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Abstract 

Syntactic currying of a program is the transformation of one phase program into two phase 
programs. One phase programs takes all the input and produce the result, while a two phase 
program takes part of it input and produce a residual program as an intermediate result, when 
the residual program is applied to the rest of the input it computes the final result. 

Syntactic currying is very close to partial evaluation. Just like there are two ways of running 
programs: interpreting, and compiling; there are two ways of performing partial evaluation. 
Until now people have concentrated solely on the interpretive style (which corresponds to the 
implementation of the S~-theorem). This report introduce the compile style (which corresponds 
to the implementation of syntactic curry). It is shown that the compile style (or model) have 
some advantages for the interpretive style both considering giving a pedagogic explanation of 
partial evaluation, and when it comes to efficient implementation of partial evaluation. 

The report gives a stepwise development of syntactic currying. Starting with with an im­
plementation of syntactic currying based on evaluation over a domain of expressions. It is then 
realized that the inefficiency of this implementation, comes form the fact that it is an imple­
mentation of a dynamically typed language, with the binding time types static (early binding 
time), and dynamic (late binding time), where all operations are overloaded. Developing a type 
inference for binding time types and transforming the programs into statically typed versions, 
leads to an implementation which is statically typed and much more efficient. The type infer­
ence is very inspired by Nielson and Nielson [Nielson 86), and corresponds to the binding time 
analysis in [Bondorf 88). 

The syntactic currying is implemented in Scheme using extend-syntax (macros). In the end 
the syntactic currying is compared with partial evaluation and our implementation is compared 
with other partial evaluation systems. 

Keywords: Syntactic currying, partial evaluation, binding time analyses, type analysis, 
compilation, Scheme, Syntactic extensions. 
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Chapter 1 

Introduction 

This project was written during summer 1989 by Carsten Kehler Holst. It was supervised 
by Olivier Danvy, and carried out at DIKU (Department of Computer Science, University of 
Copenhagen). The project describes syntactic currying, and implements a syntactic curryer 
in two different ways. Syntactic currying is inspired by partial evaluation, in fact a syntactic 
curryer is a syntactically curried version of a partial evaluator. 

This report contains a stepwise development of an efficient syntactic curryer. The syntactic 
curryer defined in this report is not fully correct with respect to termination properties, but 
when it terminates it gives the correct result. Syntactic currying can be seen as an approach to 
partial evaluation, and syntactic currying and partial evaluation have much in common. But the 
emphasize in thesis report is put on syntactic currying, and the description of, and comparison 
with, partial evaluation are postponed until chapter 6. 

The main contributions of this project are the development of a syntactic curryer, and the 
development of a binding time type system, in which early binding times are subtypes of late 
binding times. Intuitively speaking one can always bind things later but not visa versa. 

The introduction starts with an section that motivates syntactic currying, and give the 
intuition behind the concept. Then the prerequisites are stated and some of the notation used 
in the rest of the report are explained. Finally an outline of the report is given. 

1.1 Motivation 

Normally a program is applied t9 some data and yields a result. This is a one phase operation, 
all the data has to be supplied- before any computation can,take place. Some:times it is beneficial­
to split a program into several phases, so part of the computation can be done in a prephase, 
e.g., a general LR parser would generate the parse tables in the first phase and- parse the text 
in the second phase. This is advantageous if the parser is applied to several input strings for 
each grammar. Even if the parser is only applied to one string it may turn out, that it is better 
to split the parsing in two phases, because the recognition algorithm that use parse tables is 
preferable to the one that use backtracking. 

Syntactic currying is a technique that splits programs into phases. Let p be a program taking 
a pair of input data (s,d), such that p(s,d) =result. A syntactic curried version of p, p', is a 
program that takes the first part of inputs (the static part ofthe input) and produce a residual 
program p8 as result, (p s = p8 ), the residual program will then compute the result given the 
rest of the input, d (the dynamic part of the input), (p8 d = result). 
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The main interest is not just syntactic currying, which is trivial, but efficient syntactic curry­
ing. Efficient in the sense that some of the original computation is done when the syntactically 
curried program is applied to the static input, which again means that the residual program 
p., applied to d have less computation to do, than p applied to both static and dynamic input, 
(s,d). 

It is of course important that the splitting of the program into two phases can be described 
by a splitting of the input into two parts, since a syntactic curryer splits the program into two 
phases given a splitting of the input into a static and a dynamic part. A general LR parser has 
this property. The grammar is the part of input that in a natural way describes the first phase 
and the rest of the input, the input string, determines the second phase. On the other hand it 
would properly not make any sense to specialize the LR parser with respect to the input string, 
expecting as a result a program that recognize the grammars that accepts that particular input. 
We refer to [Dybkjaer 85], which describes the specialization of Earley's general context free 
parser with respect to various grammars. 

If we assume that it is possible to implement syntactic currying efficient, it would be reason­
able to make programs very general, and then specialize them with respect to certain applica­
tions. A typical area is database applications which would have to be specialized with respect 
to the configuration of the specific database. 

In general the motivation is to split program into two phased programs, in order to achieve 
better performance in the second phase. 

1.2 Prerequisites and notation 

The LISP dialect Scheme [Rees 86] is used as example language throughout this report. The 
implementation of the syntactic curryer is done using the macro facility of Chez Scheme, 
extend-syntax. The reader is supposed to know Scheme or LISP, but it is not necessary to 
know about the macro facility extend-syntax. Neither is it necessary to know anything about 
partial evaluation, although such knowledge certainly would help in the understanding of the 
fine points in the project. 

1.2.1 The Scheme subset used 

This project does not handle full Scheme, only a first order subset containing: constants, basic 
operations, conditions, function calls, and recursive function definitions. We have chosen this 
subset, because it is the minimal subset of Scheme that demonstrates the ideas in syntactic 
currying. Handling the higher-order case would be beyond the scope of this report, likewise 
would global states, and side effects. Both these have been handled in [Bondorf 89b,Gomard 88, 
Jones 89b]. There have been made an extended version, of the system described in this report, 
that also works for higher-order programs. 

Programming Languages A programming language is a function that assigns meaning to a 
text. A program in it self is just a sequence of characters, but when considered as a program in 
a particular language, it gets a meaning, typically some input-output function. 

Definition k<PJ.ogramming language is a partial function from the domain of program texts 
into the domain of computable functions. Let L be a programming language then L has the 
following type. 

4 



P is the set of L-programs and (J..:..O) is the set of computable functions. We use the notation 
..:... for computable partial functions. 

The Type of a Program Text In computer science we work with representations offunctions 
(programs), instead of functions. Some times this is very apparent, and this is one of these times. 
In this report we juggle around with programs all the time, so it will be nice with a notation for 
the type of a program text. 

Definition Let p be an L-program. We denote the type of p as t where t is the type of the 
input-output function of p. (L p: t = p : i). With this notation the type of an interpreter, i, 
becomes (i: (J-=+0) X 1..:..0). 

Expressions building Expressions It is often the case in syntactic currying that we con­
structs a expression that evaluates to an expression, e.g., an expression that evaluates to an 
if-expression could be (list 'if e0 e1 e2). In the rest of this report we use an underline to ex­
press that an expression is supposed, not to evaluate, but to build an expression. The building 
if-expression from above becomes (if eo e1 e2l 

The semantics of the underline construction is the same as for the backquote in LISP. so 
all underlined lists, i e1 ... enl, should be read as an expression that constructs a list, (list 

e1 ... en), and all underlined atoms, i-am-atom, should be read as an expression that constructs 
atoms, i.e., a quote, (quote i-am-atom). 

1.2.2 A Syntactic Curryer 

Until now we have been talking about a syntactic curryer without stating precisely what it is. 
A syntactic curryer is a program, mcxl, Which fulfills the following requirements. 

A Syntactic Curryer mcx 

L mcx : (S x D..:..R)..:..(S..:..(D-=+R)) 

L (L (L mcx p) s) d = L p (s,d) 

The type variables S, D, and R, stands for Static input, .Dynamic input, and Result. They. 
are different names for some universal data domain (e.g., lists, or strings). Looking at the type 
expression for mcx we find four function arrows"-=+", we use the following terms when we talk 
about these function applications. The first function arrow from the left represents application of 
the original function. The second represents syntactic currying (some times called translation). 
The third represents application of the syntactically curried program to the static data, it is 
called the static application. The result of the static application is a residual program. Finally, 
the last application is called a dynamic application. We shall often us the terms static time and 
dynamic time, instead of static application and dynamic application. 

1 The name mcz was suggested by Thomas P. Jensen along with the name comix. Both names are inspired by 
mix [Jones 85a], and the fact that, if mix is viewed as an interpreter, mcx should be seen as a compiler 
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Example The following construction shows how simple syntactic currying can be expressed 
using the newly defined notation, and the standard notation from other translation schemes. 
Syntactic variables are written using italic. The s, and d below belongs to the syntactic class of 
variables, and the e belongs to the syntactic class of Scheme expressions. We take the liberty 
to be fairly imprecise with respect to the definition of concepts like Variables and Expressions, 
because their precise definition is of less relevance in this project. The function that performs 
syntactic currying is called C. 

The simplest definition of Syntactic Currying 

s, d E Variables 
e E Expressions 

c : (S x n..:...R)..:...(s..:...(n..:...R)) 

C[ (lambda (s d) e) ] = 
(lambda (s) (lambda (d) (let ([s (quote s )]) e))) 

Example: 

C[(lambda (a b) (+a b))]= 
(lambda (a) 

(list 'lambda (list 'b) 
(list 'let (list (list 'a (list 'quote a))) 

(list '+ 'a 'b)))) 

Notice how useful the underline notation is, in the translation of (lambda· (a b) ( + a b)). The 
translation is a little longer that it need to be, but we have followed our definition of underline 
truthfully. 

1.2.3 Symbolic Evaluation 

When we talk about symbolic evaluation in this report we think of a particular evaluation 
strategy, that is developed in chapter 2. By symbolic evaluation we do not mean non numeric 
evaluation, but evaluation over a domain of expressions. Symbolic evaluation corresponds to 
various reduction strategies, since the result of symbolically evaluating an expression is an ex­
pression with the same meaning (value) as the original expression. 

1.3 Outline 

In this report we develop syntactic currying, using the techniques known from partial evaluation. 
In chapter 2 it is shown how syntactic currying can be implemented using evaluation with free 

variables, or evaluation over a domain of expressions. We call that kind of evaluation, symbolic 
evaluation. That chapter develops an almost complete implementation of symbolic evaluation. 
The rest of the report can then be seen as an attempt to optimize that implementation. 

The first optimization stems from the observation that symbolic evaluation can be seen 
as evaluation over a domain with two types, Static which represents early binding times, and 
Dynamic which represents late binding times, together these two types are called binding time 
types. In chapter 3 a type system is developed, and it is shown how symbolic evaluation of 
programs can be optimized by transforming the programs into programs that are statically typed, 
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with respect to binding time types, before the symbolic evaluation. The optimization stems from 
the fact that all constructions in the programming language can be seen as overloaded, with 
respect to these types, and that the overloading can be solved if a type analysis is used. 

The optimized version of symbolic evaluation is developed in chapter 4, where the implemen­
tation developed in chaptersymbolic-evaluation, is rephrased with the added assumption that 
the overloading of the language constructs have been solved. 

In chapter 5 a concrete implementation of the statically typed symbolic evaluation is de­
veloped. This is done by annotating the program with type tags, and giving the annotated 
constructs a new meaning. The implementation of this new meaning is done with extend-syntax. 

In chapter 6 mcx is compared with partial evaluation in general, and the MIX system in 
particular. Chapter 7 shows some experiments done with mcx and the efficiency of mcx is 
compared to that of mix. It is shown how syntactic currying of an interpreter yields a compiler. 
Chapter 8 concludes on the project as a whole. 
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Chapter 2 

Symbolic Evaluation 

This chapter contains a stepwise development of symbolic evaluation, which is one approach to 
syntactic currying. We use the term symbolic evaluation for an evaluation strategy where the 
value domain is expressions, and do not refer to non numeric computation. Syntactic currying is 
transformation of a program, p, into a program, p', such that, (L p (s,d) = L (L p' s) d)Vs,d E 
S X D, where S, and D range over some reasonable domain. 

Symbolic evaluation is not supposed to be the final implementation of syntactic currying in 
this project, only a step on the way. Therefore the aim in this chapter is not on efficiency, but 
on ~-pproachability. In later chapters we shall show how the principles in symbolic evaluation 
ca1i'1.mplemented efficiently. 

At static time, the syntactically curried program is applied to the static data. At that time 
some ofthe variables will be bound and others will remain unbound (or free). In the introduction 
we saw how a function definition could be curried in a very simple way. The main objection to 
that solution was that no computation was done at static time, all the computation is left until 
dynamic time. It was our aim, that as much computation as possible should be performed at 
static time - leaving as little as possible to dynamic time. 

In this chapter we shall develop an evaluation strategy, symbolic evaluation, that evaluates 
"as much as possible". The evaluation strategy corresponds in some sense to beta and delta 
reductions of lambda terms with free variables, or evaluation of an expression with unbound 
variables. The intuition behind the evaluation strategy is that subexpressions without unbound 
variables (i.e., closed terms) are evaluated while sub expressions with unbound variables are left 
as they are. This effect can be achieved by letting the value domain be residual expressions. This 
means that the value of an expression-when it is symbolically evaluated is a residual expression, 
with the same value as the original expression. This way an operation can be evaluated if all its 
sub expressions evaluates to constant expressions, otherwise it- must be left· as it is. 

Definition of Symbolic Evaluation In symbolic evaluation all values are expressions. This 
means that symbolic evaluation of an expression yields an expression with the same value as the 
original expression. This can be illustrated as follows. 

E( SE[ e ] Ppartial ) p = E[ e ] p 

Symbolic evaluation in a partial environment, Ppartiabtesults in a residual expression. The 
partial environment, Ppartiab is an environment where some of the variables are unbound. When 
the residual expression is evaluated it gives the same result as the original expression if evaluated 
in the complete environment, p. 
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In the next section we shall see how translation of an expression into an expression that 
performs symbolic evaluation can be achieved. Using the notation from above, an expression, e, 
is translated from "SC" to "C", i.e., an expression, e, is translated into an expression, e', such 
that the meaning of e' under the normal semantic is the same as the meaning of e under the 
symbolic evaluation semantic. Call the translation function SC for syntactic currying. ps is the 
environment that binds the static arguments, and PD binds the dynamic arguments. 

SC[ e ] = e' 
C( C[ e' ] Ps ) PD = C[ e ) p 

Thus SC performs syntactic currying, given that the environment, p, is split into a static part, 
ps, and a dynamic part, PD· The rest of this chapter develops SC. This is done in a fairly 
operational style with much emphasize on how symbolic evaluation should be implemented. 

2.1 The Simple Constructs 

This section describes how to make syntactic currying of simple expressions like constants, 
variables, basic operations, and conditionals. The symbolic evaluation of these expressions are 
quite simple, and the syntactic currying is therefore also simple. The next section handle function 
definitions, and function calls. 

Constants & Variables To make life simpler we demand that all constants are quoted. This 
is not normally the case in Scheme, where numbers and strings are self-evaluating. In this case 
all constants have the form (quote v). 

Variables are translated into variables using the identity function. It is then left over to 
the constructions that bind variables to values to make sure that they are bound to something 
sensible, i.e., an expression. 

A constant must evaluate to a constant. So the translation of a constant becomes a constant 
expression which value is a constant expression. 

Symbolic Evaluation of Constants 

SC[z] = z 

SC[ (quote v)] = (quote v) _ (quote (quote v)) 

Basic Operations basic operations are a bit more involved. If all the arguments to the 
operation are constants (i.e., static) the operation should be evaluated with the value of the 
arguments a arguments, otherwise we cannot do any better than building a residual operation. 
Of course it is some times possible to reduce the operations, e.g., (car (cons a b)), but in 
general this will not be the case. 
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Symbolic Evaluation of Basic Operations 

SC[CO el···en)] =(let ([•argl* SC[el]] ... [•arSn* SC[en])J). 
(it (and (static? •argl•) ... (static? •argn•)) 

(quote (0 (de-ref •argl•) ... (de-ref •argn•>>2.. 
( 0 •arg1 • . . . •argn •l 

In order to avoid repeated evaluations of the arguments a let-expression is inserted. Unfortu­
nately this leads to some problems, the variable names •arg1• to •argn• have to be invented, 
and we have to make sure that no name-clash appears with the names in the expressions e1 

to en, if the names generated equals names used in the source expression the semantics of the 
translation fa.lls to the ground. We adopt the convention that in the equations variable names 
with stars around, like •name•, are unique. Inside the same equation •name•, and •name• are the 
same name, but besides that •name• is a unique name. Norma.lly such a name will be generated 
using the Scheme built in function gensym, which builds a unique name, or by using hygienic 
macro expansion [etal 86). 

The function static? checks if the argument is a static value, i.e., a constant expression, and 
de-ref, de-reference an constant expression and returns the value of the constant expression. It 
is supposed that the standard function are not redefined by the source program. I.e., and, it, 
e.t.c. have their usual meaning. 

Conditionals An obvious choice would be to implement conditionals just like basic operations, 
but actua.lly the meaning of the if-expression only depends on the condition. If the condition is 
static the conditional expression can be resolved, otherwise it must be left as it is. 

Symbolic Evaluation of Conditionals 

SC[ (it c t e) ] = 
(let ( [•condition• SC[ c ]J [•then• SC[ e ]J [•else• SC[ e ]J) 

(it (static? •condition•) 
(it (de-ret •condition•) •then• •else•) 
(it •condition• •then• •else•l)) 

2.2 Function Definitions, and Function. Calls 

Symbolic evaluation of function ca.lls can be implemented in the same way as we implemented 
symbolic evaluation of basic operations. If one of the arguments are dynamic the ca.ll is left as 
it is, otherwise it is evaluated. 

This is not the solution we want, since it would mean that recursive function that are only 
partly static would not be specialized at a.ll. Instead we would like to specialize the function 
with respect to the static arguments and then make a residual function ca.ll where the specialized 
function is ca.lled with the dynamic arguments. 

The function definition should be transformed into a definition of a specializing function. 
The specializing function should return a specialized function definition when applied to the 
static arguments. 
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A function call should should apply the translated function to the static arguments and build 
a residual application that apply the result of specializing the function with respect to the static 
arguments to the dynamic arguments. 

We chose that a function call binds both the static and the dynamic arguments. The static 
arguments are bound to their value while the dynamic arguments are bound to variables. This 
way the definition of the specializing function have to build a function definition which have the 
dynamic arguments as formal parameters, and the residual expression obtained by symbolically 
evaluating the original body, as residual body. 

H the arguments are static we chose to evaluate the function normally, just like with the 
basic operations. Below a solution that ful:fills these requirements is shown. 

Symbolic Evaluation of Function Calls, and Definitions (first) 

SC[ (letrec ( [nl d1J ... [nn dn]) e) ] = 
(letrec ( [nl SC[ d1 ]J ... [nn SC[ dn ]J) SC[ e ]) 

SC[ (lambda (vl ... Vn) e) ] = 
(lambda (vl···vn) 

(let ( [•rbody* SC[ e ]J) 
(if(and (static? •arg1 •) ... (static? •argn•)) 

•rbody• 
(lambda (extract-dynamic £vl···vnl •rbody•l)))) 

SC[ (/ e1 ... en) ] = 

where 

(let ([•argl* SC[e1 ]J ... [•argn* SC[en ]J) 
(if(and (static? •argl*) ... (static? •argn*)) 

(/ •arg1 * ... •argn *) 
(cons (/ (dynamic-to-var •argl*) ... (dynamic-to-var •argn*)) 

(extract-dynamic £•argl *· .. •argn •l)) ) ) 

(define (extract-dynamic 1) 
(append (map (lambda (d?) (if (static? d?) () d?)) 1))) 

(define (dynamic-to-var s?) 
(if (static? s?) s? •new-var•)) 

Translating a letrec-expression yields a letrec, with translated versions of the definitions, and 
the body. The function,call is translated into a "curried" function call. The translation of the 
function I is applied to the static arguments and place holders (variables) for the dynamic argu­
ments. The translated version of I returns a lambda expression (a residual function definition), 
and a residual application of the residual function definition to the dynamic arguments, are 
build. The auxiliary function extract-dynamic takes a list of expressions and returns the sublist 
of dynamic expressions, in this case it returns the actual dynamic parameters. 

When the function is called all dynamic expressions is replaced with variables, so when 
(extract-dynamic ... ) is applied to the arguments of the function it returns a list of variables, 
which is used as the list of formal parameters in the residual function definition. A function 
definition (a lambda-expression) is translated into a function definition, which yields a residual 
function definition, when it is applied to the static arguments and variables for the dynamic 
arguments. The residual function definition takes only the dynamic arguments as formal pa­
rameters. 
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The solution above is correct, when it terminates, unfortunately there is a very broad class 
of function definitions for which it goes into an infinite loop at static time. The example below 
shows what happens. The append function is repeatedly called with static second argument 
equal to ' (3 4) and dynamic first argument. The condition which control the recursion is 
dynamic, so both branches are symbolically evaluated and the symbolic evaluation goes into an 
infinite loop. 

Repeated specializations with respect to the same values 

Let p = (letrec ([append (lambda (x y) 
(if (null? x) y 

(cons (car x) (append (cdr x) y))))]) 
(append v v)) 

then evaluation of SC[ p] in an environment where v is bound to the variable z and v 
is bound to the static values '(3 4) "yields" the following infinite result 

((lambda (•var1•) 

z) 

(if (null •var1•) '(3 4) 
((lambda (•var2) 

(if (null? •var2•) infinite unfolding) ) 
(cdr •var1•)) )) 

A solution to this problem would be to record the specialization of a function, and then refer 
to the residual function definition by name instead of inserting the function definition in the 
residual function call. This way it would only be necessary to specialize a function once with 
respect to each set of static arguments, and the infinite specialization exhibited in the example 
would not occur. 

We need an accumulator in which the specialized functions (that are the residual function 
definitions) are collected. A function call should check if there have already been a call to the 
same function with the same set of static arguments, and if that is the case just leave a call to the 
specialized version of that function, otherwise it should. specialize the function and record the . 
specialized version of the function in the accumulator, ·and generate a call to it. Of course the 
residual function definitions have to be put somewhere. The natural place would in a residual 
letrec generated by the letrec expression that defined the function originally. When the scope 
of that letrec-expression is left no more calls to the functions defined there can occur, and thus . 
no more specialized functions. 

In the example above the result would be a letrec with one specialized version of append. 

2.2.1 Implementation of an Accumulator 

There are three natural possibilities: an accumulator for each function, an accumulator for 
each letrec, or a global accumulator for the whole program. Global means complex, local means 
simple, in the sense that a global accumulator would have to record: which letrec, which function, 
and which set of static arguments, that gave rise to a particular residual function definition, while 
the accumulator that is local to the function, only would have to record the value of the static 
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arguments, for each residual function definition. 
Where to define the accumulator(s) is mostly a matter of taste. We chose to have one 

accumulator for each letrec, as this seems to be the easiest solution. 
The accumulator could either be implemented as a state (variable), that is destructively 

updated using Schemes assignments, or be passed around using continuation passing style. We 
chose the solution with a state, that is destructively updated. Again it is very much a matter of 
taste. It should be noticed that the solution is independent of the order of evaluation (assuming 
call-by-value). A syntactic curryer that pass the accumulator around using continuation passing 
style is described in [Holst 89b]. 

When a function is called it should check if it has been specialized with respect to the current 
set ofstatic arguments. If that is the case it should build a residual function call using the residual 
function name recorded in the accumulator. Otherwise it must record in the accumulator, that 
the function is being specialized with respect to the current set of static arguments, specialize 
the function, and build the residual function call. It is necessary to record that the function is 
being specialized, because we specialize functions using a depth-first strategy. This means, that 
when we during specialization reach a function call, we suspend the actual specialization and 
start to specialize the new function. This may lead into an infinite loop just like in the example 
before unless we have recorded that the function are being specialized with respect to that set 
of static arguments and what name the residual function will get. 

When a function have been specialized the residual function definition should be recorded 
in the accumulator. Finally when we leave a letrec the collected residual function definitions 
should be put in a residualletrec. 

Following the idea with the accumulator the function definitions and calls are translated as 
described below. 
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Symbolic Evaluation of Function Calls, and Definitions (second) 

SC[ (letrec (d1 ... dn) e) ] = 
(let ([•ace• (empty-ace)]) 

(letrec (SC[ d1 ] .. . SC[ dn ]) 
(let ([•rexp* SC[e)J) (extract •ace• •rexp•)))) 

SC[ [n (lambda (vl ... vn) e)J ] = 
[n (lambda (vl···Vn) 

(it(and (static? v1) ... (static? vn)) 
SC[e] 
(let ([•done• (called? •ace• n ivl···vnl)J) 

(it (null? •done•) 
(let ( [•rdet• (lambda (extract-dynamic iv1 ... vnl) SC[ e ]lJ) 

(specialize! •ace• n ivl···vnl •rdet•)) 
•done•)))) J 

SC[ (f e1 ... en) ] = 

vhere 

(let ( [ •arg1 * SC[ e1 ]J ... [ •argn * SC[ en ]J) 
(it(and (static? •argl*) ... (static? •argn•)) 

(f •arg1 * ... •argn *) 
(cons (/ (dynamic-to-var •argl*) ... (dynamic-to-var •argn*)) 

(extract-dynamic i •argl * ... •argn * l>))) 

(define (extract-dynamic 1) 
(append (map (lambda (d?) (it (static? d?) () d?)) 1))) 

(define (dynamic-to-var s?) 
(it (static? s?) s? •nev-var•)) 

The precise definition of the functions empty-ace, called?, specialize!, and extract!, is given 
in appendix A. Here we shall only state the intuition behind them. 

To make the definition of letrec more readable it has been split into two parts: the body part, 
and the definition part. Unfortunately this means that we diverge from one of our rules, namely 
that variables surrounded by "•" are unique to the particular application of the rule. The •ace• 
that occurs in the function definition is the same as the one that occurs in the translation of 
the letrec in which the function definition occurs. Each letrec have its own •ace• which is only 
referred to by the functions defined by that letrec. 

The letrec construction is translated into a let-expression that introduce the accumulator 
•ace•. The recursive functions are then defined in· the scope of •ace•. The sole reason for the 
innermost let-expression, is that we want the body evaluated before we generate the residual 
letrec-expression. The reason for this, is that all functions that are specialized during· the 
evaluation of the body have to be put into the accumulator before the value of the accumulator 
is used to build the residual letrec. The function extract ! builds a letrec expression if the 
accumulator is nonempty, otherwise it just return the residual body. 

A function call is translated like before. With the difference that a call to a function, f, 
returns a residual function name instead of a residual function definition. 

A function definition is more involved than before. First it is checked if the function n has 
been called with this set of static arguments before. If that is the case •done• is set to the 
name of the residual function. Otherwise •done• is set to nil, and it is noted in the accumulator 
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that the function have been called with this set of static arguments now. The function called? 
takes care of this. Then •done• is checked. If it is a function name, different from nil, that 
function name is returned. If •done• is nil, we specialize the function, this may give rise to 
other specializations, and put the specialized function into the accumulator using specialize!. 
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Chapter 3 

Type System 

The last section developed symbolic evaluation, as an approach to syntactic currying. In this 
chapter various optimizations to symbolic evaluation are proposed. Most important, a types 
inference which solves the overloading of the operators is developed. 

Symbolic evaluation goes on in a world with two types, static, and dynamic. Symbolic 
evaluation is dynamically typed (the types can first be determined at static time), and all 
constructs are overloaded. This chapter develops a type inference that makes it possible to 
transform dynamically typed programs into statically typed programs, thus makes it possible 
to solve the overloading at translation time (when the syntactic currying occurs) 

This type analysis corresponds almost precisely to the binding time analysis from [Jones 85a, 
Bondorf 88]. The idea of using type inference to describe binding times analysis was inspired 
by [Nielson 86], and first described in [Holst 89a]. 

3.1 Analysis of Symbolic Evaluation of a car Operation 

Consider the symbolic evaluation of a car-expression, below we have shown what a car-expression 
is translated into in order to work as an symbolic evaluating car-expression. 

When car is applied to the expression e it evaluates e using symbolic evaluation. The result 
of that evaluation is an expression, maybe a constant. Then it checks if the result of evaluating 
the argument, •arg1•, is a constant. H •arg1• is a constant, it de-ref the constant (gets the 
value of the constant), takes car of that value and lift the result of the car operation back into 
a constant expression. Otherwise, if •arg1 is not a constant, it builds a car operation, which on 
dynamic time will take car of the argument. 

A symbolic evaluating car-expression 

T[ (car e) ] = (let ([•arg1• T[ e ]J) 
(if (static? •argt*) 

(quote (car (de-ref •argt•>>l 
(car •arg1 •l 

The amount of work is overwhelming compared to the work normally executed by an car­
expression. The reason for this is that the car expression is overloaded, its meaning depend on 
the "type" of its argument. H the argument is static it evaluates, otherwise it build a residual 
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expression. Even worse when the argument is static it has to de-ref the constant expression 
take the car of it and then lift it back into a constant expression. Both these problems could 
be solved if it were possible to determine the "type" of its argument before the translation and 
then use the type information to solve the overloading. 

LetT be a type system with the two types static (abbreviated S), and dynamic (abbreviated 
D). Let the type static denote constants or (constant expressions), and dynamic all expressions. 
Dynamic have deliberately been chosen to describes all expressions, because then static becomes 
a subtype of dynamic, just like Int is a subtype of Real. 

Assume for a moment that we use ordinary values for static values (without a quote), and 
we for each operator knows if its arguments will be static or dynamic. Then a car-expression 
can be translated as follows. 

Definitions of static and dynamic car operations 
T[ (cars-s e) ] =* (car S[ e ]) 
T[ (carD-D e) ] =* (car 1>[ e ]l 

This code is much preferable compared to the first solution. A static car operation is translated 
into a car operation and will evaluate as a car operation; if the arguments to an operation are 
know at static time that operation can be executed normally. On the other hand if the arguments 
are dynamic it is translated into an operation which when executed builds a car expression; if 
the value of the arguments are unknown we must build an a piece of code which performs the 
operation at dynamic time. 

The other constructs in Scheme can be given types in the same way. For example the meaning 
of an if-expression with typeS x D x D--+ D would be translated into the following. 

Translation of if-expression with type S x D X D --+ D 
T[ (ifsxDxD-D 8 dl d2) ] = (if 8 dl d2) 

3.2 The type System T 

The type system T has two types static (S), and dynamic (D), where static is a subtype of 
dynamic. In general these types must be determined dynamically, i.e., at run time. A typical 
example is a conditional whei:e the then branch have typeS and the else branch have type D. 
Such a conditional might have results of type S in' some cases and of type D in other. 

The type system T 

T = {S,D}, and S <l D 

As we already saw in the definition of symbolic evaluation of car the meaning of the operators 
and constructs depend on their types. Take as example cons, which can have all the following 
four types. 

SxS --+ S 

17 



SxD -+ D 

DxS-+ D 

DxD -+ D 

H cons has type S X S -+ S it have the ordinary meaning. It takes two ordinary values and 
produce the pair of them. Likewise if cons had type D X D -+ D the arguments values are 
residual expressions and cons should simply build a residual cons operation with the values of 
its arguments as arguments. The meaning of the cons operation for the last two types is roughly 
the same. If a cons operation has type D x S -+ D it takes the value of its second argument 
and lift it to a constant expression, then it proceeds as if it had typeD X D-+ D. 

The type of the cons operation is not a type in our type system T, because we only consider 
a first order language, and values therefore only have types in the rangeS, D. 

The problem with static typing can be solved using the sum domain (S + D), but as we 
saw in the previous example this is rather inefficient. An other solution would be to make the 
program statically typed. As each occurrence of an operator or construction in a statically typed 
language have one and only one type the overloading can be solved statically. 

One should not be confused over the term statically typed. It means that the types can be 
determined before the program is syntactically curried. So do not confuse statically typing with 
static time. H the types were determined at static time it would be dynamic typing. 

3.3 A Static Type System 

We go through all the constructions in the Scheme subset one by one. Finally we put the whole 
thing together and strengthen our type system a bit. 

The type environment Let T be a type environment, mapping variable names to either 
static or dynamic, and mapping function names to descriptions of the types of their arguments, 
and the type of their result. 

r: Names-+ (Value-Type+ Function-Type) 

where 

Value-Type = S or D and 
Function-Type= Value-Type• x Value-Type 

3.4 Type conversion 

It will often be the case that we have an expression of typeS in a place where we would like 
an expression of type D. S is a subtype of D so we can safely convert (lift) the type of the 
expression from S to D. Assume that we have an operator which sole mission is to lift the type 
of the argument from static to dynamic. The type scheme for such an operator is as follow. 

rl-e:S 
T 1- (lift e) : D 
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3.5 Constants & Basic operations 

A constant is always static. 

T 1- (quote v): S 

If one of the arguments to a basic function is of type D then the result of the operation 
should be of type D. On the other hand if all arguments are of typeS the result of the operation 
should be of typeS. 

T 1- e1 : D V ••• V T 1- en : D 
T 1- (0 e1 ... en) : D 

T 1- e1 : S A ••• A T 1- en : S 
T 1- (0 e1 ... en) : S 

3.6 Conditionals 

Conditionals do not differ much from the basic operations. Only if both the condition and the 
two branches are of typeS will the result be of typeS. The conditional should have the same 
type every time independent of the values of the condition so even if the condition is static and 
one.of the branches is of typeS the conditional should be of typed if the other branch is of type 
D. 

T 1- e1 : D V ••• V T 1- e3 : D 
T 1- (it e1 e2 es) : D 

T 1- e1 : S A ••• A T 1- e3 : S 
T 1- (it e1 e2 es) : S 

3. 7 Letrec, Function calls, and Variables 

Function calls differ from basic operations, because we want each occurrence of a function to 
have the same type. The reason for this is that we will translate the function according to its 
type, and if the function is used with several different types we would have to make several 
versions of the function, one for each type. 

r(v) = t 
rl-v:t 

r(f) = t1 X ... X tn -+ t 
T 1- e1 : t1, ••• 1 T 1- en : tn 

T 1- (/ e1 ... en) : t 

T1 = r[ft 1-+ tn X ••• X ttn1 -+ t1, ... , fk 1-+ tk1 X ••• X tkn,. -+ tk] 
r'[xn 1-+ tn, ... 1 Xtn1 1-+ ttn1 ] 1- e1 : t1, ... 
r'[Xktl-+ tkl,··· ,Xkn~c 1-+ tkn,.] f- ek: tk 

r'l-e:t 

T 1- (letrec ( [ft (lambda (zu, ... , Z1n1 ) e1)], ••• 

[/~c (lambda (zu, ... ,z~cn.> e~c>J) e): t 
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3.8 Some Optimizations to the Type Scheme 

AB we saw earlier a basic operation with n arguments have 2n different types. These 2n types 
can be collapsed into two principal types. The type where all arguments are static and the result 
is static, and the type where all arguments are dynamic and the result is dynamic. The reason 
for this is, that when the result has to be dynamic the static arguments have to be lifted to 
dynamic. This lifting can either be a part of semantic of the basic operation (like conssxD-D 

which would have to lift its first argument to dynamic and then create an cons operation, as 
illustrated by the following semantic expression (cons (quote arg-11 arg-e2J. So we shall restrict 
our type scheme in such a way that all the arguments of a basic operation have the same type. 

With the same argumentation as for the basic operations we restrict our type system such 
that the two branches of a conditional have the same type. It will not be reasonable to restrict 
it further, because even when the two branches are dynamic the if-expression could be evaluated 
if the condition is static. 

With these two optimizations we can state the type inference rules. The first rule is a little 
awkward having the sole mission to introduce the type environment T. The rest of the rules 
describes the type restrictions added by our annotations. 

Type Inference Rules for Scheme 

T = [xl 1-+ S, . .. 1 Xn 1-+ S,yl 1-+ D, ... 1 Yn 1-+ D] 
rf-e:D 

(lambda-c (zt ... zn) (Yl···Ym) e) is well typed 

r(v) = t 
rf-v:t 

T f- (quote v) : S 
rf-e:S 

T f- (lift e) : D 

T f- e1 : D, ... , T f- en : D 
Tf- (0 el···en) :D 

T f- e1 : S, ... , T f- en : S 
T f- (0 e1 ... en) : S 

T f- e1 : D, ... , T f- e3 : D 
T f- (if e1 e2 es) : D 

T f- e1 : S, ... , T f- e3 : S T f- e1 : S, T f- e2 : D, T f- e3 : D 
T f- (if e1 e2 es) : S T f- (if e1 e2 es) : D 

r(f) = ( t1 X ••• X tn) X t 
T f- e1 : t1, ... , T f- en : tn 

T f- (/ e1 ... en) : t 

T1 = r(ft 1-+ (tn X ••• X tln1 ) X tt, ... ,fk 1-+ (tkl X ••• X tkn~c) X t~;) 
r'[xn~-+ tn, ... 1 Xtn1 1-+ tln1 ] f- e1: tt, ... 
r'[xkll-+ tkl!·· .,Xkn~c 1-+ tkn~c] f- e~;: t~; 

r'f-e:t 

T f- (letrec ( [ft (lambda (zu, ... ,Ztn1 ) et)J, ••. 

[/Jc (lambda (zu, ... ,zr.n.> e~:)]) e): t 
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This ends our introduction of types. It can be seen how all function can be transformed into 
well typed functions by insertion of lift operators at various places in the program. It should be 
noticed that a program can be well typed in several different ways. The most extreme typing of 
a program makes everything dynamic, the only exception are the constants which will have to 
be lifted to dynamic. 

Taking this viewpoint binding time analysis as described in [Jones 85a] can be described as 
a type analysis. 
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Chapter 4 

Symbolic Evaluation with Static 
Types: An efficient approach to 
Syntactic Currying 

In chapter 2 we developed symbolic evaluation. In chapter 3 we noticed that symbolic evalu­
ation was dynamically typed with the binding time types: static, and dynamic. Furthermore 
we developed a type inference such that we could transform dynamically typed program into 
statically typed programs. 

This chapter rephrase the implementation of symbolic evaluation developed in chapter 2 
under the assumption that the types are static and the overloading have been solved. In addition 
to that, an optimization: call unfolding, which avoids the expensive specializing function call, is 
described. 

A warning: do not confuse statically typing with static time. Static typing occurs when 
the program is syntactically curried, and means that the type of the operators are independent 
of the actual value of the input. Dynamic typing occurs at static time, which corresponds to 
runtime. 

4.1 The Completely Static Constructs 

Constructs with type ( ... -+ S) have only completely static subparts. This is-intuitively clear 
and can be proven, using induction on the type scheme. The meaning of static constructions at 
static time is the ordinary meaning of these constructions. So the translation scheme for static 
constructions is the identity. 
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Translation Scheme for Completely Static Constructions 

SCs[ (quote v) ] = (quote v) 
SCs[ (0 ... -s e1 ... en) ] = (0 SCs[ e1 ] .. . SCs[ en]) 
SCs[ (if ... -s eo e1 e2)] = (if SCs[ eo] SCs[ e1] SCs[ e2 ]) 
SCs[ (/ e1 ... en) ] = (/ SCs[ e1 ] .. . SCs[ en]) 
SCs[ (letrec (dl ... dn) e)] = 

(letrec (SCs[ d1 ] .. . SCs[ dn ]> SCs[ e ]) 
SCs[ [n (lambda ... -s (vl ... Vn) e)] ] = 

[n (lambda (vl···vn) SCs[e])] 

In fact the recursive application of the translation scheme SCs is not necessary, as it is the 
identity. But we have included it here to point out that this technique could also be used if the 
source and target language were different. 

4.2 The Dynamic Constructs 

The dynamic constructs are almost as easy as the static constructs. All and all, it is just 
a transformation of the symbolic evaluation scheme. There is one new construct: the type 
conversion function lift. Type conversion boils down to lifting a value to a constant expression. 
This is easy in the first-order case, just add a quote. In the higher-order case, which we are 
not handling, there would be a problem: how do one lift a functional value into an expression. 
Notice that there are two versions of the if-expression in the translation scheme below: one 
where the condition is static, and one where the condition is dynamic. The case with the static 
condition and the completely static case were handled in the same way in the symbolic evaluation 
semantics, here we have chosen to split the things in two, in order to emphasize that the result 
of the two expressions have different types. Note also that there are no constant-expressions -
constant-expressions cannot be of type dynamic. 

Translation Scheme for Dynamic Constructions 

SC'D[ (lift e) ] = (quote SCs[ e ]l 
SC'D[ (0 ... -D e1 ... en)] = (0 SC'D[ e1 ] .. . SC'D[ en ]l 
SC'D[ (ifDxDxD-D eo e1 e2) ] = (if SC'D[ eo] SC'D[ e1 ] SC'D[ e2 ]l 
SC'D[ (ifsxDxD-D eo e1 e2)] = (if SCs[ eo] SC'D[ e1] SC'D[ e2 ]l 

4.3 Function Calls and Function Definitions 

The function calls differ from the basic operations in that they have mixed argument types. This 
means that the compile time actions are a bit more involved than in the translation of basic 
operations. This again means that more work can be moved from the static time to compile 
time, which is good, as the program only will be compiled once, but specialized with respect to 
static data several times. On the other hand the treatment of the accumulator will still be at 
static time, so all in all, function calls are rather expensive at static time. 
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Dynamic Function Calls and Definitions 

SC"D[ (letrec (d1 ... dn) e) ] = 
(let ([•ace• (empty-ace)]) 

(letrec (SC"D[ d1 ] ... SC"D[ dn ]) 
(let ([•rexp• S~[e]J) (extract •ace• •rexP*)))) 

SC"D[ (/t1 x ... xt,.-t e1 ... en)] = 
i<J Z1 ••• Zn) SC"D[ ed1 ] ••• SC"D[ ed,. ]l 

where 
z; = (malte-sym) , if t; = D 
z; = SCs[e; ], if t; = D 
td1 , ••• , td,.. = D so e111 , ••• , ed,. is the dynamic arguments 

SC"D[ [n (lambdat1 x ... xt,.-t (vl .. . vn) e)]] = 

where 

[n (lambda (vl···vn) 
(let ( [•done• (called? •ace• !!. S,_v, 1 ••• v,,..l)J) 

(if (null? •done•) 
(let ( [•rde:f• (lambda ( Vd1 ••• vd,.l SC[ e ]lJ) 

(specialize! •ace• !!. S,_v, 1 ••• v,,.l •rdef•)) 
•done•))))] 

t, 1 , ••• , t,,. = S which means that v, 1 , ••• , v,,. is the static variables, and 
t111 , ••• , td,. = D which means that v, 1 , ••• , v,,. is the dynamic variables 

This description is a little bit simpler that the one given in the chapter about symbolic evaluation, 
because there is no test on whether the arguments are static of dynamic. there is only one new 
function, make-sym, which corresponds to, gensym, and generates a unique variable. 

4.4 Call Unfolding: An Optimization that removes the Expen­
sive Function Specialization 

Unfolding a function call corresponds to beta reduction. The call is replaced by the body of the 
called function in which the formal parameters are substituted for the actual parameters. 

In the following we shall motivate why call unfolding is such a great improvement. Besides 
being a great improvement call unfolding has the drawback that it introduce the possibility of 
infinite unfolding. Since we leave.it to the user to annotate which calls she want to unfold it 
will be her responsibility to avoid infinite unfolding. 

There are two sides of inefficiency of function specialization. At static time the function 
specialization is time consuming, and at dynamic time the many function calls which comes 
from the many specialized function is often not what we want. Consider the following example 
where the function append is specialized with respect to the known first argument • (1 2). 
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Specialization of append 

Let p = (letrec ([append (lambda (x y) 
(if (null? x) y 

(cons (car x) (append (cdr x) y))))]) 
(append v v)) 

evaluating SC[ p] in an environment where vis bound to (1 2) and w is bound to the 
variable z gives the following result. 

(letrec 
([app1 (lambda (y) (cons '1 (app2 y)))] 

[app2 (lambda (y) (cons '2 (app3 y)))] 
[app3 (lambda (y) y)]) 

(app1 z)) 

Instead we would like the following result, in which all function calls have been unfolded. 

(cons '1 (cons '2 z)) 

Specializing a function call is time consuming at static time (or specialization time), because we 
have to make one or two lookups in the accumulator to see if we have specialized the function 
previously, further more it is expensive to build a function definition and a call. At dynamic 
time the specialized function will have to be called, this is expensive, not because function calls 
are specially expensive, but they are more expensive than if they were not there. 

Unfolding the function calls helps on both. At static time unfolding a function call corre­
sponds to evaluation the body of the function in the symbolic evaluation semantics (with, or 
without types) with the arguments bound to the actual parameters. This is not so much dif­
ferent from how it was done before. Instead of binding the dynamic variable to a fresh variable 
we bind it to the actual parameter. This way we avoid the lookup in the accumulator, and we 
need not build function declarations, and function applications. At dynamic time there are no 
function calls, so the resulting residual programs will also be faster. 

In general it is not safe to unfold all calls. This would lead into the same trap as the first 
implementation of function calls we made chapter 2 - infinite unfolding. This is not surprising~ 
since the the collecting function specialization was invented to· a void infinite specialization. ' 
Another danger is, that the termination properties of the program may change. Call unfolding 
corresponds to call-by-name, thus there is a risk that the resulting-program terminates more · 
often than the original. This risk is not considered to be very dangerous. 

The following rules describe how unfolding calls are to be compiled. It can almost be deduced 
from the simpler implementation that the unfolding calls must be more effective. We shall 
not consider how it is determined which calls to unfold, but leave it for the user to annotate 
the program with information that solves this problem. Interested should read [Sestoft 88, 
Bondorf 89b ]. 
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Definition of Unfolding Calls 

SCv[ (!~ x ... xt,.-t e1 ••• en) ] = (! X1 ••• Xn) 

where 
Xi= SCv[ ei ], if ti = D 
Xi = SCs[ ei ], if ti = S 

SCv[ [n (lambda.f1 x ... xt,.-t (vt ... vn) e)]]= [n (lambda (vl ... vn) SC[ e ])] 
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Chapter 5 

Implementation 

In this chapter we develop a concrete implementation of syntactic currying. The preceding 
chapters have developed syntactic currying in details, so this chapter will concentrate on how 
to implement it in Scheme. 

We have chosen to implement syntactic currying using syntactic extensions. The reason for 
this is, that the translation scheme developed in the last chapter easily transforms into syntactic 
extensions. The transformation is possible, because of the absence of compile time environments; 
the translation is independent of its context. 

Using syntactic extensions to implement the syntactic currying free us from the work involved 
in writing a compiler, and emphasize that syntactic currying is a transformation of programs 
from SE (symbolic evaluation semantics) into statically typed programs SSE, the syntactic 
extensions gives meaning to the constructions in SSE. Another solution would be to translate 
the programs from SSE into ordinary Scheme or some other implementation language. 

This chapter are divided into three parts. A very superficial overview of the syntactic ex­
tensions in Chez Scheme, extend-syntax, [Dybvig 87 ,Kohl becker 86,etal 86,Kohlbecker 87). The 
development of a program annotation, so programs have a form that is suitable when the syntac­
tic extensions have to recognize the various constructions in the programs. Finally the translation 
scheme from the last chapter is transformed into syntactic extensions. 

5.1 Syntactic Extensions 

Syntactic extensions are compile time macros. When the program is compiled the macros (or 
syntactic extensions) are expanded. Syntactic extensions are· extremely powerful in languages' 
like Scheme and LISP, because the source program is represented with the abstract datatype, 
lists. This makes it possible to inspect and rebuild the source expression without any restrictions. 
In fact the power at hand are so big that the construction extend-syntax [Kohlbecker 86) were 
constructed, such that the user were encouraged not to use the full potential of macros. 

Syntactic extensions should not be confused with the run time macros of LISP. A run time 
macro is first applied at run time, and has therefore access both to the expression that are to 
be macro expanded, and to the value of the arguments. It is therefore nearly impossible to give 
a reasonable semantics for run time macros. 

This section gives a short introduction to the macro facility, extend-syntax, in Chez Scheme 
[Dybvig 87]. It should not be thought of as a manual, only as an introduction. The aim is to 
make the definitions later in this chapter understandable, not to give them precise operational 
meanings. 
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Macro definition of list 

(extend-syntax (list) 
[(list) '()] 
[(lister ... ) (cons e (list r ... ))]) 

Expanding (list 1 2 3) yields 

(cons 1 (cons 2 (cons 3 '()))) 

The first argument to n:tend-syntax is a list of keywords, of whica the first is the macro name, 
the second argument is a set of rewrite rules. In this case there is only one keyword, the macro 
name, list, and two rules. Each rule consist of a pattern with keywords, and variables, and 
an expression with constants and variables. The syntactical extension works as follows: if the 
expression match the pattern (the pattern must be a list with the macro name as head) the 
expression is translated into the righthandside. The text matched by the variables introduced 
in the pattern, is inserted for the variables in the expression. 

The first rule have only the keyword and no variables, and is expanded into nil. The second 
rule have two variables, e, and r, where r is followed by an ellipsis .... The ellipsis means, zero 
or more occurrences of the preceding variable, or pattern, in this case variable. This pattern 
matches lists with the macro name list as head, and (length> 1). The variable e matches the 
first argument to list, and r matches the rest of the arguments. Notice that this macro definition 
is recursive. 

If it is necessary to compute anything at macro expansion time it must be done using the 
special vi th-clause as righthandside of a rule. The following example shows how the vi th-clause 
can be used to generate a new symbol at macro expansion time. 

Macro definition of or 

(extend-syntax (or) 
[(or) #t] 
[(ore r ... ) (with ([n (gensym)]) (let ([n e]) (it n n (orr ... ))))]) 

Expanding (or a b) yields 

(let ([g16 a]) (it g16 g16 (let ([g17 b]) (it g17 g17 #t)))) 

This ends our very superficial introduction to extend-syntax. More information on the subject 
can be found in [Dybvig 87,Kohlbecker 86,etal86~Kohlbecker 87]. 

5.2 Annotations 

In order to make the translation using macro expansion, the macros must be able to recognize 
the various constructs. The various constructs are made recognizable by adding a tag like base, 
for all basic operations and call, for all function calls. Constructions like letrec, and it, are 
tagged already. The types of the various constructions are made explicit by annotating the tags. 
A dynamic basic operation is tagged, base-d. This annotation, and tagging forms an abstract 
syntax. 
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All constructions hii'Ve either result typeS or D. A straight forward annotation would be to 
put an "-s" on the tag if the construction had result type S, and an "-d" if it had result type 
D, e.g., (base-d car e). To minimize the tags, and because constructions with result type S 
have the "ordinary" semantics, we shall not put "-s" on static constructions, but only put "-d" 
on the tags of dynamic constructions. In fact we shall not put any superficial tags on the static 
construct since their translation is the identity. 

The arguments to a function may have different types. In order to resolve the types of 
the arguments from the call, or the function definition alone without looking to the arguments 
we split the arguments into to argument lists: a list of static arguments, and a list of dynamic 
arguments. Although it would be most logical to split both the formal, and the actual parameter 
list, only the formal parameter list is split into two. Because of this arrangement with two 
parameter lists, the arguments to the user defined functions have to be rearranged, such that 
the static arguments comes first, followed by the dynamic arguments. Another solution would 
be to add the type of the function explicitly, both to calls, and definitions, but that gives a less 
elegant translation scheme. In both case the annotation are supposed to be done by machine so 
the difference in notation is of little importance. 

A few more annotations have to be introduced. These annotations are not type annotations 
but annotations that helps the partial evaluation phase. One such annotation is the "-e" on the 
if expression. H the condition in an if expression has type S, the if expression can be eliminated 
at static time, even if the branches have type D. Such an if expression are annotated as (if-d-e 

s t e). As a matte of fact if-d-e is translated into an ordinary if, so we could leave it without 
the annotation. Another annotation is the annotation of calls as unfoldable. An unfoldable call 
is annotated as call-d-u, such a call have the same type as a cal.l-d, the only difference is that 
it will be unfolded at static time. 

The Abstract Source Syntax 

e,elt···,en E Exp 
l,h, ... ,ln E Lambda 
o E Operators 
p,p1, ... ,pn E ProcedureNames 
i, it, ... , in E Identifiers 
t, t1, ... , tn E Types 

Exp ::=I I C I (0 et···en) I (if eo e1 e2) I (p et···en) I 
(letrec ( [Pl ltl ... [pn ln]) e) I 

(base-do el···en) I (if-d eo e1 e2) I (call-d p et···en) 
(letrec-d ( [Pl hJ ... [pn ln]) e) I 

(if-d-e eo et e2) I (call-d-u p et···en) 

Lambda · · = (lambda Cit ... in) e) I (lambda-d Cit ... i8;) Cit ... id1c) e) 

The source program should follow the above syntax and obey the following type rules. 
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Type Inference Rules for Annotated Scheme 

r = [Zll-+ s, ... ,Zn 1-+ S,yll-+ D, ... ,yn 1-+ D] 
rl-e:D 

(lambda-c (:z:l ... :Z:n) (yl ... Ym) e) is well typed 

r(v) = t 
rl-v:t 

r 1- (quote v) : S 
rl-e:S 

r 1- (lift e) : D 

r 1- e1 : D, ... , r 1- en : D 
r 1- (base-d 0 e1 ... en) : D 

r 1- e1 : S, ... , r 1- en : S 
r 1- (0 e1 ... en) : S 

r 1- e1 : D, ... , r 1- e3 : D 
r 1- (it-d e1 e2 ea) : D 

r 1- e1 : S, ... , r 1- e3 : S 
r 1- (if e1 e2 ea) : S 

r 1- e1 : S, r 1- e2 : D, r 1- e3 : D 
r 1- (if-d-e e1 e2 ea) : D 

r(f) = (S1 X ... X S,.) X S r(f) = (t1 X •.. X tn) X D 
r 1- e1 : t1 , ... , r 1- en : tn 

r 1- (call-d f e1 .•. en): D 

r 1- e1 : S, ... , r 1- en : S 

r(f) = (t1 X ... X tn) X D 
r 1- e1 : t1, ... , r 1- en : tn 

r 1- (call-d-u f e1 ... en) : t 

r' = r[ h 1-+ (Su X ... X Slnl) X s~, ... ' 
fk 1-+ (Skl X ... X Skn1.) X Sk} 

r'[zu ~--+ S, ... , Z1n1 ~--+ S] 1- e1 : S, ... 
r'[zkl 1-+ S, ... , z kn1c 1-+ S] 1- ek : S 

r'l-e:S 

r 1- (letrec ( [f1 (lambda (:z:u, ... ,:Z:ln1 ) e1)J, •••. · 

[/1c (lambda (:z:u, ... ,:z:/cn•) e~c)]) e): S 

r' = r[ h 1-+ (Sn X ... X S1n1 X Du X ... X D1m1 ) X D~, ... , 
fk 1-+ (Skl X ... X Skn~c X DuX ... X Dlm1 ) X Dk} 

r'[zn 1-+ S, ... ,z1n1 1-+ S, Yn 1-+ D, ... , 'Y1m1 1-+ D] 1- e1 : D, ... 
r'[zkl 1-+ S, ... , Zkn1 1-+ S, 'Ykl 1-+ D, ... , 'Ykm1 1-+ D] 1- ek : D 

r'l-e:D 

r 1- (letrec-d ( [f1 (lambda (:z:u, ... 1 :Z:1n1 ) (yul .•. 1 Ylm1 ) e1)], ••• 

[/&. (lambda (:z:ul ... 1 :Z:/cn•) (yul ... 1 Ylm1 ) e~c)]) e) : D 
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5.3 Implementation details 

The implementation of the translation scheme, defined in the previous chapter, using extend-syntax 
is straight forward. This section describes the few changes that have been made. The full im­
plementation can be found in appendix A. 

5.3.1 Static Constructs 

In chapter 4, it was realized that the static constructions should be translated using the identity 
function. I.e., a static if-expression is implemented as an if-expression. Taking the consequence 
of this we do not translate the static construction at all, but leave them as they are. 

5.3.2 Dynamic Constructs 

Underlining a construction meant, this construction should be build and not evaluated. In 
Scheme this can be expressed using the backquote notation. Informally backquote "•" means 
underline the following construction and comma "," means, remove the underline from the 
following expression. So "'(a • b)" means "(a bl". Except from that the constructions are 
implemented directly. 

5.3.3 Function Calls and Definitions 

In order to have both specializing calls, and unfolding calls, a function is defined as a pair of 
functions. The first performs a specializing call, and the second performs an unfolding call. It 
is then determined by the call which of the two functions, that are to be called, call-d calls the 
first, and call-d-u calls the second. The new variables are introduced by the function make-sym, 
that corresponds to gensym, but make more readable names. 

To avoid an explicit notion of the types of the arguments the full handling of function calls is 
done by the definition of the function instead of the call. Likewise are the definition of dynamic 
letrec not split into two, because this would give problems with the introduced •ace•. If we had a 
separate rule to translate a definition that rule would not know which accumulator the function 
should use. We use a with construction, in order to invent unique names for the accumulators 
at macro expansion time. This would not be necessary if we used hygienic macro expansion 
[etal 86] which makes variables that are introduced in the expansion unique. 

5.3.4 The Syntactic Currying of.Lambda 

There is a problem which has not been mentioned in the previous chapters. There must be 
a way to introduce the static and dynamic variables. Until now this report have mostly been 
about symbolic evaluation as a way to achieve syntactic currying. Introducing a curried lambda, 
lambda-c, solves these problems. The curried lambda curry a non recursive function. To define 
a recursive function, one should use letrec. The reason for this is that the accumulator have to 
be introduced somewhere, in this case in the letrec. 

31 



Curried Lambda 

T[ (lambda-c ( v. 1 ••• v.;) ( Vt11 ... Vtf•) e ] = 
(lambda (v. 1 ••• v.;> 

(let ( [v4 1 '*&rStf1 *] ... [Vtf• •arg,. •]) 
(lambda ( Vtf1 ••• Vtf• ) e 2)) 

The following little example show how the system works. But first a warning to "users". Never, 
never, make a syntactic curried version of a system function, never! E.g., if one redefine the 
append function as a currying append all the system functions that depend on append will be 
highly confused. 

Syntactic Currying of Append 

> (define append-curried 
(lambda-c (x) (y) 

(letrec-d 
([app (lambda-d (x) (y) 

(if-d-e (base null? x) y 
(base-d (lift (base.car x)) 

(call-d app x y)))) 
append-curried 
> (append-curried '(1 2)) 
(lambda (y) 

(letrec 

(call-d-u app (base cdr x) y))))]) 

((app-1 lambda (y-1) (cons '1 (cons '2 y-1)))) 
(app-1 y))) 

Let append-12 be the syntactically curried version of append applied to the list , (1 
2). Applying append-12 to , (3 4) yields the same as applying the original append 
function to , ( 1 2) and , (3 4) 1. 

> (append-12 '(3 4)) 
(1 2 3 4) 

1 There is a small problem here. The result of applying a syntactically curried function to its static argu­
ments is a lambda expression (not a function) so we cannot run this as ((append-curry t ( 1 2)) t (3 4)). 
One solution is to write the lambda expression on a file and then load the definition. ((store-and-load 
(append-curry , (1 2))) , (3 4)). Another way is to use the system function eval (this is safe since it is 
applied to a closed term) ((eval (append-curry , (1 2))) , (3 4)). 
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Chapter 6 

Related Work 

This chapter compares syntactic currying with related work, mainly partial evaluation. Syn­
tactic currying, as it is described in this report, was developed, as a method to achieve partial 
evaluation. So it is not surprising, that the MIX-system and the system developed here, have a 
lot in common. 

In the following we shall see, that not only do the functionality of some of the programs in 
the MIX system equal the functionality of programs in our system, the programs also have a 
common structure. 

The chapter ends with a rephrasing of the three Futamura projections, that describes special­
ization of an interpreter, and with an explanation of the importance of the static type analysis. 

6.1 Relating mix to mcx 

Both mix, and mcx, although in different ways, achieve partial evaluation. In this section we shall 
relate the two programs, offering a more complete picture of partial evaluation. The equations 
below states the functionality of mix, and mcx respectively. For notational convenience we 
chose that all the languages in the definitions are equal. Through this chapter we shall call the 
program, p, and the input: s, and d, standing for static and dynamic. 

It should be clear that mix is an implementation of the s;:: function from Kleene's s;::­
theorem [Kleene 52], while mcx is a syntactic curryer. 

Definition of mix, and mcx 

(L mix): (S x D~R) x S~(D~R) 
L (L mix (p,8)) d = L p (8,d) 

L mcx : (S x D-+ R)-+ S-+ (D-+ R) 
L ( L ( L mcx p) 8) d = L p ( 8, d) 

From the types it is clear that mcx is a syntactically curried version of mix, and that that mcx 
performs syntactic currying. So running mcx on mix gives a residual program with the same 
functionality (or type) as mcx. The calculations below confirms this. 
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de/ L . 
mcxm~ = mcx max 
L (L (L mcxm~ p) 8) d = L (L (L (L mcx mix) p) 8) d 

= L (L mix (p,8)) d 
= L p (8,d) 

Substituting equals for equals in the definition of mix, and mcx we get the following 

L (L mix (p,8)) d = L (L (L mcx p) 8) d 

which tells us the same as the types; the functionality (or types) of the residual programs are 
the same. The residual program resulting from partially evaluating p with respect to 8 using 
mix, have the same functionality as the residual program obtained using mcx. Not only do the 
two residual programs have the same functionality, they also share the same structure. The 
claim that two different programs are structurally equivalent calls for an explanation. There is 
of course no formal means by which we may conclude that program A is structurally equivalent 
to program B. So when we state that the programs are structurally equivalent we mean that 
they have some structure in common. 

de/ L . ( ) •tructure L (L ) de/ 1 p. = max p, 8 = mcx p 8 = p. 

Examining the residual programs obtained using our system with the residual programs obtained 
using the mix system, we find that the structure of the residual programs are remarkably equal. 
One of the reasons for this, is that mix, and mcx are related programs; constructed using the 
same principles; mcx is built using our knowledge about how mix works. 

6.2 Self-Application of mix 

An interesting property of mix is that it can be self-applied. We can thus partially evaluate mix 
with respect to the program p, thereby obtaining a residual program mix11 which applied to 8 
results in p •. This program has the same functionality as the syntactically curried version of p, 
resulting from running (L ~ex p = mcx11 ). 

• def L . ( . ) mzx11 = mzx mzx,p and 
def 

mcx11 = L mcx p 

L (L mix 11 8) d = L (L mcx11 s) d 

The intuition behind the two programs, mix11 , and mcx 11 , are the same. This is also described 
by their common type. 

L m?x 11 : S-+ (D-+ R) 
where L p : S x D -+ R 

They take some static input, s, produce a residual program which, when applied to the dynamic 
input, d, gives the final result. This suggest that mix11 , and mcx11 share some structure. 

. •tructure 
mzx11 = mcx 11 
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In the system developed in this paper, the program mczp is the result of macro expansion. 
Comparing mizp with mczp we find that the two programs have roughly the same structure. 
This statement should be read: we are able to recognize common structures. 

Going one step further, examining miZmiz which is the result of partially evaluating miz 
with respect to miz. (miZmiz = L miz (miz, miz)), we find that it should be compared to mcz 
itself. 

L ( L ( L miz miz p) s) d = L ( L ( L mcz p) s) d 

Comparing mcz with miZmiz is a bit difficult, because mcx is a set of syntactical extensions 
(macros), each defining the translation of a language construction into its curried version. While 
miXmiz is a generated program. Nevertheless, examining miZmiz, we find pieces of code that are 
almost identical to our syntactical extensions. This suggest the following view on mcx: mcx is a 
hand written version of miXmiz· 

6.3 The Futamura Projections 

There are three special instances of partial evaluation, that have drawn much attention since 
1971, where they were introduced by Futamura in [Futamura 11); the three Futamura projec­
tions. The Futamura projections considers the special case where the program being partially 
evaluated is an interpreter, int. In that case the static data is a source program, src, and the 
dynamic data is the input to the source program, data. The specialized version of the interpreter 
with respect to the source program, intm, is a target program, mix specialized with respect to 
intis a compiler, comp, and mix specialized with respect mix itself is a compiler generator, cogen. 

The three Futamura projections 

L . (. ) def mzx mt, src = target 
L . ( . . ) def mzx mzx, mt = comp 

L . ( . . ) def mzx mzx, mzx = cogen 

L target data = L ( L mix ( int, src)) data = result 
L comp src = L ( L miz (mix, int)) src = target 
L cogen int = L (L mix (miz, mix)) int = comp 

What is the role of mcx in this case? We have already- seen that mcz corresponds to cogen (or 
miXmiz), so 

6.4 Language Triplets 

L mcx int = comp 
L comp src = target 

L target data = result 

The theory about language triplets developed in [Holst 88), gives a description of the relation 
between miz, and mcz. The main theorem in the theory of language triplets states that there 
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exists a language, L 5 , such that programs that are M -interpreters (interpreters for the language 
M) in L are compilers from M to S written in L5 • Let int be a M -interpreter, ad src a M­
program. then the theorem states that there exists a language L5 that fulfills the following 
requirements. 

L int (src, data)= S (L5 int src) data 

It is one of the observations in [Jones 85b,Holst 88) that mix is an interpreter for a language like 
L5 • Likewise mcx can be seen as a compiler from that language into, say, T. 

S (L mix (int, src) data = S (L5 int src) data = S target data 

S (T (L mcx int) src) data = S (L5 int src) data = S target data 

The conclusion is that mcx is an compiler for the language that mix is an interpreter for. 
Let L, S, and T be the same language. Then LL is Curry( Sf). Where Sf is the S;:' function 

for m = n = 1. St is the function computed by mix. This corresponds beautifully with the the 
following view on interpreters: an interpreter for language L is an uncurry'ed version of L; so 
an L-interpreter is an implementation of UnCurry(L). As mix is an LL-interpreter, mix is an 
implementation of UnCurry( Curry( Sf)) = Sf. 

6.5 The Importance of Binding Time Typing 

The type analysis, as we prefer to call, it corresponds to the binding time analysis in the MIX­
system [Bondorf 88). Both in the MIX-system, and in our implementation the type analysis is 
performed in a separate prephase which annotates the program with type information. The type 
analysis need not be performed in a separate prephase, but it is crucial that it can be performed 
at translation time. Like in other languages static typing removes the need for run time type 
checks, and thus leads to more efficient implementations. Type checking at run time in the 
language L,e is fairly expensive; experiments shows that it introduce an overhead between 20, 
and 50 [Holst 89a), not to mention the space overhead. 

In the table below we have listed the overhead introduced if we use a run time type system. 
The only case in which the overhead grows to unbearable sizes is when self-applying mix. This 
is because the overhead, o, grows to o2 when mix is self-applied. 

6.6 Conclusion 

mcx., = L mcx p 
Ps = L mcx., s 
result = L Ps d 

Ps = L mix (p, s) 
result = L P11 d 

none 
20 to 50 

none 

20 to 50 
none 

I mix'P = L mix (mix,p) I 400 to 2500 I 

Summarizing this chapter: A syntactic curryer is a syntactic curried version of a partial evalua­
tor, and opposite a partial evaluator is a syntactic uncurried version of a syntactic curryer. The 
program mcx is a hand written version of cogen. 
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Chapter 7 

Experiments 

The experiments in this chapter falls into two categories. Some experiments aim at showing 
what syntactic currying can be used to. Others compare the results obtained by this system 
with the results obtained with partial evaluators, like the MIX system. 

There are no systematic tests, that try to prove the system correct, since this is an experi­
mental system. But the sequence of experiments carried out in this chapter, makes us believe 
that the number of errors in the system is small. 

This chapter reports the following experiments. Specialization of the power function, which 
lifts y to the power x. Then two different interpreters are curried, a Turing machine interpreter, 
and a interpreter for recursive equations. The curried versions of the interpreters are compilers 
and they are used to compiler some small example programs. An example that goes into an 
infinite loop is shown, and it is shown how to rewrite the program, so the curried version 
terminates. Finally some run time statistics are listed. 

7.1 Power, or y:c 

This is a classical example. Consider the function, power, defined below, that lift y to the x'th 
power, and suppose the first argument, x, is static and the second, y, is dynamic. 

Power, A Classical Example 

(detine pover 
(lambda-c (x) (y) 

(letrec-d '( [p (lambda-d (x) (y) 
(if-d-e (zero? x) 

(lift '1) 
(if-d-e (even? x) 

(call-d-u p x y)))) 

pover 
> (pover '6) 

(call-d-u p (quotient x '2) (base-d sqr y)) 
(base-d • y (call-d-u p (- x '1) y)))))]) 

(lambda (y) (• y (• (sqr (sqr y)) '1))) 
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This example is interesting, because all the control has been solved. The result could have 
been slightly better if the system had been able to reduce the multiplication with the unity 1. 
But such optimizations are not worth the effort, except in case where arithmetical computation 
plays a central role; an example can be found in [Mogensen 86], where a raytracer is specialized. 
There is a infinite class of such optimizations, and the number of times they can be applied is 
very small compared to the number of times where they do not apply. Therefore they will make 
the program less efficient at static time, and only give a small speedup at static time. 

This example also shows some of the dangers in unfolding calls. Suppose that the square 
function, was a user defined function, like the one below, instead of a basic operation. If such a 
user defined square function had been called with unfoldable calls. The result would be as seen 
below, i.e., O(n) operations instead of O(logn) operations. 

([sqr (lambda-d () (y) (base-d • y y))]) 

(lambda (y) (• y (• (• (• y y) (• y y)) '1))) 

It is easy to think of examples where the run time goes from linear time to exponential time. So 
unfolding offunction calls is a delicate matter. In [Sestoft 88] it is described how call duplication, 
as described above, can be detected automatically. Another solution to this problem is to insert 
let-expressions at the point of each function call. 

Annotating the Program with let-expressions to avoid Call Duplication It is possible 
to avoid call duplication completely using the following principle which removes the need for 
runtime checks. Put let-expressions around unfoldable calls, such that all the arguments to 
unfoldable calls are variables. 

Unfortunately our system do not handle let-expressions, but if it did, this solution could be 
used. By the way, let-expressions are not difficult to handle. 

7.2 A Turing Machine Interpreter 

In the last chapter we saw that syntactic currying of a.n interpreter yields a compiler. In this 
section we examine the result of using a. syntactic curried Turing machine interpreter to compile 
small example programs. 

We use Post's variant of the Turing machine, inspired by [Gomard 88]. A Turing program 
is a. list of instructions (I0 , ••• , In)· There are the following instructions: (left), (right), (jmp l), 
(if t l), (write t). The tape of the Turing machine is infinite in both directions~ Initially the 
head is placed over the tape a.t the beginning of the input string. The instructions are computed 
in sequence, with the following exceptions: (jmp l) continues with instruction I1, and (if t l) 
continues with Iz if the tape symbol under the head is t, otherwise it continues with the next 
instruction. (write t) write t on the tape at the position under the head;- (left), and (right) 
moves the head left and right on the tape. 

The Turing machine interpreter below use head, and tail when the tape is moved. The 
infinite tape is implemented by defining that: head of the empty list is blank, tail of the empty 
list is the empty list. The complete definition of the definition of the Turing machine interpreter 
can be found in the appendix B, in which all the auxiliary functions are defined. 
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A Turing Machine Interpreter 

(detine tint-r (lambda-c (p) (t) 
(letrec-d 

([ex (lambda-d (pc) (1 r) 
(it-d-e (null? pc) 

r 
(it-d-e (lett? pc) 

(call-d-u ex (next pc) 
(base-d tail 1) 
(base-d cons (base-d head 1) r)) 

(it-d-e (right? pc) 
(call-d-u ex (next pc) 

(it-d-e (write? pc) 

(base-d cons (base-d head r) 1) 
(base-d tail r)) 

(call-d-u ex (next pc) 
1 

(it-d-e (if? pc) 

(base-d cons (litt (get1 pc)) 
(base-d tail r))) 

(it-d (base-d eq? (litt (get1 pc)) (base-d head r)) 
(call-d ex (jmp-to (get2 pc) p) 1 r) 
(call-d ex (next pc) 1 r)) 

(it-d-e (jmp? pc) 
(call-d-u ex (jmp-to (get1 pc) p) 1 r) 
(litt 'error))))))))]) 

(call-d ex p (litt '()) t)))) 

Scheme is not the best suited la.ngua.ge for implementation of the Turing machine with its 
assignments, so the resulting code tends to be ra.ther la.rge. 

Therefore we just show a. sma.ll example na.mely the example which ca.n be found in [Goma.rd 88]. 
This Turing program cha.nge the first occurrence of 0 with a. 1 a.nd returns the rest of the ta.pe. 
A la.rger example ca.n be found in appendix B 

( 

(it 0 3) 0 
(right) 1 
(jmp 0) 2 
(write 1) 3 

) 

The compiled version of this program is the following Scheme code. 

(lambda (t) 
(letrec 

((ex-3 (lambda (1-3 r-3) 
(if (eq? '0 (head (tail r-3))) 

(ex-2 (cons (head r-3) 1-3) (tail r-3)) 
(ex-3 (cons (head r-3) 1-3) (tail r-3))))) 

(ex-2 (lambda (1-2 r-2) (cons '1 (tail r-2)))) 
(ex-1 (lambda (1-1 r-1) 
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(if (eq? '0 (head r-1)) (ex-2 1-1 r-1) (ex-3 1-1 r-1))))) 
(ex-1 • () t))) 

As already said Scheme is not the best suited language for implementing the Turing machine 
with its assignments. Nevertheless the code seems quite reasonable. 

7.3 An Interpreter for Recursive Equations 

The annotated interpreter for recursive equations is found in appendix C. We have chosen to 
translate the normal Fibonacci program by applying the syntactically curried interpreter to 
it. Below we have shown the definition of the Fibonacci function in recursive equation(s) and 
the translated version in Scheme. the main difference is the part that builds the argument 
list. Using some kind of variable splitting like the ones described in [Jones 89a,Mogensen 88a, 
Romanenko 88] the variable list would have been split into separate variables. In this case there 
is only one variable. 

( 
(fib (n) (if (< n '2) '1 

(+ (fib (- n '1)) (fib (- n '2))))) 
) 

(lambda (input) 
(letrec 

((exec-S 
(lambda (values-S) 

(if (< (car values-S) '2) 
'1 
(+ (exec-S (cons (- (car values-5) '1) •())) 

(exec-S (cons (- (car values-5) '2) •()))))))) 
(exec-S input))) 

The two examples shows that this implementation is comparable to the implementations in 
[Jones 85a,Gomard 88]. 

7.4 Infinite Specialization 

In chapter 2 we began to share specialized function in order to avoid infinite specialization. 
Nevertheless, the risk of infinite specialization is still present. In this section an example that 
produce infinitely many specialized ·functions are exhibited, and it is shown how the program 
can be rewritten, such that only finitely many specialized functions are generated. 

The example program is the power function from the first section. This time we swap the 
arguments, so it is curried with respect to y being static. 

40 



Power(2), A Classical Example 

> (define pover2 
(lambda-c (y) (x) 

(letrec-d 
([p (lamb4a-d (y) (x) 

(if-d (base-d zero? x) 
(lift y) 

(if-d (base-d even? x) 
(call-d p (sqr y) (base-d quotient x (lift '2))) 
(base-d • (lift y) (call-d p y (base-d- x (lift '1)))))))]) 

(call-d p y x)))) 
pover2 
> (pover2 '6) 
goes into an infinite loop 

Examining the program we can see that we first makes a specialized version of p with y = 5, that 
version gives rise to a call top withy= 52 = 25, which is then specialized. This continues with 
y = 5, 25,625, ... , the problem we arrive at is a general one. Static accumulating arguments 
gives rise to infinite unfolding. This seems a little awkward at first, since we normally try to 
make our programs tail recursive. The solution to the problem is to rewrite power, such that it 
no longer have an accumulating argument. 

Power(3), A Classical Example 

> (define pover3 
(lambda-c (y) (x) 

(letrec-d 
([p (lambda-d (y) (x) 

(if-d (base-d zero? x) 
(lift y) 

(if-d (base-d even? x) 
(base-d sqr (call-d p y (base-d quotient x (lift '2)))) 
(base-d • (lift y) (call-d p y (base-d- x (lift '1)))))))]) 

(call-d p y x)))) 
pover3 
> (pover3 '5) 
(lambda (x) 

(letrec 
((p-3 (lambda (x-3) 

(p-3 x))) 

(if (zero? x-3) 
'5 
(if (even? x-3) 

(sqr (p-3 (quotient x-3 '2))) 
(• '6 (p-3 (- x-3 '1)))))))) 

Another solution to the problem, which always works would be to lift the static arguments to 
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dynamic. This is the general solution, but one gets lousy results by just throwing information 
away. 

7.5 Comparison with other Systems 

In contrast to other works in this area this system have no mix program. It is therefore not possi­
ble to make experiments with self-application. Compiler generation happens at macro expansion 
time and is taken care of by the Scheme system. Experiments shows that macro expansion take 
some time; defining a normal interpreter takes 40 ms. while definition of an annotated inter­
preter, i.e., a compiler, takes 60 ms. But it is difficult to make any clear conclusions from these 
:figures. The run times are cpu milliseconds and are compiled using the time function of Scheme. 
Compilation is very fast. All the programs we have compiled have been compiled in 20 ms. or 
less. The code generated by our compilers are comparable to the code generated by other partial 
evaluators [Jones 85a,Jones 89a,Holst 88]. 

Our results can not compete with the results obtained by [Mogensen 88b,Bondorf 89a], be­
cause our system do not use variable splitting. We believe that our system without large diffi­
culties could be extended to do variable splitting. 

We report on two experiments: an interpreter for a Turing machine which together with 
a closer description can be found in appendix B, and an interpreter for recursive equations. 
The interpreter for recursive equations is written in a style close to the self-interpreters in 
[Sestoft 86,Jones 89a,Holst 88]. The interpreter for recursive equations can be found in appendix 
c. 

Int(p,d) Int_p(d) ratio 
Turing-int 412 80 5.26 
Self-int 4268 224 19.05 

The figures in the table below is the time for interpreting :fib with input 15 and for running a 
compiled version of :fib on 15. The experiment with the Turing machine reported in the table 
above can be found in appendix B. 
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Chapter 8 

Conclusion 

This conclusion naturally divides into two independent parts. A technical summary, stating the 
achievements of the project. A historical summary, stating where the ideas and inspiration to 
this work came from and how the project developed. 

8.1 Achievements 

This report describes syntactic currying; a technique that in many respects is very close to 
partial evaluation. 

Syntactic currying is the transformation of a program, p, that works in one phase into a 
program, 'I, that works in two phases. The splitting of the program reflects a splitting of the 
input into two parts: the static part, and the dynamic part. The program, p', works in two 
phases. The first phase produce a residual function when applied to the static data. The residual 
function then performs the second phase when applied to the static data. 

We implemented syntactic currying in several steps. First we defined a evaluation strat­
egy, which we called symbolic evaluation, symbolic evaluation was evaluation over a domain of 
expressions. We recognized that symbolic evaluation was dynamically typed, with the types: 
static, and dynamic (representing value, and expression), and that all language constructs was 
overloaded with respect to these types. A type inference was developed, and it was shown how 
the dynamically typed programs could be transformed into statically typed program by insertion 
of type conversion operations. 

This view of binding times as types, binding type analysis as a type inference, and annotation 
as transformation of the program into a form that is statically typed, and .where the overloading 
of the constructions is solved, is a contribution of this project. Nielson & Nielson uses types 
in their two level meta language, in a way very similar to ·the approach taken in this project 
[Nielson 86]. 

Given that the programs was statically typed, and the overloading was solved, we gave a 
much more efficient implementation of symbolic evaluation, and thus syntactic currying. 

This implementation of syntactic currying corresponds closely to the normal implementation 
of partial evaluation. One of the differences is that we use a depth-first strategy in our function 
specialization while the MIX-system uses a breadth-first strategy. This had the advantage that 
recursive declarations could be treated locally, since the need for a global loop was removed. 

Given the statically typed version of the source syntactic currying turned out to be straight 
forward. The syntactic curryer was implemented using Chez Schemes syntactic extensions, 
extend-syntax. The system was compared with the MIX-system. It was realized that the 
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syntactic curryer, mcx, corresponded to the result of the third Futamura projection, cogen. This 
way the structure of the compilers and compiler generator produced by the MIX-system could 
be described. 

Lines were drawn to language triplets [Holst 88], and it was shown that mcx was a compiler 
for the language, L.,e, that mix was an interpreter for. mcx is a syntactically curried version of 
mix, and mix is an syntactically uncurried version of mcx, which is the same as an implementation 
of the S:'-function. 

Concluding on this report, one might say that the report has not so much new to say, but it 
offers an enlightening view on syntactic currying, and partial evaluation. We also believe that 
it close some of the gaps between partial evaluation and other compiler generator systems. For 
example: the compile structure of mcx is closer to denotational like systems like CERES, still 
mcx is a syntactically curried version of mix. This shows that the interpretive structure of mix 
is not needed to implement to implement partial evaluation. 

8.2 The Story About a Project 

This project started with the idea, that the annotated version of programs in the mix system, 
already was the compiler, and that it only was a question about the language in which one 
considered them as programs. This was also the idea in the article [Holst 88], and in the thesis 
[Holst 89a]. It also started with the idea that partial evaluation could be achieved using the 
macro facility in Chez Scheme, extend-syntax, [Dybvig 87 ,Kohl becker 86]. In the beginning 
the project was inspired by work done on partial evaluating the lambda-calculus, by Carsten 
Gomard, and Neil D. Jones [Jones 89b]. Later, in cooperation with Olivier Danvy, it became 
obvious that this was actually syntactic currying, and this approach had some advantages com­
pared to the normal implementation of partial evaluation. Currently an article giving an extract 
of these ideas is being written together with Olivier Danvy [Holst 89b]. 
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Appendix A 

The whole definition of Syntactic 
Currying 

A.l The definition of syntactic currying of definitions 

(extend-syntax (lambda-c) 
[(lambda-c (s ... ) (d ... ) body) 
(lambda (s ... ) 

'(lambda (d ... ) ,(let ([d 'd] ... )body)))]) 

A.2 The Static part 

The static part is oukommented because it is the identity function. These syntactic extensions 
would not function if defined. 

;; The Static part 

;(extend-syntax (base) 
[(base o e ... ) (o e ... )]) 

;(extend-syntax (if) 
[(if e1 e2 e3) (if e1 e2 e3)]) 

;(extend-syntax (letrec) 
[(letrec de) (letrec d e)]) 

;(extend-syntax (call) 
[(call f e ••. ) (f e ... )]) 

A.3 The Dynamic part 

The variables •acc•,•rdef•, •done•, and •rbody• are invented ai macro expansion time. 

(extend-syntax (lift) 
[(lift e) '(quote ,e)]) 

(extend-syntax (base-d) 
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[(base-doe ... ) '(o ,e •.• )]) 

(extend-syntax (if-d) 
[(if-d e1 e2 e3) '(if ,e1 ,e2 ,e3)]) 

(extend-syntax (if-d-e) 
[(if-d-e e1 e2 e3) (if e1 e2 e3)]) 

(extend-syntax (letrec-d lambda-d) 
[(letrec-d ([n (lambda-d (s .•• ) (d ... ) le)] ... )e) 
(with ([•ace• (make-sym ••ace•)] 

[•rdef• (make-sym '•rdef•)] 
[•done• (make-sym '•done•)] 
[•rbody (make-sym 'rbody)]) 

(let ([•ace• (empty-ace)]) 
(letrec 

([n (cons 
(lambda (s ... d ... ) 

(let ([•done• (called? •ace• 'n '(,s ... ))]) 
(if (null? •done•) 

(let ([•rdef• (let ([d (make-sym 'd)] ... ) 
'(lambda (,d ... ) ,le))]) 

'(,(specialize! •ace• 'n '(,s ... ) •rdef•) ,d ... )) 
'(,•done• ,d ... )))) 

(lambda (s ... d ... ) le))] ... ) 
(let ([•rbody• e]) 

(extract! •ace• •rbody•)))))]) 

(extend-syntax (call-d) 
[(call-d f e ... ) ((car f) e ... )]) 

(extend-syntax (call-d-u) 
[(call-d-u f e ... ) ((cdr f) e ... )]) 

A.4 The auxiliary functions, and macros 

The accumulator is a list of pairs, the head the function anme and the value of the static 
arguments are recorded, in the tail the residual funciton definition is stored. 

(extend-syntax (empty-ace) 
[(empty-ace) ()]) 

(extend-syntax (called?) 
[(called? a n s) 
(let ([•d• (assoc (cons n s) a)]) 

(if (null? •d•) 
(begin (set! a (cons (cons (cons n s) (list (make-sym n))) a)) '()) 
(cadr •d•)) )] ) 

(extend-syntax (extract!) 
[(extract! a b) 
(if (null? a) b '(letrec ,(map cdr a) ,b))]) 
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(extend-syntax (specialize!) 
[(specialize! a n s d) 
(let ([•d• (assoc (cons n s) a)]) 

(if (null? •d•) (error 'specialize! "Couldn't find it") 
(begin (set-cdr! (cdr •d•) (list d)) (cadr •d•))))]) 

The following is our "improved" definition of gensym. 

(define (make-cif n) 
(if (and (number? n)(<= 0 n)(<= n 9)) 

(list-ref '("0" "1" "2" "3" "4" "5" "6" "7" "8" "9") n) 
(error 'make-cif "-s is not a ciffer" n))) 

(define (make-number n) 
(if (number? n) 

(if (= n 0) "0" (let t ([x n]) 
(if (= x 0) "" (string-append (f (quotient x 10))(make-cif (mod x 10)))))) 

(error 'make-number "-s is not a number" n))) 

(define make-sym 
(let ([•symbols• '()]) 

(lambda (s) 
(let ([•s• (assoc s •symbols•)]) 

(if (null? •s•) 
(begin (set! •symbols• (cons (cons s 0) •symbols•)) 

(make-sym s)) 
(begin (set-cdr! •s• (+ 1 (cdr •s•))) 

(string->symbol 
(string-append 

(symbol->string s) "-" 
(make-number (cdr •s•)))))))))) 
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Appendix B 

A Turing Machine Interpreter 

We use Post's variant of the Turing machine, which was also used in [Gomard 88). A Turing 
program is a list of instructions (Io, ... , In)· There are the following instructions: (left), (right), 
(jmp n), (if t n), (write t). The instruction are computed in sequence unless the instruction is 
(jmp n ), or (if t n ). (jmp n) means continue with instruction In. (if t n) means if the symbol 
on the tape is t continue with In otherwise continue with the next instruction. (write t) write t 
on the tape. (left), and (right) moves the head left and right on the tape. The tape is infinite 
in both directions and there are blanks on the tape unless there is specified something else. 

The Turing machine interpreter below use head, and tail when the tape is moved. The 
infinite tape is implemented by defining that: head of the empty list is blank, tail of the empty 
list is the empty list 

(define tint-r (lambda-c (p) (t) 
(letrec-d 

([ex (lambda-d (pc) (l r) 
(if-d-e (null? pc) 

r 
(if-d-e (left? pc) 

(call-d-u ex (next pc) 
(base-d tail l) 
(base-d cons (base-d head l) r)) 

(if-d-e (right? pc) 
(call-d-u ex (next pc) 

(if-d-e (write? pc) 

(base-d cons (base-d head r) l) 
(base-d tail r)) 

(call-d-u ex (next pc) 
l 

(if-d-e (if? pc) 

(base-d cons (lift (get1 pc)) 
(base-d tail r))) 

(if-d (base-d eq? (lift (get1 pc)) (base-d head r)) 
(call-d ex (jmp-to (get2 pc) p) l r) 
(call-d ex (next pc) l r)) 

(if-d-e (jmp? pc) 
(call-d-u ex (jmp-to (get1 pc) p) l r) 
(lift 'error))))))))]) 

(call-d ex p (lift '()) t)))) 
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B.l The Auxiliary Functions 

(define (left? c) (eq? 'left (caar c))) 
(define (right? c) (eq? 'right (caar c))) 
(define (write? c) (eq? 'write (caar c))) 
(define (if? c) (eq? 'if (caar c))) 
(define (jmp? c) (eq? 'jmp (caar c))) 
(define (head 1) (if (null? 1) 'b (car 1))) 
(define (tail 1) (if (null?.l) '() (cdr 1))) 
(define (next p) (cdr p)) 
(define (get1 i) (cadar i)) 
(define (get2 i) (caddar i)) 
(define (jmp-to n p) 

(let nth ([n n][p p]) 
(if (= 0 n) p 

(nth (- n 1) (next p))))) 

B.2 A Turing Program that Multiply by 2 

To test the Turing machine interpreter we made a program that multiplied by two. The program 
takes a sequence of 1 's and returns a sequence with twice as many zeros. 

(define tp '( 
(if b 16) 
(if 0 16) 
(write b) 
(right) 
(if b 7) 
(right) 
(jmp 4) 
(write 0) 
(right) 
(write 0) 
(if b 13) 
(left) 
(jmp 10) 
(right) 
(jmp 1) 

) 

0 
1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
13 
14 

if n=O end 
if finished end 
delete a 1 

move to end 

write two 0 

move to start 

repeat 

The result of compiling this Turing program is the following amount of scheme code. Purely 
functional Scheme is not the best suited programming language when it comes to implementation 
of the Turing machine with its assignments. 

(lambda (t) 
(letrec 

((ex-10 
(lambda (1-10 r-10) 

(if (eq? 'b (head (tail r-10))) 
(ex-7 (cons (head r-10) 1-10) (tail r-10)) 
(ex-10 (cons (head r-10) 1-10) (tail r-10))))) 

(ex-9 (lambda (1-9 r-9) 
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(it (eq? 'b (head (cons (head 1-9) r-9))) 
(ex-8 (tail 1-9) (cons (head 1-9) r-9)) 
(ex-9 (tail 1-9) (cons (head 1-9) r-9))))) 

(ex-8 (lambda (1-8 r-8) 
(it (eq? '0 (head (tail r-8))) 

(ex-6 (cons (head r-8) 1-8) (tail r-8)) 
(ex-6 (cons (head r-8) 1-8) (tail r-8))))) 

(ex-7 (lambda (1-7 r-7) 
(it (eq? 'b 

(head (cons '0 
(tail (tail (cons '0 

(tail r-7))))))) 
(ex-8 (cons (head (cons '0 (tail r-7))) 1-7) 

(cons '0 (tail (tail (cons '0 (tail r-7)))))) 
(ex-9 (cons (head (cons '0 (tail r-7))) 1-7) 

(cons '0 
(tail (tail (cons '0 (tail r-7))))))))) 

(ex-6 (lambda (l-6 r-6) 
(it (eq? 'b (head (tail (cons 'b (tail r-6))))) 

(ex-7 (cons (head (cons 'b (tail r-6))) 1-6) 
(tail (cons 'b (tail r-6)))) 

(ex-10 
(cons (head (cons 'b (tail r-6))) 1-6) 
(tail (cons 'b (tail r-6))))))) 

(ex-5 (lambda (1-5 r-5) r-5)) 
(ex-4 (lambda (1-4 r-4) 

(it (eq? '0 (head r-4)) (ex-5 1-4 r-4) (ex-6 1-4 r-4))))) 
(ex-4 '() t))) 
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Appendix C 

An Interpreter for a Recursive 
Equations 

The interpreter shown in this appendix is very limited. It only supports the instructions needed 
to interpret the fibonacci program. A larger interpreter or an interpreter which used an external 
function "base-eval" to implement the basic operation could easily be made. 

(de:fine int-2 
(lambda-c (program) (input) 

(letrec-d 
([exec (lambda-d (exp names) (values) 

(letrec-d 
([ex (lambda-d (exp) () 

(if-d-e (symbol? exp) 
(call-d-u get exp) 

(if-d-e (constant? exp) 
(lift (arg1 exp)) 

(if-d-e (null?? exp) 
(base-d null? (call-d-u ex (arg1 exp))) 

(if-d-e (-? exp) 

(if-d-e (+? exp) 

(base-d- (call-d-u ex (arg1 exp)) 
(call-d-u ex (arg2 exp))) 

(base-d+ (call-d-u ex (arg1 exp)) 
(call-d-u ex (arg2 exp))) 

(if-d-e (<? exp) 
(base-d< (call-d-u ex (arg1 exp)) 

(call-d-u ex (arg2 exp))) 
(if-d-e (if? exp) 

(if-d (call-d-u ex (arg1 exp)) 
(call-d-u ex (arg2 exp)) 
(call-d-u ex (arg3 exp))) 

(let ([fun (assoc (car exp) program)]) 
(call-d exec (caddr fun) 

[ex• (lambda-d (exp) () 
(if (null? exp) (lift '()) 

(cadr fun) 
(call-d-u ex• (cdr exp)))) 

))))))))] 
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(base-d cons (call-d-u ex (car exp)) (call-d-u ex• (cdr exp)))))] 
[get (lambda-d (name) () (call-d-u lookup name names values))] 
[lookup (lambda-d (name names) (values) 

(if (null? names) (error 'lookup "can't find -s" name) 
(if (eq? name (car names)) (base-d car values) 

(call-d-u lookup name (cdr names) (base-d cdr values)))))]) 
(call-d-u ex exp)))]) 

(call-d exec (caddar program) (cadar program) input)))) 

:----------------------------------------------------------------------
; Auxiliary functions 

(define (constant? e) (and (pair? e) (eq? (car e) 'quote))) 
(define (base? e) (and (pair? e) (eq? (car e) 'base))) 
(define (null?? e) (and (pair? e) (eq? (car e) 'null?))) 
(define (car? e) (and (pair? e) (eq? (car e) 'car))) 
(define (cdr? e) (and (pair? e) (eq? (car e) 'cdr))) 
(define (cons? e) (and (pair? e) (eq? (car e) 'cons))) 
(define (if? e) (and (pair? e) (eq? (car e) 'if))) 
(define (call? e) (and (pair? e) (eq? (car e) 'call))) 
(define (-? e) (and (pair? e) (eq? (car e) '-))) 
(define (+? e) (and (pair? e) (eq? (car e) '+))) 
(define (<? e) (and (pair? e) (eq? (car e) '<))) 
(define arg1 cadr) 
(define arg2 caddr) 
(define arg3 cadddr) 

The result of compiling the fibonacci progam can be seen below. 

( 

(fib (n) (if (< n '2) '1 
(+ (fib (- n '1)) (fib (- n '2))))) 

) 

(lambda (input) 
(letrec 

((exec-S 
(lambda (values-S) 

(if (< (car values-S) '2) 
'1 
(+ (exec-S (cons (- (car values-S) '1) '())) 

(exec-S (cons (- (car values-S) '2) '()))))))) 
(exec-S input))) 
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