but just regular symbols. The 
first metasystem level has, of course, its own free variables, which 
have again the usual form: ex, s1 , etc. When we make a metasystem tra­
nsition to the second level, they turn into first-order non-terminals, 
while first-order non-terminals Ex, s1 , etc. turn in metacode into 
second-order non-terminals E~, si, etc. 

The formalism which exploits the idea exposed in Sec.l rests on 
the concept of integral metafunction, or metaintegral. In our case we 
are interested in the metafunction which will be denoted as: 

k~Pc(Ex)(ey) .l 

We read it: the metaintegral of Pc over ex. This is a function 
which depends on one variable ey • Por any value t of ey, the value 
of this function is the metacode representation of the definition of 
function 

(24) kr(ex) ~ kPc(ex)( ~ h 
of one argument ex .This function, of course will be different for 
different values of ~ (a family of functions). 
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We introduce now the Refal-interpretation function R, whose defini­
tion is: if [def(g;)] is the metacode of the definition of a function 
~ , and lb is an expression from the domain of ~ , then 

(25) 

Consider an equivalence transformation function Q .It is a me­
tafunction which has the set of all correct metacodes of function de­
finitions as its domain. By the definition of equivalence, 

(26) kR( kQ[def(~)] .,L)G 1= kR( (def(~)])~ ..L 

Combining (25) and (26) we have: 

(27) k~ ~ 1 = kR( kQ(def(~)]..L>~ 1 

By the definition of metaintegral, 

(28) kR(kSPc(Ex)(ey)..L)(ex)l kPc(ex)(ey)l 

Therefore, if we redefine function Pc in this way: 

(29) kP0 (ex)(ey) ~ kR(kSPc(Ex)(ey)..L)(ex)..L 

this new definition will be equivalent to the old one. We call such 
definitions as (29) MST-formulas (MST standing for MetaSystem Tran­
sition). An MST-formula defines an equivalence transformation using 
one or more metasystem transitions. 

Using (26) we obtain from (29) another MST-formula: 

(30) kPc(ex)(ey) ~ kR(kQkJPc(Ex)(ey)..L ..L)(ex)..L 

The algorithm of evaluating Pc according to (30) is this: 

Step 1. Take the definition of Pc with a specific ey , but with an 
arbitrary ex. It will be a function of ex; e.g., if ey = 011, this 
function will be 

(31) kFX(ex) ~ k=(k+(ex)(Oll)l)(k+(Oll)(ex)l)l 

Step 2. Translate this function definition into metacode and trans-
form by function Q. A new function definition results. 
Step 3. Interpret this last definition with the specified ex 

'He know from Sec.l that the function· resulting from step 2 
will always be identical T , because configurations (23) are succes­
sfully transformed by Q. But it is only our knowledge, and not yet a 
fact proven by machine. To have it proved, we must make one more meta­
system transition. Let us define: 

(32) kix(ey) ~ kQk~P0 (Ex)(ey)l l 
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and apply to this function transformation Q again. The metacode of 
(32) is denoted as kSix(EY)~ • According to (27): 

(33) kiX(ey)~ kR(kQkJIX(Ey)~ ~)(ey)~ 

From (30), (32), and (33) we obtain this MST-formula: 

(34) kPc(ex><ey) ~ kR(kR(kQkrrx(EY)~ ~)(ey)~)(ex)L 

Together with (32), it defines an equivalence transformation, 

but it is not yet the final form of the transformed definition. To 
get the final form, we use an equivalence transformation once more: 

to simplify the definition (34). This last procedure transforms (34) 
into a T-identity. The same function Q may be formally used, but even 
a much simpler technique will suffice on this stage. The essential 

part of it is just a computation: that of the value of kQkJix(EY)~ ~· 
The result will be: 

(35) (kix(ey) :::. [kPx(ex) :::> T]] 

where by bracketing a sentence we denote its metacode.(compare with 

(32) and (24) ), This result is a formal proof by Q that Q proves 
any definition of type (31) to be a T-identity. It is interesting to 
note that theorem (22), which in the axiomatic approach must be 
guessed as a useful subgoal, in our approach appears automatically 
in the course of computation (and, of course, is easily proven by Q, 
since it requires only one induction loop). 

Using (35) in the right side of (34), we first obtain: 

kR( [ kr( ex) => T ] )(ex)~ 

by virtue of the definition of R, and then - by the same definition -
T , which completes the formal proof of the commutativity of addition. 

It should be stressed that after function Q has been once de­

fined, the use of MST-formulas like (34) is a purely mechanical pro­
cess: we just write the formula and apply Q to it. One can write many 
different MST-formulas splitting variables in different ways between 
two, three,etc. metasystem levels and returning to the ground level 
by using the interpretation function R • 

The algorithm Q must be of certain minimal complexity in order 
to deal successfully with itself. When this level of complexity is 
achieved, we have a good reason to believe that the second, third, etc. 
metasystem transition will also be successful (i.e.provide more and 
more powerful algorithms), because at each next step of this stairway 
Q is still applied to itself. It seems plausible that the number of 
metasystem transitions we have to make in the computational approach 
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is equal to the number of nested loops of induction, but it has not 
been demonstrated in a rigorous manner. 

Theorem proving and program optimization are indistinguishable 
in our approach, they are two applications of the same functional equ­
ivalence transformation. The algorithm Q, although not very strong in 
proofs by induction, is strong enough to ensure some important types 
of optimization (see (3]). Coupled with metasystem transition, it 
should become a powerful instrument of program optimization. 

3. System approach to mathematical knowledge 

Our approach to theorem proving is not based on mathematical 
logic in its traditional form. It should be viewed as constituting 
first steps toward creation of a system of mathematical knowledge, 
the general plan of which is represented below: 

0 s:: 
et 
'd s:: 
ct 

metalogical machine 
of the 1st order 

0 s:: 
et 

! 
logical machine 

human knowledge function: 
natural sciences, 
metamathematical machines 

> 
modeling 
relation 

physical processes, 
mathematical machines 



Human knowledge at any moment of time can be seen as a function 
which receives a material process as its input, and produces (or does 
not produce) its model as the output. Mathematics is the part of hu­
man knowledge which models special type of processes: mathematical 
machines. Arithmetic functions may serve as example of mathematical 
machines. They are used by the human ~nowledge function to create mo­
dels of physical processes; at the same time they are an object of 
study of mathematics, and the result of this study is a metamathema­
tical machine. 

Our function Q is an example of a metamathematical machine. 
Equivalence transformation is a conctruction of a model. Metamathema­
tical machines are created and improved using logic. We used logic 
when obtained a new Q from the old one. Logic, generally, creates new 
knowledge, makes the human knowledge function evolutionize. Formali­
zation of logic creates a logical machine, which can be deterministic 
or nondeterministic. 

Traditional formal logic is a nondeterministic machine which ge­
nerates demonstrations; the metamathematical machine in this approach 
is trivial: it just keeps the knowledge created (the theorems proven) 
up to date, and outputs them on request. In our approach all the ma­
chines will be deterministic, and we are not going to limit the hie­
rarchy by any definite metasystem level. We start with an intelligent 
metamathematical machine Q ; then create an intelligent logic, which 
chooses the MST-formula to be used; then create a metalogic, which 
tries different logics; etc. No metalogic may be supreme, because a 
more powerful one can always be created by a metasystem transition. 
There exists no ultimate criterion of the reliability of a logic or 
metalogic other than proof in practice. 

Starting with Goedel's theorem, metasystem transition has been 
extensively used in logic and mathematics to obtain negative results 
(incompleteness, unsolvability). We embark on using metasystem tran­
sition in a positive way: to expand actually, and in the needed di­
rection, the transforming power of each specific machine, not only 
to show that it has limits. Although the power of each machine re­
mains, of course, limited, the process of expansion is unlimited -­
as far as we can see it now. Goedel's theorem and other negative re­
sults set limits to those systems which do not incorporate metasys­
ten transition. Our approach does incorporate metasystem transition 
as one of its formalized elements. This is why it is free from 
Goedel's limits. What other limits it has, if any, is not easily 
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seen at the present time. 
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