
Binding Ti1ne Aspects of Partial Evaluation

Torben JEgidius Mogensen
DIKU

University of Copenhagen
Denmark

3 March 1989

Contents

1 Overview

2 Introduction
2.1 Partial Evaluation
2.2 Some theory of partial evaluation

2.2.1 Languages, interpreters and compilers
2.2.2 Residual programs and partial evaluators
2.2.3 Compiling and compiler generation .

2.3 Other uses of partial evaluation

3 Partial Evaluation Algorithms
3.1 A language
3.2 Five algorithms for partial evaluation ..

3.2.1 Algorithm 1: constant argument
3.2.2 Algorithm 2: constant folding . .
3.2.3 Algorithm 3: constant folding with function call unfolding .
3.2.4 Algorithm 4: polyvariant specialization
3.2.5 Algorithm 5: driving
3.2.6 Algorithms for other languages

3.3 Polyvariant Specialization
3.3.1 Fixed point iteration
3.3.2 Specialization of expressions .
3.3.3 Unfolding

4 Self-application and Binding Time Analysis
4.1 Binding time
4.2 Specialization
4.3 Binding time annotation
4.4 Binding time analysis

4.4.1 Call annotation .

5 Revising the Mix Equation
5.1 Residual programs and partial evaluators
5.2 Compiling and compiler generation

1

4

5
5
5
6
6
7
8

9
9
9

10
10
10
11
12
12
12
13
13
15

17
17
17
20
22
23

25
25
26

6 Partially Static Structures
6.1 Partial evaluation with completely static f dynamic values .
6.2 Extending the binding time domain to partially static structures
6.3 Binding time analysis
6.4 Annotation
6.5 Function specialization .
G.G Results
6.7 Conclusion
6.8 Abstract evaluation in the DTA domain.
6.9 An interpreter for MP
6.10 Exponentiation program in MP .. .
6.11 Residual exponentiation program ..

7 Separating Binding Times
7.1 Dinding time descriptions
7.2 Binding time analysis

7.2.1 Transformation of grammar to restricted form.
7.3 Program divisions
7.4 Transformation

7.4.1 Transformation algorithms
7.5 Example ..
7.6 Conclusion

27
27
28
30
33
34
36
38
39
41
42
43

45
46
49
50
50
51
52
56
57

8 Binding Time Analysis for Polymorphically Typed Higher Order Languages 59
8.1 Introduction . 59
8.2 Preliminaries 60
8.3 Projections 61
8.4 Binding Time Analysis . 65

8.4.1 Correctness . . . 68
8.4.2 Recursive function space projections 71
8.4.3 Fixed-point iteration 71

8.5 Examples 72
8.6 Implementation Issues 77
8.7 Conclusion 77

9 Miscellaneous Topics 78
9.1 An optimization for grammar based binding time analysis 78
9.2 Extension of grammar based binding time analysis to higher order functions . 79

9.2.1 The language 79
9.2.2 Partial evaluation 80
9.2.3 Binding time analysis 82
9.2.4 Signatures as higher order functions 82

9.3 Retyping. 83
9.3.1 Type inference 84
9.3.2 Transformation: splitting of variables 85
9.3.3 Results 86
9.3.4 Retyping in CL . Si
9.3.5 General retyping 88

2

9.4 Dynamic Choice of Static Values
9.4.1 Extending the two-point domain
9.4.2 Extension to partially static structures .

10 Conclusion

3

89
89
90

92

Chapter 1

Overview

This thesis is the outcome of studies towards the Danish "licentiatgrad", the Danish equiv­
alent of a Ph.D. degree. The topic of the thesis is partial evaluation and in particular how
explicit treatment of binding times affects generation of compilers by self-application of partial
evaluators.

In chapter 2 we start with the concept of and some theory regarding partial evaluation.
In chapter 3 we continue with a presentation of various algorithms for partial evaluation and
examine one of these in detail. Self-application of this algorithm for the purpose of compiler
generation is investigated in chapter 4, where it is concluded that explicit treatment of binding
times is needed, leading to a variant of the algorithm. In chapter 5 new versions of the equations
from chapter 2 are shown.

The following three chapters: 6, 7 and 8 present various algorithms for binding time analysis
and describe how they can be used in partial evaluator systems. These chapters are modified
versions of articles that were produced during the period of the studies. Chapter 6 corresponds
to [Mogensen 88), chapter 8 corresponds to [Mogensen 89b) and the contents of chapter 7 have
been submitted for publication.

Chapter 9 presents a collection of ideas related to the subject of the thesis.
Some of the chapters or sections contain conclusions, but a short general conclusion is given

in chapter 10.

Acknowledgements

My thanks must primarily go to Neil D. Jones, who has been my supervisor for t_his thesis. The
next in line is Chris Hankin of Imperial College who supervised me when I was a visiting student
at Imperial College in the summer of '88. The wo·rk that resulted in chapter 8 was primarily
done at Imperial College.

All the people in the 1HX group at DIKU have been helpful in the production of this thesis
by giving helpful comments about early versions of this work, by participating in discussions
and giving general moral support. The very special"researcl1 climate in this group bas been of·
paramount importance for this work.

During my visits to Imperial College and Glasgow University and at the Workshop of Partial
Evaluation and Mixed Computation in Denmark in 1987 I met a multitude of people with whom
I had lengthy discussions about partial evaluation. Of these. in particular John Launch bury from
Glasgow has provided useful insights and inspiration.

4

Chapter 2

Introduction

This chapter presents the basic concept and theory of partial evaluation, as found in [Ershov 82],
[Jones et al. 85] or [Jones et al. 88]. This is followed by a section that presents the main thesis
of this thesis: when self-applying a. partial evaluator to generate compilers or other program
generators, it is necessary to ha.ndle binding time information explicitly, preferably in the form
of a. preliminary binding time analysis of the program that later will be partially evaluated.
This will then lead naturally to the following chapters that describe ways of doing binding time
analysis and how to use the information obtained.

2.1 Partial Evaluation

Partial evaluation is a. wa.y of executing programs, even if only part of the input to the program
is present. Obviously, this will in general not lead to the output of a final answer, as this
answer is likely to depend on the remaining input. \Vhat can he done is, however, producing
a new residual program which, when given the remaining input, will produce the fina.l answer.
By returning programs, partial evaluation have some similarities to program transformation.
But since program transformations normally don't use any of the input, partial evaluation is
something in between normal evaluation and program transformation.

Tlus concept is familiar from functional programming where it corresponds to doing a. partial
application, which results in an object that when applied to the remaining arguments will
produce the result. In functional programming this object is, however. normally a suspension
leaving all the real work to be done when the remaining arguments a.re supplied. In partial
evaluation the point is not to postpone the work: we want as much as possible done at partial
evaluation time, so the \vork left to do when tbe remaining arguments ate supplied is as little as
possible. When we i11 this chapte1· present the basic theory, it is worth to note that the equations
state nothing about the amount of work done at partial evaluation time; this is left to more
informal speculations in the following chapters.

2.2 Some theory of partial evaluation

In this section we present some nota.tion and theory which will be used later.

5

2.2.1 Languages, interpreters and compilers

We will use a notation similar to [Jones et al. 85) and [Jones et al. 88), where a language is
represented by a semantic function: a partia.l function from a domain of program representations
(syntax) to a domain of partial functions over the value domain of the language:

L:P-D-D

Thus L p represents the input/output function of the L-progra.m 71 and L p d is the result of
executing the program]J with the input. d.

We will from now on assume that the domain of program representations P is a subset of
the domain of values D, thus allowing programs as data. objects. \Ve will assume that the data
domain allows pairing of any values: (el1 , d2) E D if el1 E D and cl2 E D. Note that ha,·ing
programs as data objects is not the same as having functions as data objects as in higher order
languages. The programs have no inherent meaning, they are just "texts" that can be examined,
built and decomposed.

An interpreter for the language S written in L is a.n L-program s_i.nt with the following
property:

L s_int (p, d) = S]J d

for all S-programs p and input d. vVe use = to mean that e~ther both values are undefined, or
they are both defined and equal.

A compiler comp written in L, compiling S-programs toT-programs is defined by the equa­
tion:

T (L comzJ p) d = S p d

for all S-programs p and input d.

2.2.2 Residual progran1s and partial evaluators

vVe now define a residual progmm of an L-program]J with respect to a. partial input. d1 to be
any L-program Pd1 such that:

for all input d2 • In this definition we assume that]J ha.s a. pair of values as input, and that the
first element of this is given a.s partial input with the second being the remaining input. The
concept of a residual program can easily be generalized to other divisions of the input, but as
this becomes nota.tionally messy we stick to this simple definition for now.

In a way]Ja1 is a version of]J, speciali=ed \vith respect to a constant first argument ll1 •

A partial et•aluator is a program mix that given a program p and data d1 produces a residual
program Pd1 :

or, combining the two definitions in to what is known as the mi:z~ equation:

6

for all L-programs p and all data d1 , d2 • The data cl1 that is given t.o mix is called the static data
of p, and the remaining da.ta d2 that is given to the residual program is the dynamic data. Note
that there may be several equivalent residual programs]Jd1 for any given]J and static data d1 .

Different partial evaluators can produce different residual programs, some more efficient than
others. In the worst case very little is done at partial evaluation time, effectively suspending all
of p's calculations until the dynamic input is given. For some problems this is all one can hope
for, as the calculations can be heavily dependent on the dynamic input, but the applications
shown below would be of little interest if we couldn't do a substantial part of the work at partial
evaluation time.

2.2.3 Compiling and compiler generation

Using the mix equation with]J being an interpreter s_int and d1 being an S-program source we
get:

L (L mix (s_int,sou7·ce)) d = L s_int (soltrce,cl)

so s.intsource is an L-program that given cl produces the same result as the S-program source
does given the same input. s_intsource is thus source compiled from S to L:

object= Lmix(s_int,source)

Which is commonly known as the first Futamum]J7'ojection, due to its initial presenta.tion in
[Futamura 71]. The second Futanw.ra. projection sta.tes that a compiler may be genera.tcd by
self-applying a partial evaluator:

comp = mtxs_int = L m.ix (mix,s..int)

where

L (L com.p sou1·ce) d = S sou1·ce d

So comp = mixs_int is an S to L compiler written in L. The second Futa.mura projection can
easily be verified by:

object = L mix (s_int, source) = L mixs...int source = L comp source

Even though we, by using partial evaluation as in the first Futamura projection, can compile,
it is interesting to have stand-alone compilers, as using these can be more efficient. For similar
reasons we can use a compiler generator to generate compilers:

comp = L cogen s_int

The compiler genera.tor cogen can be generated by t.he thirll Futamura]Jrojection:

cogcn = miXmir = L mi.1: (m.ix,mi.1:)

Which can be verified by:

comp = mixs...int = L mix (mi:r, s_int) = L mixmir. s_int = L cogen s_int

'i

In these equations we assum(' that mix is an outo]Jrojector: the language it is written in is
the same as the language it ha.ud]cs; the language of both Qf the programs it accepts as input
and the residual programs it outputs. For self-application in the second and third Futamura
projections it is essential tha.t it is wri ttcn in the language it acct'pts as inp\lt. The residual
programs may, however, be in another language. This possibility is investigated in [Holst 88J,
where the residual programs are in a 10\.,.·er level1angua.g(' than the input programs. This results
in compilers that are written in a.nd out.puts object programs in this low len~lla.nguage.

2.3 Other uses of partial evaluation

Partial evaluation can be used for other things than compiling and compiler generation. If we
instead of an interpreter use a universal parser, i.e., a program that given a grammar and a
string parses the string according to the grammar. Partially evaluating the universal parser
with respect to the grammar yields a. parser for that grammar. Using the second Futamura
projection we obtain a. parser generator: a program that given a grammar produces a parser for
that grammar. This is investigated in [Dybkjcer 85]. In [Mogensen 86], partial evaluation is used
to specialize a ray-tracer to a particular scene description, leaving the view-point as dynamic
input.

8

Chapter 3

Partial Evaluation Algorithms

In this chapter we present various algorithms for partial evaluation of a small functional language.
One of these algorithms is examined in closer detail.

3.1 A language

'When describing the algorithms we will use a simple langua.ge of first order recursion equations.
Throughout most of the thesis, va.ria.nts of this language will be used.

A program consists of a set of function definitions:

]JTOgrctm ::= ft (Xu ... Xt n 1) = eX]It

eX]J •. - Xij

(QUOTE const.ant)
(basek exp ... exp)
(IF exp exp exp)
(CALL fi exp ... exp)

Each function is defined by an expression tha.t is built from constants, conditionals, function
calls and uses of base functions. \Ve will not fix the set of base functions. As can be seen from the
syntax, we use a. LISP-like notation. This is convenient when using programs as data objects.
The first function definition defines the goal function: the function that is called when the
program is executed. \Ve assume a LISP-like call-by-value semantics, but most of the discussion
in the following sections would apply equally well to call-by-name (or lazy) semantics. As an
example program, the append function is presented below:

append(a b) =
(IF (NULL a) b (CONS (CAR a) (CALL et]Jpend (CDR a) b)))

3.2 Five algorithms for partial evaluation

In this section we describe five different algorithms for performing partial evaluation. 'Ve start
by very simple, but a.Iso fairly uninteresting algorithms and work up to more complex and more
interesting methods.

9

3.2.1 Algorithm 1: constant argument

This is the simplest possible partial evaluation algorithm: an extra function definition is added,
calling the original goal function with constant arguments. As an example, partially evaluating
the append function with a = (1 2) a.s static da.t.a. yields:

appen.d(1 2)(b) = (CALL az>pend (QUOTE (1 2)) b)
append(a b) =

(IF (NULL a) b (CONS (CAR a) (CALL append (CDR a) b)))

Thus all calculation is postponed until the dynamic argument b is supplied. This algorithm
corresponds closely to building a. closure, but is of little practical interest. It does, however,
constitute a proof of existence of a partial evaluation algorithm. It was used as such in the
proof of Kleenes s-m-n theorem, which essentially states the existence of a (primitive recursive)
function s-m-n for any positive integers m and n, which will partially evaluate any function with
m + n arguments, given the definition of the function and the values of the m first arguments.

3.2.2 Algorithm 2: constant folding

This algorithm uses the constant folding principle known from compila.tion [Abo et al. 86]: if a
variable has a known constant value throughout all possible executions, replace all occurrences
of the variable with the constant and remove the variable from the parameter list. If the static
parameters are not constant throughout the computation, the method from algorithm 1 is used.
This gives the same residual program as above when specializing ap]Jend with a. static first
argument, but if the second argument, b, is static (with the value (1 2)), we obtain:

append(1 2)(a) =
(IF(NULLa) (QUOTE(l2)) (CONS(CARa) (CALLctppend< 12 l (CDR a))))

This algorithm will, as algorithm 1, ah.,·a.ys terminate. It is. however. inadequate for all but the
simplest purposes, in particular it will be no better than algorithm I for compiling by specializing
an interpreter.

3.2.3 Algorithn1 3: constant folding with function call unfolding

By combining constant folding with unfolding of recursive function calls that are entirely con­
trolled by static variables, we can get better results. Seeing that the· recursion in append is
controlled by a, we can get the following residual program by specializing appencl to a= (I 2):

az1pend<1 2l(b) = (CONS (QUOTE I) (CONS (QUOTE2) b))

which can not be optimized further. The condition that the recursion must be entirely under
static control is a bit vague, but can be given precise definitions. If a sufficiently strong criteria
is chosen, unfolding will a.lways be finite, so the algorithm ,.,.ill termina.te.

This algorithm is, like the previous two, a monotJm·iant algorithm, a term defined by Boly­
onkov ([Bulyonkov 84], [Bulyonkm· 88]) to mean that any residual program produced by the
algorithm will contain only one specialized version (variant) of each of the functions in the orig­
inal program. This means that the number of functions in the residual program is limited by
the number of functions in the original program. If the original pmgram is a.n interpreter, we
will thus never get object prog;rams containing more functions than the interpreter no matter

10

how large and complex the source pr·ogram is. This leads to the conjecture that the object pro­
grams will have an unnatural (and inefficient) structure. This conjecture is supported by past
experience.

3.2.4 Algorithm 4: polyvariant specialization

Polyvariant partial evaluation [Bulyonkov 84], [Dulyonkov 88] is similar t.o constant folding, a.s
it replaces static variables by their values. The difference is that. it does not require the value to
be the same throughout the computation: if a different value is obtained, a new variant of the
function that uses the variable is made, specialized v.rith respect to this new value. Specializing
apzxmd with a= (1 2) thus yields:

append(12l(b) = (CONS(QUOTE1) (CALLaJJpend(2l b)))
apz>en!l<2l(b) = {CONS (QUOTE 2) (CALL azJpendo b)))
appendo(b) = b

Polyvariant specialization can be combined with unfolding of function calls, yielding a residual
append program similar to the one from algorithm 3. Note that unfolding can be applied aft.er
specialization without changing the resulting residual program. This algoriihm is (even in the
absence of unfolding) not guaranteed to terminate: an infinite number of variants can be made
if a static variable can obtain an infinite number of values. An example of this is the function:

f(a b) = (IF(> a b) a (CALL f (+a a.) b))

which when specialized to a = 1 yields the infinite sequence:

h(b) =(IF(> (QUOTE1)b)(QUOTE1)(CALLhb))
h(b) =(IF(> (QUOTE2)b)(QUOTE2)(CALLf4 b))
j4(b) = (IF(> (QUOTE 4) b) (QUOTE 4) (CALL !s b))

To ensure termination of polyvariant specialization it is thus necessary to find a way of limiting
the number of variants. A fi.xed limit is inappropriate, a.s this will impose simila.r restrictions on
residual programs as monova.riant specialization. [Jones 88] discusses this problem in details.

An example where polyvariant specialization yields a better result than monovariant spe­
cialization is Ackermann's function:

ack(a b) =
(IF (= a 0) (+ b 1)

(IF (= b 0) (CALL ack (- a 1) 1)
(CALL ack (-a 1) (CALL ack a(- b 1)))))

where we have omitted QUOTE on numeric constants for readability.
The recursion is not controlled entirely by any ohe of the parameters, so algorithm 3 can not

unfold the function calls. Neither is any variable constant, so a t.ri\·ia.l result like in algorithm 1
is obtained. Using polyvariant specialization with respect t.o a= 2 we get:

ack2(b) =
(IF (= b 0) (CALL ack1 1) (CALL acl•t (CALL ac/.:2 (- b 1))))

acl.:1(b) =
(IF(= b 0) (CALL acko 1) (CALL acl~o (CrlLL ac/.~ 1 (- b 1))))

ack0 (b) = (+ b 1)

11

which can be improved further by unfolding the calls where the value of b is a constant.
Experience shows that polyvariant specia.lization is powNful enough to get good object pro­

grams when compiling by specializing interpreters [Jones et al. 85], [Jones et al. 88]. chapter 6,
[Bendorf 89], [Romanenko 88]. If the interpreter is interpreting the language in which it is
written (it is a metacircular interpreter), object programs structurally identical to the source
programs can be obtained. The partial evaluators presented in this thesis are all polyvariant
specializers.

3.2.5 Algoritluu 5: driving

There are even more powerful algorithms than polyvaria.nt specialization. Turchin's supercom­
piler [Turchin 79], [Turchin 82], [Turchin 86a], [Turchin 86b] and Wadlcr's treeless transforma­
tion [Wadler 88] are based on clr·iving. Where polyvariant specialization specializes functions
with respect to known values of some of the parameters, driving can a.lso specialize with respect
to certain patterns of argument expr·essions, including calls to other functions. This is done by
defining certain configurations; patterns matching certain expressions. By a combination of un­
folding of functions and insta.ntia.tion of variables, expressions are transformed to match one of
these configurations, which is then replaced by a call to a residual function defined in terms of the
configuration. As an example, using the configurations (CALL append (CALL append X Y) Z)
and (CALL append X Y) where X, Y, Z are required not to contain function calls, we can obtain
the following residual program for (CALL n]Jpend (CALL aJJ]Jend a b) c):

append3(a b c) =
(IF (NULL a) (CALL append b c)

(CONS (CAR a) (CALL nppend3 (CDR a) b c)))
append(a b) =

(IF (NULL a) b (CONS (CAR a) (CALL aJJpenll (CDR a) b)))

The details of how this is done are omitted, see [Turchin 79], [Turchin 86b] or [Wadler 88].
Termination of driving is even harder to guarantee than termination of polyvaria.nt specialization.
Infinite variants can be obtained or the transformation ma.y never reach one of the configurations.
Turchin handles the problem by expanding the set of configurations on-line when transformations
seem to lead nowhere and by combining sets of configurations by generalization when infinite
variants threaten. \Vadler uses a restricted language subset, where transformation to a finite set
of configurations is guaranteed.

3.2.6 Algorithms for other languages

Variants of these algorithms can be used for other languages. If a flow-chart language is used,
think of basic blocks as functions a.ud jumps as function calls. This corresponds closely to
tail-recursive function calls with the entire store as parameters.

In logic languages, predicates correspond to functions. and solving of sub-goals to function
calls. Backtracking and backwards unifica.tion makes book-keeping more difficult, but otherwise
the above algorithms can be used in logic languages too.

3.3 Polyvariant Specialization

As mentioned above, we will use the pol~·variant specialization algorithm to implement our
partial evaluators. In this section \\"ill gi\·e a more detailed description of this algorithm.

12

3.3.1 Fixed point iteration

When doing polyvariant specialization, the residual program is grad-ually build up from special­
ized versions of the original functions. This is continued until all functions that art> used are
also defined, yielding a kind of fixed point. This algorithm is best described in imperative style
using while-loops:

defined_funs := emptyset;
needed_funs := {(goaLfunction,statiq>ars)};
while needed_funs =fi 0 do begin

(function,static...args) := select(needed_funs);
neededJuns := needed_funs\{(function,sta~ic...args)};
if(function,static...args) isJioLdefined_in defined_funs then begin

(argJiames,body) := definition_of function ;
residual...body := specialize_expression(body,argJiames,static_args);
definedJuns := defined_funs U {(function,static...args,residual...body)};
needed_funs := needed_funs U functions_used_in(residual...body);

end
end

We start by an empty set of defined residual function definitions, and a set of needed function
descriptions, initially containing only a. description of the intended goal-function of the residual
program. Each description consists of a na.me of a function from the original program and
values for the static parameters to this. The loop proceeds to generate residual definitions for
the descriptions in needed_funs, adding these to defined_funs and searching the body expression
for used function calls, adding these to needed_funs. The loop proceeds until there are no more
needed functions.

The defined residual functions are represented by the name of the original function, the
values of the static parameters and a specialized body expression. In a post-process these
descriptions are converted to definitions by assigning each (function name I static values) pair an
atomic name, using the dynamic parameter names as the new parameter list and the specialized
expression as body. All calls in these body expressions are converted to use the atomic names
for the residual functions rather than the (name I static values) pairs.

As an example, at entry to the algorithm needed_funs could be {(ac/.:, (2 *))}, where the *
marks a dynamic value. Assuming ack is defined as in section 3.2.4, defined_funs contains on
exit:

{(ack, (2 *),(IF (= b 0)(CALL (ack, (1 *)) 1)(CALL (ack, (1 *))(CALL (ack, (2 *))(- b 1))))),
(ack,(l *),(IF(= bO)(CALL(ack,(O *)) 1)(CALL(ack,(O *))(CALL(ack,(1 *))(- b 1))))),
(ack,(O *),(+ b 1))}

which is converted to the residual program shown in section 3.2.4.

3.3.2 Specialization of expressions

In the previous section we showed the central loop of a polyvariant sp0cializat.ion algorithm,
which used a few procedures that was not defined. Of these, the only non-trivial one was spe­
cialize_expression, which specializes an expression with respect to an environment, where some of

13

the variables (the sta.tic) are given va.lues and others (the dynamic) are not. We show the defi­
nition of such a function below. Both static and dynamic values are represented by expressions:
static values are constant expression and dynamic expressions are arbitrary other expressions.
Initially the values of the dynamic variables are variable names (as expressions), usually their
own names. Thus the list (2 *) from the example above becomes the list ((QUOTE 2) b). The
main idea of the algorithm is to evaluate base operators if all arguments (partially) evaluates to
constant expressions, producing a n~w constant exprf'ssion a.s the result. If any of the arguments
to a base operator are non-constant, the resulting residual expression is constructed from the
operator and the arguments. For simplic.ity, we represent the environment as separate name
and value lists. We use symbols in italic capital font (like CONS) a.c; syntax builders, both in
patterns and expressions. So, if x is bound to 3 and y to 4, (CONS x y) \\"ill be the list (cons 3
4), and the pattern (CAR x) will match (car 3), (car (cons a b)) etc.

specialize_expression(exp,names, values) =
case exp of

atomic(name) :
lookup(name,names, values) ; variable

(QUOTEc):
exp ; constant expression

(CAR e):
case specialize_expression(e,names,values) of

(QUOTEc):
(QUOTE car(c))

re:
(CARre)

(CDR e):
case specialize_expression(e,names,values) of

(QUOTE c):
(QUOTE cdr(c))

re:
(CDR re)

(CO.T\'S el e2) :
let rel = specialize_expression(el,names,values),

re2 = specialize_expression(e~,names,values)
in case (rel,re2) of

((QUOTE cl),(QUOTE c2)) :
(QUOTE cons(cl,c2))

(rel,re2) :
(CONS rel re2)

14

; further ba,<~e opemtors similarly

(IF el e2 e3) :
case specialize_expression(el,names, values) of

(QUOTE c) : ; static condition
if c then specialize_expression(e2,names,values)
else specialize_expression(e3,names, values)

re : ; dynamic condition
(IF re ·specialize_expression(e2,names, values)

specialize_expression(e3,names, values))
(CALL f e1 ... en) :

let args = list(specialize_expression(el,names,values), ... ,
specialize_expression(en,names, values))

1n

if the call should be unfolded then
let (par_names,body) = definition_of(f)
1n

sp ecialize_expression(body, par _names,args)
else

let sargs = replace..dynamic..by_*(args),
dargs = skipstatic(args)

in
(CALL (f,sargs) . dargs)

If a call is unfolded, we perform a beta-reduction: we bind the formal parameters to the residual
expressions of the actual parameters and specialize the body expression in this environment. If
we don't unfold, we just build a call to a residual function by pairing the static arguments with
the function name to construct the residual function identifier and use the dynamic arguments
as arguments of the residual call. No rules to decide when to do or not to do unfolding are
specified in the function; we will discuss some possibilities below.

Some extra features, like reduction rules to locally reduce residual expressions (such as (CAR
(CONS a b))= a) can be added.

3.3.3 Unfolding

As mentioned in section 3.2.4, unfolding can be postponed till after specialization. There are,
however, good reasons to unfold· during specialization: If the result of a function is sta.tic (con­
stant), the value can only be used if the call is unfolded. Also. unfolding as a post-process is
inefficient and can potentially take much more time than the actual specialization. Unfolding
during specialization can on the other hand lead to infinite unfolding, so some care must be
taken in deciding when to unfold. A possible solution is to use a safe but conservative unfolding
strategy during specialization. and then use a post-process to do extra unfold.ing afterwards.
This stra.tegy is used in [Sestoft 88].

It is reasonable and mostly safe to unfold if all parameters to a function call are static.
Reasonable, as the result is guaranteed to be sta.t.ic, if any result exist. Safe. since all recursion
will be decided by static values, but as non-termination can still occur. only mostly safe. Addi­
tional unfolding is essential for a. good result. but it is difficult to decid(> locally when unfolding
will be safe. So, either a. track· of function calls must be kept during specialization. or else a
global static analysis of the program must be done bcfore-specia.liza.tion. The first stra.tegy is

1.5

used in [Turchin 79], [Turchin 8Gb], where each function call is compared t.o previous calls, a.nd
suspended if it is similar t.o any of these. This is very time a.nd spa~e consuming, and for large
programs this is where the system uses the majority of its time. If the result of a static analysis
is used to annotate (mark) calls that can be safely unfolded dur~ng specialization, virtually no
time is used during specialization. Some time is used prior to specialization to perform the
static analysis, but the result can be used in subsequent specialization of the same program to
different static values. This strategy is usl'd in [Sestoft. 88], a.nd will be discussed further in the
next section.

16

Chapter 4

Self-application and Binding Time
Analysis

We will in this section investigate self-application of the specialize_expression function from sec­
tion 3.3. We will see that this will yield compilers that are "vaster than empires, and more slow"
[Marvell). As a solution to this problem we introduce binding time analysis, a. static analysis of
the program that is to be partially evaluated. In addition to solving this problem, binding time
analysis will be shown useful for, among other things, deciding when to unfold calls.

4.1 Binding time

vVe will the term binding time to describe the time a.t which the value of a. variable or function
is available. This is known from compilation, where it is normal to sa.y that values a.va.ila.ble at
compile time (such as types in Pascal) have static binding time, whereas run time values have
dynamic binding hne. The terms static scoping a.nd dynamic scoping reflect this.

·when using a partial evaluator to compile, the values available during specialization cor­
respond to compile time values, and are thus termed static. Similarly, the values that are not
available until the residual program is executed are termed dynamic. \Ve will use the term meta­
static for values that are available at self-application time. In terms of compiler generation, the
interpreter is meta-static, the source program is static and the input to the (source or object)
program is dynamic .

. 4.2 Specialization

Consider this definition, which ma.y be part of a.n interpreter:

(lookup (n ns vs) = (IF (EQUAL n (CAR ns))
(CAR vs)
(CALL lookup n (CDR ns) (CDR vs))

))

\Vhen compiling by specializing a.n interpreter (object= L m.i.1· (h1t.p)). we might specialize
this function with n,ns being static and vs dynamic. This involves a call like:

specialize_expression((JF ...),(n ns vs), ((QUOTE y) (QUOTE (x y z)) vals))

17

\Vhere the first parameter is the body expression of lookup. Assuming the decision procedure
in specialize_expression is able to recognize that unfolding of the recursive calls in lookup is safe,
we get the following residual expression:

(CAR (CDR vals))

This is no surprise, and not particularly interesting. Consider, however, compiler generation
(comp = L mix (mix,int)). This involves speciali=ing the call:

specialize_expresslon((JF ...),(n ns vs),*)

meaning, we do this call:

specialize_expression(body of spcciali::e_expression, (exp names values), ((QUOTE (IF
...)) (QUOTE (n ns vs)) values))

The body of specialize_expression is in a "syntactically sugared" form of the language it special­
izes. It is, however, not difficult to apply the principles of the specialization to this extended
language. Doing so, we get the residual function belo\v, where we have the same notation as we
did when describing specialize..expression:

specialize_expression(QUOTE (IF ...)),(QUOTE (n ns vs)) (values) =
case

of

let rel = car(values),
re2 = case car(cdr(values)) bf of

(QUOTE c): (QUOTE car(c))
re :(CARre)

in case (rel,re2) of
((QUOTE cl),(QUOTE c2)) : (QUOTE equal(cl,c2))
(rel,re2) : (EQUAL rel re2)

(QUOTEc):
ifc then case car(cdr(cdr(values))) of

(QUOTE c) : (QUOTE car(c))
re : (CARre)

else let args = list(car(values),

111

case car(cdr(values)) of
(QUOTE c) : (QUOTE cdr(c))
re : (CDR re)

case car{cdr(cdr(values))) of
(QUOTE c) : (QUOTE cdr(c))
re : (CDRre)

)

if the call should be unfolded then

specialize_expression(QUOTE (IF ...)).(QUOTE (n ns vs))(args)
else

18

re:
(IF re

let sargs = replace..dynamic_*(args)
dargs = skip ..static(args)

1n

(CALL ('lookup,args) . dargs)

case car(cdr(cdr(values))) bf of
(QUOTE c): (QUOTE car(c))
re :(CARre)

let args = list(car(values),

in

)

case car(cdr(values)) bf of
(QUOTE c) : (QUOTE cdr(c))
re :(CDRre)

case car(cdr(cdr(values))) bf of
(QUOTE c) : (QUOTE cdr(c))
re :(CDR re)

)

if the call should be unfolded then

specialize_expression(QUOTE (IF ...).(QUOTE (n ns vs))(args)
else

let sargs = replace_dynamic_by*(args)
dargs = skip..static(args)

1n

(CALL ('lookup,args) . dargs)

vVe assume that the lookup function used in specialize_expression is defined in the same way as the
one we specialize, and have specialized the calls to it accordingly, yielding residual expressions
like car(cdr(values)). We have unfolded the recursive calls to specialize_expression, except the
one that specializes the body of the recursive call to lookup. We have left the unfold decision
procedure in the residual program, as we assume that it is of the type tha.t looks at a trace
of previous calls, and a.s such will not have the necessary information available at compiler
generation time.

It is immediately obvious that this residual function is quite large. There are several reasons
for this. One is tha.t the two branches of the case expression that handles the if expression
contain a large amount of identical code, but even if this was solved, e.g., by using a let con­
struction, the residual function will still be large. A more fundamental reason can be recognized
by considering the binding times of the variables in lookup. \Vhen we specialized lookup, we
assumed that the name and name list (n,ns) were static and the va.lue list (vs) war; dynamic.
This is quite natural, and we would expect a. compiler to find the location corresponding to
a name. This is essentially wha.t ,.,.e got.. as t.hc resulting car/cdr s<>quence corresponds to a
location. vVha.t we also would expect from a. compiler is to knou• tha.t t.he name and name list
are compile time entities, a.nd use them as such without repeatedly testing if they are available.
This is exactly what the above generated compiler fragment does not know, and this is why it

19

is so large. Another thing we can sf'e is tha.t unfolding strategies that rely on keeping a trace of
function calls must postpone its decisions t<;> compile time (as opposed to compiler generation
time). We will later sec that a strategy based on st.atic ana.lysis of the subject program (the
interpreter) will be able to make such decisions at compiler genera.tiou time.

4.3 Binding time annotation

In an attempt to reduce the size of the genera.ted compilers, we will make the binding times
explicit in the interpreters we us<> for compiler generation. \Ve assume the existence of a. static
analysis that can find binding times of local variables and expressions, given the information that
the program given to the interpreter is static and the input is dynamic. This informa.tion will
be used to annotate the interpreter: static parameters and subexpressions are marked as such
and calls that should be suspended are marked as RCALL (for r-esidual call). The annotated
version of lookup is:

(lookup ((STrlTIC n) (STATIC ns) vs) =
(IF (STATIC (EQUAL n (CARns)))

(CAR vs)
(CALL lookup n (CDR ns) (CDR vs))

))

Note that it is not necessary to annotate the a.ctua.l parameters to the call as static, as the
formal parameters arc annota.tcd. specialize_expression will be modified to use this information:
the values of static variables are stored without a QUOTE, sta.tic sub-expressions are evaluated
by a normal evaluation function and unfolding is decided by examining the mark.

specialize_expression(exp,names, values) =
case exp of

(STATIC e):
(QUOTE evaluate_expression(e,names,values))

atomic(name) :
lookup(name,names, values)

(CARe):
(CAR specialize_expression(e,names,values))

(CDR e):
(CDR specialize_expression(e,names,values))

(CONS el e2) :
(CONS specialize_expression(el,names, values), specialize_expression(e2,names, values))

(IF(ST.4TIC el) e2 e3):
if evaluate_expression(el,names,values) then

specialize_expression(e2,names, values)
else

sp ecialize_expression(e3 ,names, values)

20

(IF el e2 e3) :
(IF specialize_expression(el,names, values)

specialize_expression(e2,names, values)
specialize_expression(e3,names, values)

)
(CA.LLfel ... en):

let (par ..names, body) = definition_of(f)
in

let args = specializeJist(par ..names,el ... en,names,values)
1n

specialize_expression(body,par ..names,args)
(RCALL f el ... en):

let (par ..names,bod y) = definition_of(f)
in

let sargs = evaluate..static(par_names,el ... en,names,values)
dargs = specialize_dynamic(par ..names,el ... en,names,values)

1n

(CALL (f,sargs) . dargs)

evaluate_expression(exp,names, values) =
case exp of

atomic(name) :
lookup(name,names,values)

(CAR e):
car(evaluate_expression(e,names, values))

(CDR e)·:
cdr(evaluate_expression(e,names,values))

(CO.lVS el e2) :
cons(evaluate_expression(el,names, values), evaluate_expression(e2,names, values))

(IF el e2 e3) :
if evaluate_expression(el,names,values) then

evaluate_expression(e2,names, values)
else

evaluate_expression(e3,names, values)
(CALL f el ... en) :

let (par..names,body) = definition_of(f)
1n

let args = evaluateJist(el ... en,names, values)
111

evaluate_expression(body, par _names,args)

specializeJist evaluates the static expressions in the list and specializes the d~·namic ones. It uses
the list of annotated parameter names to decide. evaluate..static e\·aluales the static expressions
in a list and skips the dynamic. specialize_dynamic specializes the d~·namic and skips the static.

21

evaluateJist just evaluates all expressions in the list.
Using this definition of specialize_expression yields the same result as before when specializing

lookup. \Vhen we specialize specialize_expression with respect to the annotated lookup we get a
quite different result:

specialize_expression(/F" ...),(n ns vs) (values) =
if equal(car(values),car(car(cdr(values)))) then

(CAR car(cdr(cdr(values))))
else

specialize_expression(IF ...),(n ns vs)(list(car(values),
cdr(car(cdr(values))),
(CDR car(cdr(cdr(values))))

))

which is an obviously better solution: it is much shorter, and it quite transparently builds a
car /cdr sequence corresponding to the position of a variable in the name list. The only apparent
inefficiency lies in the way the residual function collects all its paranwters into a. single list. This
can be overcome e.g., by post-processing the residual functions (see section 9.3).

4.4 Binding time analysis

We will now look at how we can obtain the information needed to annotate programs as in the
above example. As mentioned it: is binding time information that we need. \Ve will require the
user to specify the binding times of the program's parameters as S (for static) or D (for dynamic).
Using this the binding time analysis will find safe approximations of the binding times of all
local expressions in the program. This is then used to annotate a. formal parameter as static if
the actual parameter expression for that para.metcr is static in all calls. and as dynamic if this
is not the case. Furthermore. all completely static subexpressions are marked as such, except
completely static actual parameter expressions if the corresponding formal parameter is already
annotated as static. In addition to these annotations, calls will be annotated as unfoldable or
not unfold able. The call annotation requires some extra. analysis, and will be discussed later.

The basic idea is that an expre>ssion is d:vnamic if it contains a dynamic variable or calls a
dynamic function. A varia.ble is dynamic if it may be bound to the result of a dynamic expression,
and a function is dynamic if its body expression is dynamic. The binding time analysis can be
done as a simple abstract evaluation over a two-point domain containing the values S and D,
with S ~D.

binding_time(exp,names,b_times) =
case exp of

atomic(name) :
lookup(name,names,b_times)

(C4R e):
binding_time(e,names,b_times)

(CDR e):

22

binding_time(e,names,b_times)
(CONS el e2) :

binding_time(el,names,b_times) U binding_time(e2,names,b_times)

(IF e1 e2 e3) :
binding_time(el,names,b_times) U

binding_time(e2,names,b_times) U

binding..time(e3,names,b_times)
(CALL f el ... en):

binding_time_of(f)

The binding times of the functions and the formal parameters are held in a global environment.
When handling a function call the binding time of the result is found in this environment. In
addition to this, the binding times of the actual parameter expressions are found and the formal
parameters are updated as the least upper bound (U) of the old binding time and the binding time
of the actual parameter. The environment starts with a.U functions and all parameters bound to
S, except the parameters of the goal-function, which are bound to the specified binding times.
The analysis proceeds by repeatedly re-evaluating all expressions and updating the environment
until it stabilizes. At this time, no identifier that has been classified as static in the environment,
will at any time during partial evaluation have a.n unknown (non-consta.nt) value. Using this
information it is easy to annotate static formal parameters and expressions with the STATIC
mark.

4.4.1 Call annotation

There is still the CALL/ RC.4LL a.nuotations to consider. The binding time information can be
used to decide which calls t.o unfold. but some extra analysis is required. To be faithful to the
binding time analysis it is neccssa.ry to unfold all calls that have a static result. Since doing this
corresponds to normal evaluation it is safe (except when normal evaluation is non-terminating).

In [Sestoft 88], inlluctive calls are recognized as unfoldable. These are recursive calls where at
least one static parameter is strictly decreasing, and no static parameters increase. The ordering
used is a sub-structure ordering. so a.ny va.lue can only be decreased a finite number of times,
hence it is safe to unfold the calls. The implemented method is limited to direct recursive calls,
no mutual recursive inductive calls arc recognized. This means that many calls that could have
been safely unfolded are not. To reduce this problem, further unfolding is done in a post-process
after specialization of functions.

In the Similix system (under development), Bendorf and Datn-y use the idea that if all
the conditions that control a recursion are sta.tica.lly decidable then the recursion can be safely
unfolded at partial evaluation time. Their approach is to replace dynamic conditionals with
function calls to new functions whose bodies are the replaced conditionals. These calls are not
unfolded, but all others are. This means that the residual functions are not necessarily specialized
versions of the origin~l fun'Ctions. hut instead spccia.li~ed versions of the new functions. Like
Sestoft's method this approach ca.u lead to infinite unfolding if a statically controlled recursion
is non-terminating. This defect is not likely to cause problems when the partial evaluator is
used for compiling or compiler generation.

Even if no infinite unfolding occur. the partial evaluation might not t.erminate. \\rhat can
happen (as shown in section 3.2.4). is that the sa.me function ca.n be specialized in an infinite

23

number of versions. This happens if a. static value increases indefinitely, usually because the
condition tha.t controls the recursion is dynamic. The proper way to handlt- this problem is
to treat infinitely increasing static values a.s dynamic, modifying the result of the binding time
analysis to reflect this. Recognizing precisely when a static variable increasE's indefinitely is
equivalent to solving the halting prohlem, so at. best. we can have a. good heuristic that errs on
the safe side. [Jones 88] discusses this problem and suggests possible heuristics, a.nd a current
project by Jones and Anders<'n is impl<'m<'nting an algorit.hin involving these ideas.

In this thesis binding time analysis is used mainly as a way of recognizing which operations
can be done at partial evaluation time. It is assumed tha.t annota.tion of calls is done. either
by hand or by an unspecified algorithm. and the prohlem of infinitely increasing static values is
largely ignored. This is not. because they are uninteresting problems, but they are outside the
scope of this thesis.

24

Chapter 5

Revising the Mix Equation

The addition of explicit binding time arguments to the- pa.rtial evaluator requires some mod­
ification of the mix equation and the Futamura projections as presented in chapter 2. This
can be done by redefining m.ix to take three arguments: a progra.m, binding time descriptions
and values of static arguments or by defining it as a two-stage process: binding time analysis
followed by specialization. We choose the latter alternative, as this more clea.rly reflect the idea
of binding time analysis as a static a.na.lysis prior to specialization.

5.1 Residual programs and partial evaluators

We redefine a residual Jn·ogram of an L-program p with respect to a. static input V11 to be any
L-program 11t~ such tha.t:

L p~: t'd = L]J com.bine(bt, v8 , t'd)

We no longer assume that specialization is with respect to the first of two arguments, so we need
the binding time description bt to relate the static and dynamic values. The combine functions
combines the static data v8 and the dyna.mic data t'd according to the binding time description
bt. We will in this chapter only use binding time descriptions that are tuples of S's and D's,
but more complex descriptions will be used in the following chapters. We will normally write
the combine function explicitly, as it usually is trivial.

The partial evalua.tion is now in two steps: a binding time analyzer produces a binding time
annotateQ. pbt and then a specializer produces the residual program.

L bta (JJ, bt) = 11bt

L .. (bt) bt
1HlX p , V11 =]Jv•

Combining these definitions we get the revised mix equation:

L (L mix ((L bta. (p, bt)), V8)) l'd = L]J i:ombine(bt, V 8 • -L'd)

Note that the input language to mi.r is Jto longer L. but L cxt.end<>d with binding time annota­
tions.

25

5.2 Compiling and compiler generation

Using the mix equation with p being an interpreter s_i.nt and v, beihg an S-program ,r;ource we
get:

L (L m.ix ((L bta (s_int,(S,D))),sou7·ce)) cl = L s:..int (source,d)

so we can obtain object programs by:

b ·· L · (· · SD) 0 JfCf = 71U.1! s_m.t , SOIL7'Ce

where

s_int5 D = L bta (s_int, (S, D))

This is thus the revised first Futamura projection. The second Futamura projection requires an
annotated mix:

comp = mix;JntSD = L mix ((L bta (mix,(S,D))),s_i.nt5D)

\Ve still have

L (L comp source) d = S source cl

The compiler generator cogen can be genera.ted by the third Fut.amura. projection:

where the annotated mix is obtained by binding time analysis as shown above. In the following
chapters we will sometimes use

L mix (p, v.,)

as a short notation for

L mix ((L bta (p, bt)), Vs)

when the context makes it clear wha.t is meant.

2()

Chapter 6

Partially Static Structures

Partially static structures cause problems when self-applicatJon of a partial evaluator is at­
tempted. The reason is that the binding time analysis increases in complexity \vhen its domain
is non-flat. This chapter describes a method for binding time analysis, producing a context-free
tree-grammar. This binding time information is then used to produce an efficient self-applicable
partial evaluator. This has been realized in practice and gave satisfactory results.

First a method to do binding time analysis of partially static structures by using grammars
is presented and then the actual use in a partial evaluator is detailed. It is also shown that the
variable splitting that was done on the basis of user-annotation in the MIX project [Sestoft 86)
can be achieved automatically and naturally by using partially static structures.

6.1 Partial evaluation with completely static I dynamic values

As seen in the preceding chapter. a. simple partial evaluator will normally operate on a domain
that (conceptually) is the tagged sum of values and expressions. Thus values tha.t are known
at partial evaluation time are represented by their values, while those that are unknown are
represented by expressions that will evaluate to the correct values when the remaining input is
supplied. These are called residual expressions. Examples:

5(3) represents the sta.tic value 3.
D(x + y) represents a dynamic value. x + y is the residual expression.

In actual implementations explicit tags like S and D need not be used, since static values can
be represented by constant expressions a.nd thus be implicitly tagged. But to facilitate reading
all such tags will be made explicit in this chapter.

'When performing an operation the partial e"'aluator will test to see if the values of the
parameters to the operation are sta.tic, and if they are then just perform the operation. If some
were dynamic a new residual <'Xpression will be constructed from the operator a.nd the residual
expressions of the para.meters.

Examples:

car(S((a. b))) = S{a)

car(D(cdr·(;1:))) = D(cm·(cclr(.t·)))

27

In the previous chapter it wa.s argued that testing the (implicit) tags of the values made the
compilers produced by self-application of the partial evaluator unsatisfactorily large and slow.
To overcome this a binding time analysis was introduced. This was an abstract evaluation using
a two point domain: {S,D}, where S is short for static and D for dynamic. The result of this
analysis was used to annotate the program before the actual specialization. These am1otations
was then used instead of the tags a.c; the basis for the tests. \\'e will use the abbreviation "BTA"
for binding time analysis.

6.2 Extending the binding time domain to partially static struc­
tures

When using structured data (like the $-expressions of LISP) it is often useful to handle values
where some parts are static and other parts dynamic.

A partial evaluator handling partially static structured values in S-expression can use a
domain that ha.ve partially static values in a.ddition to the sta.tic and dynamic values of the
simple partial evaluator described above. The .partially static values are tagged with a P and
consist of pairs of values, which again can be static, dynamic or partially static.

Examples:

P(S(3), D(cdr(x)))
P(P(S(x), D(y + z)), S(nil))

A pair with a static head and a dynamic tail
A list of (static) length 1,
with a static/ dynamic pair at the head

In addition to rules for partial evalua.tion like those before, new rules for the partially static
cases are added:

car(P(.-1. B)) = .4.

cons(S(V). D(E)) = P(S(V'), D(E.))

A generalization of the BTA described a.bove to such structures would operate on a domain
BT Ao with values like these:

P(S,D)
P(P(S,D),S)

for the partially static values above. These are partially ordered so D is the top element in the
domain (x!; D for all x), 5' is the bottom element (S!; x for all x) aud P(x,y) ~ P(x',y') iff
x!; x' andy!; y'. P(S, 5') is equal to S as a pair of two static values still is a static value.

The values in BT.4o are. however, too restrictive as one (among other things) can't describe
a list where the length is static (but not constant), but the values of the elements are dynamic.
To do this sets of BT.4.0 values must be used. eg.:

{ 5'. P(D.S), P(D,P(D,S)), ... }

to describe lists of static length. The meaning of such a set. as a description of an expression.
is that the expression may obtain \·alucs at partial evaluation time that at each instance will be
of one of the forms from the set.

Since we are interested in worst case behaviour of the partial evaluator. any set containing a
certain value will also contain all values that are "more static" than this. For this reason the set
of downwards closed subsets of BT.·1o will be used instead of the powerset. This will be called
BTA1 • Each element in BT At is thus a downwards closed subset of BT .-10 and they will be
ordered by set inclusion. A downwards closed set is a non-empty set that satisfies the following
property:

if an·element x is in the set. all elements y such that y ~ x will also be in the set.

For each set of BT.4o values the tlowmt,m-rls clo~m-e of that set is d<.>fined by the smallest (by
set inclusion) downwards closed superset. A downwards closed set can be represented by any
set, the downwards closure of which is that set. Thus the set {D} represents the top element in
BTA1 (since its downwards closure is the whole of BT.4o). The set {S} (which is downwards
closed) is the bottom element.

Note that the set of downwards closed subsets is similar to the Iloare]JOtver· domain, which
consists of the Scott-closed subsets that also require that limits of chains of elements of a set
also are in the set. BTAt is actually the Hoare power domain of the chain-completion of JJT A0 •

We will not need to consider limits of chains, so we use the simpler construction.
A set M seen as a BT At element will (by its downwards closure) also represent all the

BT Ao values that are smaller than the elements of 111 by the ordering of BT A0 • Thus the set
describing lists with static length and dynamic elements (shown in the example above) will, as
an element of BT A1 , also represent lists where some of the elements are static (eg., P(S,P(D, S)
and P(D, P(S, P(D, S)))).

Sets of BTA0 elements can clearly be infinite (as the above example is). so a. wa.y of finitely
describing such sets is needed. But a.s the number of elements in BT At is uncountable there is
no way of describing them all finitely. so we must use approximations of the elements. This can
be done by constructing a subdomain BT.42 of finitely describable elements of BT.41 , where
each element in BTA1 is represented by a finitely describa.ble safe approximation in BT A2 • A
safe approximation of an ~lement 1\J in BT A1 is an element M' in BT.42 , so M ~ M' in the
ordering of BTA1 (the subset ordering).

A way of finitely describing infinite sets of tree-structures is to use tree-gmmmars, and this
is what we will use here. Tree-grammars are analogous to context-free grammars and use non­
terminals etc. in the same way. They just describe sets of tree structures instead of sets of
character sequences.

x - S I P(D,x)

will thus describe the set in the example above. Similarly

Alist.

prur

S I P(pair,A.list)

P(S,D)

will describe lists of pairs, where the first element of the pairs is static and the second is dynamic.
In our approach we will a.ctua.lly construct a.u infinite series of JJT.42 domains: BTA2",

where n is the number of different non-terminals in BT .-12". Restrictions are made on the forms
of the right sides of the productions in the tree-gra.mma.r describing a BT.-1 2": a right side is
either D, or a list of alternatives separated with l~s. The alternatives a.re S or P(x. y) where x
and yare S, D or non-terminals.

29

The BT A2 value of a non-terminal or right side is the downwards closure of the st3t of BT Ao
values that the non-terminal (or right side) produces in the grammar. Thus D as a right side
will represent the BTA2n value {D}. A non-terminal and its right side will denote the same
value, so they will be used intt>rcha.ngea.bly. The requirement that non-terminals must be inside
P(,)'s makes circular derivations impossible.

If we assume that there aJ·c no repeated a.ltcma.tives on any right side and that the number
of different non-terminals used on right sides is a. finite number, n, we will have a. finite number
of possible right sides, and thus a finite BT.42n domain. However, one ma.y note that two
different right sides can very well reprcsen t the same BT.42n value. This is not important in the
present application, and it is not difficult to see when two right side.c; represent the same value,
an algorithm deciding equivalence is fairly easy to write.

The least upper bound of two BT A2,. values in a. certain grammar will be the smallest BT A2n
value that safely approximates the least upper bound of the values seen as elements in BTA1,
which is the (downwards closure of) the union of the sets of BT A0 values tha.t represents the
BT A2n values.

A right side representing this can be constructed by adding the alternatives of the right sides
representing the two values, unless one of the right sides is D, in which case the least upper
bound is just D, as this is the top element.

In binding type analysis the non-terminals will correspond to variables or functions in a
program, and the values of them will describe the values that the variable or function can
obtain during partial evaluation.

The analysis will start by assigning the value S' to all non-terminals except those that repre­
sent the parameters to the goal function. and then do a fixed point iteration where a.t each step
the non-terminals will be upda.ted ,,.·ith new values. When a non-terminal changes value all the
right sides that refer to it will also change values etc., but as all changes are monotonic in the
ordering of BT A2", the result will still be a. safe approximation, only it is less precise.

Note that the abstract evaluation handles values in the form of right sides to a gramma.r.
The actual values these right sides represents are the downwards closures of the sets they derive
relative to the grammar.

A tree grammar is equivalent to a set of recursive set-equations, and methods like the ones
used in [Reynolds 69] or [Jones 86] could be used to obtain such descriptions. The method
shown below is, however, simpler in the treatment of selectors (eg. car a.nd cdr).

Part of the difficulty of the BTA stems from the fact that the language is untyped: the
analysis must do a kind of type inference to find good biitding time information. With a typed
language a fixed set of BT values can be found for each type, making the use of grammars
unnecessary. The projections in [La.unchbury 88) use this idea, which is further investigated in
chapter 8.

6.3 Binding time analysis

To make a partial evaluator self-applic.able. one must be able to find BTA values a.utomatica.lly.
In the case of the tw~-value domain this can be done with a. simple abstract evaluation over a
two-value domain. but when recursive descriptions like grammars are required. it is not obvious
how it can be done.

The language that is used is ca.Ued L and is a. sma.ll functional language similar to that in
section 3.1 with a few additions. Figur<' 6.3 presents the syntax of the language.

30

Figure 6.3. The syntax of the language L.

(prog1·am) ((!unction) •)

(function) ((name) ((name)*) (e.1:p))

(exp) - (name)
(quote (constant))
(car (exp))
(cd1· (exz1})
(atom (exp))
(null {exz1))
(cons (exp} (exzJ))
(equal (exp} (exp})
(if (eXJJ} (CXJJ) (CXJJ))
(let ((binding)*) (exp))
(call (name) (exp}*)

(binding) - (name) = (ex]J)

The semantics are straight-forward. The program is a list of function definitions where the first
is the goal function. The scope of each function is the whole program, and there are no local
function definitions. The calling mechanisri1 is applicative (call-by-value). The parameters and
other variables are statica.lly scoped.

An expression is either a. name. which represents a. variable, or a list consisting of an opera.tor
followed by one or more arguments. The operators quote, car, cd1', atom., null, cons and equal
behave exactly as in LISP. if is an if-then-else operator with the usual semantics. let defines a
set of new name/value bindings with a local scope (as in IviL or Scheme). call is the function
application operator. All parameters to a function must be supplied when it is called, so there
will be no building of closures and thus no higher order functions.

The idea is to use names from the program as non-terminals in the BTA descri}>tions, so
the non-termhial corresponding to a variable would describe the set of values that the variable
can take, and non-terminals for function names describe the set of possible result values of the
function.

Since the right sides of the productions can refer to other non-terminals, this a.pproach
requires all variables to have distinct names even if they have disjoint scopes (actually this is
not strictly required, as the BTA ,,,.ould still give a safe result: it would only be less precise).
Due to the limitations to the right sides involving P(x, y) there are further restrictions. Since
the x's andy's can either be S, D or non-terminals, it would help if the parameter expressions
of cons were of forms that are always describable by such values. Such forms are coustan~s
(describable by S) or variables and function calls (describable by non-terniinals). This property
is easily achieved by adding let-expressions where necessary.

There are thus some small changes in the syntax of the language that is required as input
to the BTA (figure 6.3).

The BTA is computed by a. fixed-point iteration that starts with a global grammar containing

31

Figure 6.3. The changes in syntax for the input. t.o the BTA.

(exp)

(restricted-ex]))

(cons (restrictccl-exp) (n::st rictecl-exp))

(name)
(quote (constant))
(call (name) (e:qJt)

S productions for all non-terminals except those describing the va.lues of the parameters to the
the goa.l-function. These arc given productions describing their a.ctua.l binding times (usually S
or D). Alternatives are added to the productions until a fixed-point is achieved. As the number
of non-terminals is a fixed number n, the number of right sides is limited. Since all changes are
monotonic in the domain of BT A2, values, there will be a finite fixed-point grammar which can
be obtained in a finite number of steps. Such a. fixed-point iteration is well known from flow
analysis (eg. [Mycroft 80]).

Each step in the iteration recomputes the values of expressions each tim~ the variables
or functions they use change va.lue. This is done by eva.luating the expressions in the BTA
domain. Instead of checking for each expression if it needs to be recomputed, all expressions are
recomputed at each iteration step until no changes occur between two such steps.

The abstract eva.luation is described in section 6.8 at the end of this chapter. The values
that are actually computed are right sides of productions, but when alternatives are added to a
right side in the global grammar, this changes the meaning of a non-terminal, and thus tl1e right
sides that use it. The places in the a.bstra.ct evaluation where the updating occurs are marked
by comments. The updating is done by replacing a right side with the least upper bound of the
old va.lue and the new.

As an example, here is a function which constructs an a-list structured environment from a
list of names and a list of values.

(Make_env (names values)

)

(if (null names)
(quote nil)
(let

))

(hd =(let (hdl =(car names) til= (car values)) (cons hdl til)))
(cons hd (call Make_env (cdr names) (cdr values)))

Assume that the function Make_env has sta.tic first. parameter (names - S) and dynamic
second parameter (values - D), then the initial environment would be:

names - 8
t•alues - D
hdl - s
tll - s
hd - s
JH a 1.-r: .t.71 v - S

32

The first iteration step of the binding time analysis would yield this environment:

nam.es -- S
values - D
lull -- S
til - D
hd - s I P(S,D)
}.Jc~ke_env ·- S I P(lul, S)

After the second iteration step the \'alue of Make_env isS I P(hd.S) I P(hd,Make_env) which
is unchanged after the third step, giving this final environment:

nmnes --- S
values --- D
hell - S
tll - D
hd - s I P(S,D)
.Afakc_env- S I P(hd,S) I P(hd,Makc..env)

The P(hd,S) alternative in the value of Make_env is redundant since all the values could be
obtained from th.e ·other two alternatives alone. Such redundancies often occur, but since they
do not influence the later use of the description no attempt is made to reduce the environment.

The number of iterations required before a fixed-point is reached depends on ti1e program
that is analyzed, bQ.t with the optimizations that are included in the actual implementation of
the BTA most programs need only four iterations.

6.4 Annotation

The binding time information is used for annotation of the program in question. Expressions
that operate entirely on static data. a.re ma.rked by putting the tag S in front of them. Other
expressions are marked operator by operator. The operators that have some possibly dynamic
(D) operands are marked by adding a D to the operator name, so car becomes carD etc. The
remaining operators are partially (or possibly completely) static and they are marked with a P.

There are some special cases with cons, if-expressions, let-expressions and function calls.
cons is not marked a.s it doesn't have to access the operands (in terms of pa.rtial evaluation
it is non-strict" in both arguments). if -expressions are only marked after the condition (they
are strict only in their first argument). In let-expressions each binding is marked if it can be
statically determined that the va.ria.ble will occur at most once in any residual program, in which
case it can be safely unfolded a.t partial evalua.tion time. If all bindings can be unfolded the
let-expression is marked as eliminable by adding a.n E to the operator. It can be determined
from the BTA-values of the formal pa.ra.m<.>ters of a. function, whether the actual parameters are
static etc., so no extra. marking is used there. Function calls are marked to indicate whether
they should be unfolded (/3-reduction) or left as calls .in the residual program. Residual calls are
marked by changing the call op<.>ratoi" to 1·call. At present this is done by hand, but methods
like those described at the end of the revious chapter can be used.

Several other annotations arc used. In general a.s many as possible of the tests tha.t the
partial evaluator would otherwise mak<.> at partial e\'aluation (dynamic) time art> determined by
using the binding time information (a.t static time). The results of these tests are added to the
program as annotation of operators etc.

33

The example program from a.hove would yield the following annotated program:

(Make_env (names values)

)

(ifS (null names)
(S (quote nil))
(letE

(hd =1 (letE (hdl =1 (S (car names)) til =1 (carD values))
(cons (S hdl) til)

))
(cons hd (call Make_env (S (cdr names)) (cdrD values)))

))

6.5 Function specialization

The previous phases (BTA and annotation) are done at metCtsi.atic time, that is only knowing
which of the parameters of the subject program (the program that is being partially evaluated)
are static. When the values of these parameters become known (at static time) a residual
program is constructed by making specialized versions of the functions in the subject program.
The residual program can then be given various values of the dynamic parameters (at dynamic
· ime) to produce final results.

The functions are specialized with respect to the static parts of their pa.ra.meters. The
parameters to a specialized function correspond to the dynamic parts of the parameters to the
original function. The static parts are absorbed into the residual expression that becomes the
body of the new function.

The static parts of the parameters to the Make_env function above are the contents of the
names variable, and the dynamic parts are the contents of the values variable. Assume the
value of names is (x y .:), then the specialized version would be:

(Make_envt (values)

)

(cons (cons 'x (car values))

)

(cons (cons 'y (cadr values))

)

(cons (cons 'z (caddr values))
'nil

)

where ':r:, (cadr values) etc. are the usual shorthand for (quote x), (car (cdr values)) etc.
Note that the recursive calls have been unfolded and tha.t the structure of the static. variables

has been absorbed into the structure of the new function body. Often the value will be completely
absorbed, so no part of it can be directly seen in the new body (unlike ':r: etc.).

If a function call is not unfolded the residual expression will contain a call to a specialized
version of the called function. Specialized functions ca.n be uniquely identified by the original
function name and the values of the static parts of the parameters. The specialized function
above (Make_envt) is thus identified by the na.me Make_env and the static value (x y z).

The body of a specialized function is of course a:n expression. but the result of partially
evaluating the original expression is a. value in the PE domain (using S D and P). so this value
is made into an expression by making the static parts into const.ant expressions. and making
cons expressions for P terms. In the Make_env example above the va.lue

34

P(P(S(x),D((car values))),
P(P(S(y),D((cadr values))),

P(P(S(z),D((caddr values))), S(nil))
))

was converted to the expression shown as the body to the residual function in the example
above. If the value was used as a parameter to a. residual (uot unfolded) call to a function /,
the static parts are used to identify the specialized function and the dynamic parts are used as
parameters to the function. This would give the residual expression

(call f1 (car values) (cadr values) (caddr values))

where h is identified by the original name (/) and the values of the static parts:

P(P(S(x),D(-)),
P(P(S(y),D(_)),

P(P(S(z),D(_)), S(nil))
))

As can be seen from the e.xample the static parts are obtained by blanking out the dynamic
parts. The static parts thus reflects the structure of the value and it can be used to see how
many dynamic parts there are. This is important because the number of dynamic parts is needed
to find the number of parameters to the specialized function. As the example shows, a single
parameter in the original function call can t~sult in several parameters in the residual call, s.o
the definition of the specialized version must reflect this by having the same number of formal
parameters. This automatically realizes the variable splitting that was done in (Sestoft 86] on
the basis of an annotation by hand, and is an alternative to the retyping described in section 9.3.

During the partial evaluation the a.nnotations in the program are used. The expressions
that are marked as Static are thus just evaluated without testing whether the variables in them
have static values (they will have, the DTA ensures that). The operators marked Dynamic are
used to construct new expressions even if the arguments by chance are static (remember that
D means possibly dynamic). This makes the partial evaluator more conservative than a. naive
partial evaluator (without BTA), but experience has shown that this ra.rely causes problems and
that it in some cases improve.<> the quality of residual programs by avoiding generation of almost
identical specialized functions. This can e.g., happen when a function uses an accumulating
parameter to build the result (like in tail-recursive list-reversal). This para.meter will initially be
the constant nil which is a static value but later i·ecursious will change this to a dynamic value.
The naive partial evaluator will generate a. specialized version for the nil case and another for
the general (dynamic) case, whereas the BTA will show that the value is actually dynamic and
thus only generate a specialized function for the general case. Note that with the naive partial
evaluator no residual program can contain function calls with constant parameters as the static
parts of the parameters are absorbed. It is generally a good idea to avoid such restrictions on
residual programs. .

During the function specialization phase lists are kept of descriptions of specialized functions
that have been generated and of specialized functions that have been called but not yet generated.
The latter list initially contains a description consisting of the name of the goal-function ana
the values of the static parameters to the program. \Vhen it becomes empty all the needed
specialized functions are generated and the partial evaluation is finished. There are cases when

35

this will not happen: either a recursive function call is unfolded infinitely. or an infinite number
of specialized functions are generat.ed. The ftrst case ca.n be solved by marking the call as not
unfoldable, but this will in some cases just change the problem to the other type. Infinitely
many specialized functions occur when the static parts of the parameters to a function obtain
infinitely many different values during the function specialization phase. This is more difficult
to solve. It is possible to restrict tl1e number of possible \·alues by forcing some of the static
parts of a variable to be dynamic by giving them dynamic initial descriptions for the BTA (so
it becomes not only the parameters to the goal-function tha.t should bc:- specified). This will
however in some cases give too conservative descriptions for otlwr variables (as a consequence
of the BTA). Another solution is to restructure the ptogram so the problem doesn't occur. This
can be very tricky, and in a few cases one must conclude that for some problems it is not possible
(in the present framework) to find programs where the partial evaluation will termina.te with a
non-trivial solution.

An extended example showing compilation by partially evaluating an interpreter is shown in
sections 6.9 to 6.11. Timings are shown in the next section.

6.6 Results

The partial evaluator bas been implemented and satisfactory results have been obtained. Fig­
ure 6.6 shows some execution times. The system is implemented ushig Franz Lisp on a Va.x 785.
All executions are done using compiled LISP programs. In a.ddition to the total execution time
the table shows bow much of that is spent doing garbage collection (GC). Where applicable a
ratio of exe<:ution times for original and residual programs is shown.

The program Btan.n performs both BTA and annotation, of which the BTA is the major
part. Fsp performs function specialization. The notation L 1Jrog1·am (x 1 , ... , Xn} represents
execution of the L program progrcmt with input x1 , •.• ; Xn. programa.nn represents the
annotated version of prog7'llm.

Two interpreters are used for the executions. mp_int.e?·p is the interpreter from section 6.9.
self _interp is an interpreter for L. Since the source and object languages for compilations using
a self-interpreter is the same, they should ideally be near-identity mappings or at least not yield
programs that are marliedly less efficient than the originals. For this system such compilations
are in fact near-identity mappings. Apart from renaming and permutation of functions and
variables and the addition of a.n extra goal function (that splits the list of parameters that
the interpreter requires into sepamt.e pa.ra.meters when calling the new version of the original
goa.l function) there are virtually no differences between the original program and the new.
In addition to comparing execution times for self _inter1J interpreting a £-program and the
compiled £-program the table also compares the compiled program with the original program
(this makes sense as they are in the same langua.ge).

The results from this table compares satisfactorily to the results in [Sestoft 86]. Though the
time used to partially e\·aluate programs is longer, especially for the BTA phase, thc:- compiled
programs are faster. The ra.t.io between compiling with the partial ev~luator and a. generated
compiler is lower than in [Sestoft 86] mainly because the present partial evaluator does more
manipulation on dynamic data (such ma.nipula.tions are not improved by knowledge of static
data). On the other hand tl1e ratio between interpreting a program and executing a compiied
program is higher, which is pa.rtly due to the extra. manipulation of dynamic data and the
automatic splitting of parameters.

Figure 6.6 shows the sizes of the progra.ms. Three numbers are sho,.,·n: the number of tokens,

36

Figure 6.6 Execution times for the partial evalua.tor and residual programs.
job exec. time. GC time ratio
FSPann = L Btann (Fsp) 196160 ms 56560 ms
cogen = L Fsp (Fspann, Fs]Jann) 352460 ms 73980 ms
cogen = L cogen (Fs]Jann) 88360 ms 50620 ms 3.9
mp_interpann - L Btann (m.]Ji.nt.er]J) 6560 ms 620 ms
Lexpo = L Fs]J (mp_interpann , 7TI.]J..CX]JO) 2560 ms 540 ms
l_expo = L mp..compiler (m]J..expo) 360 ms 0 ms 7.1
output1 = L m]dnte1'7J (mp...exJJO, -input1) 7520 ms 0 ms
output1 = L Lexpo (intJUi-t) 200 ms 0 ms 37
mp..compiler = L Fsp (FsJJann, mzdnte1'1Ja,m) 35760 ms 8720 ms
mp_compiler = L cogen (mp_int.e7'7Jann) 5520 ms 2540 ms 6.4
self .interpan.n = L Btcmn (self _inter]J) 5100 ms 560 ms
self .int' = L Fs]J (self _inter]Jan.n, self _interp} 25920 ms 10560 ms
self .int' = L self ..compile1· (self _inter]J) 2560 ms 500 ms 10
output2 = L self .inte7'1J (self _inte7'JJ, in7mt2) 48940 ms 2400 ms
output2 = L self ..int' (input2) 1100 ms oms 44
output2 = L self _interp (in7Jut2) 1080 ms 0 ms 1.02
self ..compiler = L Fsp { Fspa.nn., self _interJJan.n.} 41700 ms 11600 ms
self ..compiler = L cogen (self _int.e7']Jan.n.) 5580 ms 2440 ms 7.4

the number of functions and a ratio. The number of tokens is measured by adding the number of
CONS-cells to the number of non-NIL atoms in the da.ta structures. L-progra.ms are measured
before the restrictions from fig. 3.2 a.re applied, as this gives the fairest compa.rison with residual
programs where these restrictions do not apply. The number of functions only apply to £­
programs. The ratio is between the number of tokens in an interpreter and the corresponding
compiler.

The compiler/interpreter ratio for the small interpreters are fairly large compared to the ra.tio
between cogen and Fs1J. This is because the compilers consist of a constant part '"·hich is
virtually the same in all compilers and a interpreter-dependent part which is roughly linear. in
the size of the interpreters, so the ratio converges to about 3.3 when the size of the interpreter
increases.

The names of the programs are the same as in figure 6.6.

Figure 6.6 Sizes of various programs and residual programs.
program tokens functions ratio of tokens
Fsp 13172 66
cog en 44545 10.5 3.4
mp_interJJ 903 8
mp_compiler 11282 51 12.5
mp_expo 171
Lexpo 293 4
self .interp 985 8
self ..com]Ji./er 11830 54 12.0
self ..int' 1009 9

37

6. 7 Conclusion

The main purpose of handling partially static structures in a partial evaluator is to increase the
generality of it, that is extend the class of programs tha.t are handled non-trivially. Experience
shows that programs using structures tha.t will be partially sta.tic/dyna.mic at partial evaluation
time normally can be rewritten so all variables/functions are either totally static or totally
dynamic. This however puts extra demands on the user and often decreases the efficiency of the
program.

In the sense of extending the class of programs that are handled non-trivially by the partial
evaluator the project has been a success. Even so, it is still sometimes necessary to rewrite
programs to get good results from the partial evaluator.

In addition to this generalization the method gives a natural and automatic wa.y of achieving
the variable-splitting that in [Sestoft 86] is done in an ad hoc fashion on the basis of user
annotation. Another way of achieving variable-splitting automatically is described in section 9.3.

The quality of residual programs is very good, in the sense that there is little that obviously
can be done to improve the programs obtained by partial evaluation of the MP interpreter and
the self-interpreter. The compilers are fairly large and slow compared to those achieved by
later versions of the partial evaluators described in [Jones et al. 85] and [Sestoft 86], but this is
mostly due to greater complexity of the partial evaluator of which they are residual programs.

As mentioned earlier the ca.ll unfolding are.still made according to hand-made annotations as
in [Jones et al. 85]. Something similar to the combined pre- and post-processing of [Sestoft 88)
could be used, though it would require an extension of the static analysis in the pre-process to
handle calls to functions with partially static results.

The handling of the partially sta.tic structures has given rise to some subtle problems in
connection with some language constructions. As an example imagine a let-expression of the
form:

(let (bindings to dynamic variables) partially static expression)

The bindings are needed to define variables in the expressions that form the dynamic parts
of the value of the partially static expression. and should thus be a. part of the result of the
let-expression. But the result of the pa.rtially static body must be of a. form using P(:r, y),
where both x and y can contain d~·namic parts, so the question is where to put the bindings. A
possible way to do this is to cop~· the let- bindings onto each of the expressions in the partially
static value. This would. however. cause duplication of code and possibly repea.ted calculations
in the residual programs. Another possibility would be to make the value of the let-expression
completely dynamic so there would be only one expression to add the bindings to. This is
however unsatisfactory due to the loss of static data. The solution that is used is keeping a
field in the representation of partially static structures that contain bindings that are common
to all expressions in the structure. These bindings are copied along when access is made to
substructures, and when two structures are concatenated a union of the bindings are made.
This requires some ra.ther complex manipulations to .ensure that the bindings are kept in the
proper order, but it solves tl~e problem satisfactorily.

The way tree grammars are used in the BTA can be extended to a framework that is useful
for other kinds of abstract interpretation. such as type inference and strictness anal~·sis.

The way BTA is handled in this chapter is an operational way; it approximates sets of values
in a naive partial evaluator. But a naive partial evaluator, and thus also a. partial evaluator using
an operational BTA. can build infinite sets of static structures because the conditions that limit

:~s

the sets are dynamic. Such values should be regarded as dynamic rather than static, making
the term dynamic apply to all values that are not limited at static time. Such a semantic (as
opposed to operational) BTA that is sufficiently liberal (not making too much dynamic) has not
yet been achieved, but work is being done in Copenhagen towards this goal.

6.8 Abstract evaluation in the BTA domain.

Only the abstract interpretation of expressions is shown. The values are represented by right
sides of a grammar. The actual values a.re the downwards closures of the sets the right sides
derive relative to the grammar.

Aeval(name) = the right side of name in the global grammar

Aeval((quote constant)) = S

Aeval((car exz>)) = Car·*(Aeval(ea:JJ))

Aeval((cdr exp)) = Cdr·*(Aeval(exJ>))

Aeval((atom exp)) = Aeval((null exz>)) =
let val = Aeval(exzJ) in

if val = D then D
else S

Aeval((cons rexzJl rexJ>2)) =
let rvall = Reval(r·expl), rval2 = R.eval(rexp2) rn

if rvall = S and r·val2 = S then S
else P(rvall, r·val2)

Aeval((equal ex]Jl exp2)) =
let vall = Aeval(expl), va/2 = Aeval(exzJ2) in

if vall = Sand val2 = S then S
(* vall = S means that there is only one *)
(* alternative on the right side. and that is S *)

else D

Aeval((if exz>l exp2 exzJ3)) =
let vall = Aeval(exz>l),

val2 = Aeval(exzJ2),
val3 = Aeval(exz>3) in

else if vall = D then D
else Least_upper· .lJotmcl(va/2, va/3)

Aeval((let bindings CXJJ)) = .•teval(exz>)
(* Here the non-termiuals iu the global gra.mmar corresponding to the names of*)
(* the bindings are updated l?Y the abstract values of the corresponding expressions. *)

39

Aeval((call name . actuctL]Jcu·cuns)) = the right side of name ilr the global gra.mmar
(* Here the non-terminals in the global gramma.r corresponding to the names *)
(* of the formal parameters of the function are updated by the *)
(* abstract values of the actual parameters. *)
(* Reval evaluates restricted expressions returning rt'strict.ed values. *)

Reval(name) =
let val = the right side of 1wme in the global grammar hi.
if val = S o1· val = D then ·1•al
else name (* non-terminal *)

Reval((quote constant)) = S

Reval((call name. acttUtL]JCL7'rtms)) =
let val = the right side of na.me in the global grammar in
if val = S or val = D then val
else name (* non-terminal*)

(* Here the non-terminals in the global gra.mmar corresponding to the names *)
(* of the formal parameters of the function are updated by the *)
(* abstract values of the actual parameters. *)

(* Car* and Cd1·* evaluates head and tail of abstract values*)

Car*(D) = D
Car*(S) = S
Car*(P(x, y)) =

if x = S or x = D then x
else the right side of :t in the global grammar

Car*(a I b) = LeasLttp]Je1'.houncl(Cm··(a),Car'"(b))
Cdr*(D) = D
Cdr*(S) = S
Cdr'"(P(x, y)) =

if y = S or y = D then y
else the right side of y in the global grammar

Cdr*(a I b) = Least_up]Jer_bouncl(Cdr'"(a).Cclr*(b))

(* LeasLU]Jper _boundevaluates the least upper bound of two abstract values *)

Least_upper .lJouncl(D, x) = D
Least_upper .lJomul(x, D) = D
Least _upper .lJou ncl(S, S) = S
Least_up]Jer .lJotmd(x, y) = x I y

(*The alteruatives from both right sides with duplicate alternatives removed *)

-10

6.9 An interpreter for MP

The interpreter is shown in tlw syntax that is required by the pa.rtial evaluator. It was originally
written using a syntactically sugared form which was tra.nsla.ted into what is shown here. xca.ll
calls an "external" function which is not defined in the program but in the run-time environment.

The language MP is taken from [Sest.6ft 86). It is a simple imperative language using while­
sta.temen ts for repetition. The interpreter differs from the one in [Sestoft 86] in using an envi­
ronment that is a list of name/value pairs inst.ea.d of using separate name and value lists.

Each MP program declares a. list of input variables and a list. of other variables. The input
variables are initialized with variables from the input list and the others with the value nil. The
result of interpreting a MP program is the final values of all variables represented by the final
environment.

(
(Mp (program input)

(let (14 =(car (cdr program))
IS= (car (cdr (cdr program)))
)

(rcall Block (car (cdr (cdr (cdr program))))
(calllnitvars (cdr 14) (cdr 15) input)

)))

(lnitvars (parlist varlist input4)
(if (null parlist)

(if (null varlist) 'nil
(let (hd9 =(let (hd8: = (car varJ.ist)) (cons hd8 input4)))

(cons hd9 (call lnitvars parlist (cdr varlist) input4))

))
(let (hd7 =(let (hdS =(car parlist) tl6 =(car input4)) (cons hdS tl6)))

(cons hd7 (calllnitvars (cdr parlist) varlist (cdr input4)))
)))

(Block (block env)
(let (16 =(car block))

(if (null block) env
(if (equal (car 16) ':=)

(call Block (cdr block)
(call Update env

(car (cdr 16))
(call Exp (car (cdr (cdr 16))) env)

))
(if(equal (car 16) 'if)

(if (call Exp (car (cdr 16)) env)
(call Block (call Append (car (cdr (cdr 16))) (cdr block)) env)
(call Block (call Append (car (cdr (cdr (cdr 16)))) (cdr block)) env)

)
(if (equal (car 16) ;while) (rcall While block env)

(xcall writeln 'Unknown_command (car block))

41

)

))))))

(While (blockll envlO)
(if (call Exp (car (cdr (car blockll))) envlO)

(call Block (call Append (car (cdr (cdr (car blockll)))) blockll) envlO)
(call Block (cdr blockll) envlO)

))

(Exp (exp env12)
(if(atom exp) (call Lookup exp env12)
(if (equal (car exp) 'quote) (car (cdr exp))
(if (equal (car exp) 'car) (car (call Exp (car (cdr exp)) env12))
(if (equal (car exp) 'cdr) (cdr (call Exp (car (cdr exp)) env12))
(if(equal (car exp) 'atom) (atom (call Exp (car (cdr exp)) env12))
(if (equal (car exp) 'cons)

(cons (call Exp (car (cdr exp)) env12) (call Exp (car (cdr (cdr exp))) env12})
(if(equal (car exp) 'equal)

(equal (call Exp (car (cdr exp)) env12) (call Exp (car (cdr (cdr exp))) env12))
(xcall writeln 'Unknown_expression exp)

))))))))

(Update (env13 var val)
(if (null env13) (xcall writeln 'Unknown_variable var)

(if (equal (car (car env13)) var)
(let (hd15 =(cons var val) tl16 =(cdr env13)) (cons hd15 tl16))
(let {hd14 =(car env13)) (cons hd14 (call Update {cdr env13) var val)))

)))

(Lookup (var18 env17)
(if (null env17) (xcall writeln 'Unknown_variable var18)

(if (equal (car (car env17)) var18)
(cdr (car env17))
(call Lookup var18 (cdr env17))

)))

{Append (a b)
(if (null a) b (let (hd19 =(car a)) (cons hd19 (call Append (cdr a) b))))

)

6.10 Exponentiation program in MP.

This is an exponentiation program in MP. It is taken from [Sestoft 86].

Input: Two lists x a.nd y.

Output: The variable out is a. list the length of which is the number of all tuples of length IYI
of elements from x, which is lxlliYI·

42

(program (pars x y) (dec out next kn)
((:= kn y)

)

(while kn

)

((:=next (cons x next))
(:= kn (cdr kn))
)

(:=out (cons next out))

(while next

)
)

((if{cdr (car next))

))

((:=next (cons (cdr (car next)) (cdr next)))
(while kn

)

((:=next (cons x next))
(:= kn (cdr kn))
)

(:= out (cons next out))
)

((:= next (cdr next))
(:= kn (cons '1 kn))
)

6.11 Residual exponentiation program.

; First combination
; ln\'ariant: lnextl + lknl = IYI
; while more tuples
; if next(1) can be increased
; do that
; while lnextl < lvl do
; put x in front of next
; preserving invariant

; else, backtrack, preser\'ing invarian·

This program is the residual program obtained by partially evalua.ting the 1IP interpreter from
section 6.9 with respect to the exponentiation program from section 6.10. It accepts a list of
input parameters (of length one) and returns a final binding of \'ariables to values. Note that
the environment from the interpreter is split into several parameters to each function (all the
names beginning with env), each of which represent a \'ariable from the 1viP program.

((Mp (input-4)
(call Block-S (car input-4)

))

(car (cdr input-4))
(cdr (cdr input-4))
(cdr (cdr input-4))
(cdr (cdr input-4))

(Block-S (env-10 env-9 env-8 env-7 env-6)
(call While-11 env-10 env-9 env-8 env-7 env-9)

43

)

(While-11 (env10-16 env10-15 env10-14 env10-13 env10-12)
(if env10-12

))

(call While-11 env10-16 env10-15 env10-14 (cons env10-16 env10-13) (cdr env10-12))
(call While-19 env10-16 env10-15 (cons env10-13 env10-14) env10-13 env10-12)

(While-19 (env10-24 env10-23 env10-22 env10-21 env10-20)
(if env10-21

))

(if (cdr (car env10-21))

)

(call While-11 env10-24
env10-23
env10-22

)

(cons (cdr (car env10-21)) (cdr env10-21))
env10-20

(call While-19 env10-24 env10-23 env10-22 (cdr env10-21) (cons '1 env10-20))

(cons (cons 'x env10-24)
(cons (cons 'y env10-23)

(cons (cons 'out env10-22)
(cons (cons 'next env10-21)

(cons (cons 'kn env10-20) 'nil)
)))))

44

Chapter 7

Separating Binding Times

In chapter 6, we presented a binding time analysis and a partial evaluator capable of handling
partially static structures. The partial evaluator was, however, somewhat larger than a sim­
ple partial evaluator capable only of handling completely static / dynamic, and the generated
compilers also became larger and slightly slower, as these were specializations of a larger partial
evaluator.

This chapter presents a method for converting a program containing variables of mixed bind­
ing times into a program with strong separation of binding times. It starts by using an a.d vanced
binding time analysis to classify partially static variables, and then using this information to
do an automatic staging transformation [J0rring et al. 86] of the program, to separate binding
times. After this separation, all variables and functions are either completely static or completely
dynamic, and the program can thus be partially evaluated using the simple partial evaluator.

The intuition is that each partially static variable is split into two: one holding the static part
and another holding the dynamic part, and each function returning a partially static result is
split into two: one returning the static part of the result given the static part of the parameters,
and another returning the dynamic part of the result given both the static and the dynamic
parts of the parameters. The functicii1 that returns the dynamic part will need both, as some run
time values can depend on compile time values (whereas compile time values shouldn't depend
on run time values).

The resulting program will be equivalent to the original. but there are now only completely
static and dynamic variables and functions.

As an example of what we expect as a result of the transformation, consider the function
below:

Make-A-list(nmnes, values) =
if atom(names) then 'nil
else ((ca1·(names) :: car(values))

:: Make-A-list(cclr(names), cdr(values)))

Make-A-listtakes a list of names and a list of values and returns a. list of name/value pairs.
Assuming names is static and values is dynamic, we can transform this function into the following
two new functions, returning respectively the static and the dynamic part of the result:

Make-A-lista(na.mes) =
if atom(nnmes) then 'nil
else ((ca.r(names) :: 'J..)

:: Make-A -lists(cdr(names)))

Make-A-listd(n.ames, values) =
if ntom(names) then 'J..
else (('J.. .. cm·(values))

:: Make-A -listd(cell·(names), ccl1·(values)))

Make-A-lista, when given the static para.meter (names) returns the static part of the result and
Make-A-listd returns the dynamic part given both arguments. The parts that are not necessary
are replaced by J.., which in this context means "not needed", and can be represented by an
arbitrary value. It will not mean "non terminating". Note that only the completely static or
dynamic parts are replaced, the common structure is retained in both functions.

Plan

Section 7.1 describes how the grammar is obtained given the binding times of the input to the
program.

The binding time analysis used is a variant of the one from chapter 6, using regular tree
grammars to describe mixed binding times. Each identifier in the program is assigned a non­
terminal in the grammer, which will produce the set of binding time patterns of that identifier.
As an example, the nonterminal for the function Make-A-list above will be given the following
production:

Make-A-list ..-. atomS I (nl . . Make-A-list)
nl ~ at.omS I (S. D)

where atomS denotes a static atom, S denotes any static value and D denotes any dynamic
value. The meaning of this grammar is that Make-A-list returns a list (terminated by a static
atom) of elements of the form nl. which is either a static atom or a pair of a sta.tic and a
dynamic value. The elements can actually never be atomic, but restrictions in the form of the
productions make it necessary to include atoinS in the production.

In section 7.3 the result from the binding time analysis is used to define a program division
[Jones 88), a set of functions that \Vill project the values of partially static variables into their
static and dynamic components or reconstruct the total values from the components. The func­
tions in the program division will be symbolically composed with the functions in the program
to obtain versions with strong separation of binding times.

An example of both binding time analysis and transformation of a simple function is then
presented followed by a conclusion.

7.1 Binding time descriptions

The set of values a variable can obtain during normal evaluation can be described by the regular
tree-grammar:

46

V' alue - atom I (\' altte . F ctlttc)

where atom denotes the set of all atomic values, including nil. The values are thus S-exprcssions
as known from LISP. The idea behilid the binding time analysis is to make variants of the above
grammar where various parts are annotated with the binding time of the values produced. '\Ve
will do this by introducing a symbol D, denoting completely dynamic values, atomS _denoting
static atoms and S denoting all completely sta.tic va.lues. Note tha.t S can be defined a.s:

S - ntom,S I (S. S)

We will, however, useS as a terminal symbol. The symbol D can not be defined by a production
in a similar way, as the vertica.l bar will only be used to denote a choice (between a.tomic or
structured values) that is decidable at static time. A small example of a binding time grammar
was shown in the introduction. We will restrict right hand sides of the productions in the
grammar to be either D, or of the form

where the Ni's are either S, D or non-tenuinaJs. The productions will denote sets of trees (using
D and atomS as terminals), each de~cribing a b.i11.ding time pattern. We define a. partial order
(~t) of the trees by their binding time: more static parts give a greater value. The partial order
is the reflexive and transitive closure of:

D ~ t any tree
(T1 . T2) ~t (T3. T.!) if T1 ~t T3 and T2 ~t T4

This ordering is opposite of the ordering used in chapter 6. where a dynamic value was the
top element. ·we use this ordering, a.s it will be more natural when comparing the divisions
generated from the grammar. For this reason we will order the productions by the upwards
closures (rather than the downwards closures) of the sets of trees they produce:

which is the Egli-Milner ordering on the upwards closures of the sets. Note that. while this
defines a partial order on upwards dosed sets, it only defines a preorder on the productions, as
two different productions can produce the same set of trees.

The plan is to have a non-terminal in the grammar for each variable and function in the
program being analyzed, but due.to the restrictions on the forms of productions, we will, as we
shall see below, need extra non-terminals in addition to these. In fact, we will start by producing
a grammar with fewer restrictions, using a fixed fiuite set .of non-terminals determined by the
program being analyzed. This grammar is then transformed to the form described above. This
transformation may introduce new nqn-t~rminals, but still only a. finite number.

The syntax of right-hand sides of tire less restricted productions is:

rhs = 'D' I 'atomS' 'I' '(' non-terminals'.' non-terminals')'

non-terminals 'D' I non-ter·minal-list

non-terminal-list non-terminal I non-ter·minal'l' non-terminal-list

41

The difference from the above form is that lists of alternative non-terminals are allowed inside
the pairs. This is to make some operations during the analysis easier (mainly computation of
the greatest lower bound of two right hand sides). In chapter 6 we had only single non-terminals
inside pairs, but allowed several alternative pairs. The new form is used for two reasons: it
is easier to transform to the restricted form, and the domain is smaller, making fixed-point
iteration faster.

We again (pre-) order the productions by the upwards closures of the sets of trees they
produce, using from now on ~ to mean ~,. \Ve want to assume two right-hand sides are
ordered unless we can prove otherwise. Thus we give rules for disproving ordering:

x :fi D => -.(x ~ D) for any right-hand side x
-.(atomS I (A. B) ~ atomS I (C. E)) if

(A :fi D A C = D V 3 non-terminal Ai in A: V non-terminals Cj inC: -.(Ai ~ Cj))
v

(B :fi D A E = D V 3 non-terminal Bi in B : V non-terminals Ej in E: -.(Bi ~ Ej))

We use ~ for equivalence of non-terminals and right-hand sides: A ~ B <::> A ~ B A B ~ A.
It is easy to verify that these rules correspond to the described ordering. The rules will be

used to recognize fixed points during binding time analysis. It is possible to define a greatest­
lower-bound (n) of two right-hand sides, giving a representative for the equivalence class of
right-hand sides that describes the union of the {-upwards closures of the) sets of trees produced
by the two right-hand sides:

D n x = D for any right-hand side x
atomS I (A. B) n atomS I (C. E) = atomS I (F. G)

where
F = (if A = D or C = D then D else A I C)
G = (if B = D or E = D then D else B I E)

It is assumed that operations like A I C remove duplicated non-terminals from the concatenation
of A and C.

As mentioned above, we will use variable and function names as non-terminals. As there are
no local scopes for non-terminals. variables should have unique names. Otherwise they could
share non-terminals, which could result in a. less precise binding time classification.

It is however not enough to use variable a.nd function names for non-terminals. The reason is
that the right-hand sides must have (lists of) non-terminals inside their pairs, so it is necessary
to ensure that whenever a pair is constructed there must be non-terminals to describe the
arguments. This is done here by annotating the arguments of a pairing operator with non­
terminals and using these to describe the binding time of their value. In the chapter 6 we solved
the problem by restricting the forms of the argument expressions to the pairing operator. By
using annotations we avoid the need for transforming the program in an non-invertible wa.y.

The fixed-point iteration starts by assigning all non-terminals the completely static top va.lrle
/ right-hand side: atomS I (5' • S). except tlte non-terminals corresponding to the parameters
of the goal-function which a.re given va.lues describing their binding times. Then it iterates an
abstract evaluation, using greatest lower bound to update non-terminals until a. fixed-point is
reached.

48

7.2 Binding time analysis

We will now describe binding time analysis of first order rcqusion equations using these gram­
mars. \Ve will use a variant of the one presented in section 3.1. This differs from the language in
chapter 6 mainly by not having a let-expression. There are no fundamental reasons for excluding
the let-expression, it is only to keep the following transformation algorithms relatively short.

For compactness of no.tation we \Vill assume that the grammar is globally accessible using
n -+ rhs. We will also imperatively upda.t.e the grammar during analysis, essentially doing a
collecting interpretation.

Given recursion equations of the form:

binding time analysis proceeds by repeatedly reevaluating all expressions exzJ;, using the a.bstract
evaluation E[expi] given below until the grammar stabilizes. It will do so, as all changes are
monotonic and there are only finitely many non-terminals. The method used is essentially the
same as in chapter 6.

In. the rules for CONS and CALL the parameters are evaluated and, before the result is
passed on, the corresponding non-terminals are updated ·by taking the greatest lower bound of
the old and the new value.

E[Xij] = rhs where Xij-.. rhs

E[(QUOTE c)] = atomS I (S. S)

E[(CARel)] = D if E[el] = D,
nA-i, Ai in rl if E[el] =atomS I (.4 .. B)

E[(CDR el)] = D if E[el] = D,
nBi, Bi in B if E[el] =atomS I (.-!.B)

E[(ATOM el)) = D if E[el) = D,
atomS I (S . S) otherwise

E[(EQUAL el e2)] = atomS I (S. S) if E[el) = E[e2] =atomS l (S. S)
D otherwise

E[(CONS(nl: el) (n2: e2)) = atomS I (nl'. n2') where
nl' = D if nl -. D,

S ifnl- atomS I (S. S)
nl otherwise

n2' = D if n2 --- D,
S if n2 __...atomS I (S. S)
n2 otherwise

49

E[(IF el e2 e3)] = D if E{el] = D
E[e2] n E[e3] otherwise

E[(CALL f el. .. en)] = rhs where f- rhs

7.2.1 Transfor1uation of grammar to restricted form

The transformation to the restricted form is straightforward: a. list of non-terminals in a pair
is replaced by a new non-terminal whose right-hand side is the greatest lower bound of the
right-hand sides of the non-terminals in the list. This new right-hand side may again contain
lists of non-terminals in its pair, so the process is repeated. If a record is kept of which new
non-terminals correspond to which sets of old non-terminals and re-using these, the process will
terminate, as there is a finite number of such sets.

We will, during the transformation described below, sometimes have to test if a non-terminal
is less than another by the ordering described above. Rather than generate the sets of trees and
compare these, we will compare the definitions instead. Due to the recursion in the definitions,
this may require a proof by induction. This can be done by this simple algorithm:

less-than(Nl,N2) = lessl(Nl, N2, 0)

lessl(Nl, N2, o1·dered) =
if Nl = N2 or Nl = D or N2 = S or (Nl, N2) E ordered then true
else if N2 = D then f ctlse
else lessl(Al,A2,(Nl,N2) U ordered) and lessl(Bl,B2,(Nl,N2) u ordered)

where .Nl - ntomS I (Al . Bl), N2- atomS I (A2. B2)

The variable ordered contains pairs that by the induction hypothesis are assumed to be ordered.

7.3 Program divisions

The point of bringing the result in this form is that we are now able to define a. program division
[Jones 88]. A program division assigns to each variable and function a. division tri]Jle (S, 1), P).
S is a static projection function, S v disca.rds the parts of v that are dyna.mic according to the
division, leaving only the static part. 1) v similarly discards th~ static parts of v, leaving the
dynamic part. P is a pairing function: if v5 and Vd a.re the static and dynamic part of v, P v5 Vd

will be v. In other words: P (S v) (1) v) = v for any division (S. 1), P) and any value v.
A program division is called congruent if the static part (as described by S in the division

triple) of any function result is dependent only on the static pa.rts ~fthe parameters. The binding
time analysis ensures that the program division constructed from the grammar as described
below is congruent.

The projection functions follow the principle of [Launchbury 88], a projection replaces parts
of a structure by .L In this con text .L means roughly •'don 't know, don't need, don't care",
and could be represented by a.ny value. \Ve will define a. partial order of values with .L 's as (the
·reflexive and transitive closure of):

.L -< any value
(CL • b) -< (C • d) if lL -< C and U -< d

50

so a -< b means a is less static than b.
We will construct the division triples from the binding time grammar by using the right hand

side of the production that corresponds to a given variable or function. We will construct the
division so it is congruent, and such that if we for non-terminal~ Xl and X2 have Xl ~ X2,
then their respective static projections S1 and S2 will have the property: Yv : S1 v -< S2v.

An additional requirement that is needed for the transformation presented later is that given
Xl ~ X2, their divisions (St. 'Dt. 'Pt) and (S2, T>2, 'P2) must have the property that:

S1 ('P2 .. 4 B) = S1 A for any values A and B

which is possible, as S1 discaJ;ds a larger part of its argument than S2 does. For the bind­
ing time values Sand D the divisions-are fairly simple: S "'(Ax.x,Ax . .L,Axs.Axd.xs),D.....,
(Ax . .L, Ax.x, Axs.Axd.xd), using n "' (S, 'D, 'P) to mean that (S, 'D, 'P) is the division triple
corresponding n, where n is a. non-terminal or a right hand side. \Ve will from now on use
non-terminals and their corresponding right hand sides completely interchangeably.

For more complex binding times: A- atomS I (B. C) the divisions are:

(Sa, 'Da, 'Pa) =(Ax. atom(x) => x II (Sb car(x)) :: (Sc ccb·(x)),
Ax. atom(x) => .L II ('Db ca1·(x)) :: ('De cdr(x)),
Axs. Axd. atom(xs) => xs ll ('P& car(xs) car(xcl)) :: ('Pc cdr(xs) cdr(xd)))

where :: is an infix cons, and a => b II c is a conditional meaning "if a then b else c". The
divisions of the non-terminals inside the pairs are called with the corresponding parts of the
value as arguments. Now the requirement of having only single non-terminals inside pairs
becomes clear: otherwise we could not make so simple projection functions.

[Launchbury 88] used least-upper-bound in the ordering of values with .L as a universal
pairing function, but here we use explicit pairing functions for each division in order to achieve
better reduction.

7.4 Transformation

The separation transformation of the program consists of constructing two new function def­
initions to replace each function definition in the program: given the definition of a function
f:

f(xt , .•• , Xn) = eX]J

and (congruent) division triples for f and each Xi:

construct definitions:

/ 8 (x~ , ••• , x~) = eXJJs
and

!d(x~, ... , x~, xt, ... , x~) = expd
such that

SJ A]Jply(f, Vt , ••• , Vn) = Apply(/& , Sx1 VI , •••• Sxn Vn)

and
'DJ Apply(/, Vt, • •., Vn) = App/y(/d, Sx1 Vt, ••• , Sxn 'Vn. 'D;r1 lit, .•• , 'Dx., V71)

51

where Apply(!, VI , ••• , vn) is the result of applying the function defined by f to the arguments
VI , ••• , Vn. The relation ensures that we can safely use / 11 to evaluate the static part of f's
value, and /d to evaluate the dynamic part. The equalities are dependent on termination: / 11

may well terminate even if f does not. Another formulation of the relation is:

1. o S:~: 1 ••• :&,. = s1 o 1
/d 0 (Sz1 ... :&,. , 1J:&1 ... z,.] = 1) f 0 /

using [,] to mean pairing of functions in FP style. S:r1 ••• z,. is a projection function for the tuple
xi ••. Xn of arguments to f. The notation is slightly imprecise as the S's and 'D's are functions
in the mathematical sense whereas f is an identifier representing some program text.

As /. is completely static, it can be completely eliminated at compile time {e.g., by partial
evaluation), and similarly partial evaluation of /d results in complete elimination of the param­
eters xt. That a !d is possible to construct is clear, as !d is given all information about the
parameters. It can be defined as:

f. is possible because we required the program division to be congruent: the static part of
f's result is only dependent on the static part off's arguments. Since s, of is only dependent
on the static part of the input, we haves, of = s, of o S:~:1 ... z,. and thus:

Even though the grammar only provides division triples for the expressions that are annotated
with non-terminals, a division triple for any expression can be constructed from productions
found by a variant of the abstract evaluation above. No fixed point iteration is needed as the
grammar already is a fixed point. BT[e]-y is used in the transforma.tion below to indicate the
binding time of the expression e with respect to the grammar -y.

7.4.1 Transformation algorithn1s

We will now present algorithms that will construct e11 and ed from the expression e and divi­
sion triples for the result and variables of e, essentially by symbolically composing the projec­
tion/pairing functions with the original definition as described above. The division triples of the
variables are given by supplying the complete grammar, and the division triple for the result is
given by a non-terminal. The transformations try to reduce the expressions as much as they
can, by removing sub-expressions that won't be needed to produce the result. To help with
this a new non-terminal symbol "?" is introduced meaning "not needed". The way it is used is
explained in the notes below. S[e)a-y returns an e11 defining / 11 given the expression e defining/,
a non-terminal a and a grammar -y, and D[e]a-y returns an ed defining fd· The non-terminal a
represents the division of the expression result, and is initially set to the division for the function
result: a"' (SJ, 1Jf, P1). Basically S[e)a-y composes the S function in -y with the expression e.
The grammar -y is used when converting the non-terminals to divisions. The definition of S[] is
followed by a list of comments that clarify various points in the definition. The numbers at the
left of the lines refer to the comments.

52

S[e]a7 =

if a= D or a=? then (QUOTE .L) I* COI}Sta.ut expression returning .l *I
else ca.se e of

2
3,4

1
2,5

1
2,5

1
2,5

6

1

1
2,5

(QUOTE c)

(CARe')

(CDR e')

(ATOMe')

(EQUAL e' e")

(CONS e' e11)

(IF e' e" e"')

if a ex Xi then Xi

else (CALLS xi) where a"' (S, 'D, P)

: (QUOTES c) where o"' (S, 'D, P)

: (CAR S[e']a'"Y')
where 7' =")'+a'--+ atomS I (8. ?)

: (CDR S[e']8'7')
where ")' 1 =")'+a'- atomS I(? . 8)

:(ATOM S[e']a'"Y')
where 7' =")'+a'--+ atomS I(? . ?)

: (CONS S[e']8'7 S[e"]a""Y)
where a - atomS I (a' . a")

: (IF S'[e']8'7' S[e"]8"Y S[e"']ai·)
where 1' = 1 +a'......,. atomS I (? . ?)

7, 2 (CALL f e1 ••• en) : if 8 ex f then
(CALL fs S[el]xi 1 ... S[en]X 71 At)

else
3, 4 (CALLS(CALL fs S[et]Xt 1 ... S[en]Xn/))

'vhere Xi a.re the formal parameters off
a.nd a"' (S, 'D, P)

There are several things to note about this definition:

1 The non terminal a (representing a division triple) is used a.s a context [Hughes 88]: it describes
how much is needed. Thus we ca.n evaluate the argument of A.TO.Min a context where we
only need to know the hea.d-norma.l form. Similarly contexts are moved inwards through
CAR, CDR, CONS a.nd IF.

2 'Ve use the ? non-terminal to mark not needed values. A D value will not be needed
either, but there is a difference: a. D va.lue must evaluate to .l to ensure correctness,
whereas a ? value could be anything, as it will not show in the final result. 'Ve use a
relation ex extending ::! : A oc: B if A =? or A ::! B or .4.1 cx: B1 and .4.2 cx: B2 where
A --+ atomS I {.41 . A2), B - atomS I (B1 . B2). ex is a a.c;ymmetric relation, ?'s
can only occur on the left of oc:. The rules for variables a.nd function calls can use this
relation to avoid adding unnecessary projection functions. The division triple for ? is:
? "'(>.x . .L,>.x . .L.>.xs.>.xd . .L).

53

3 When a variable Xi has a division triple different from that which correspond to a, we should
actually in e. use (CALL S (CALL 'P:z:; x1 xf)), but since a-~ Xi by the congruence of
the program division, we can safely replace it by (CALLS x1), using the property about
congruent division triples. A similar case holds for function calls.

4 It is sometimes necessary to let some projection functions e.xplicitly remain in the transformed
expressions. The definitions of tJ1ese functions must be added to the functions in the
program unless they are simple enough to be expanded in place.

5 In the rules for CAR, CDR, ATOM and IF, new non-terminals a' are added to the grammar.
The new non-terminals must be distinct from any previous.

6 Since completely dynamic cases are caught by the initial test, we can assume when transform­
ing EQUAL that the result of equal is static, which is only the case if both parameters are
completely static. Thus the context S is used in both branches.

7 Often some of the parameters of a function definition will not be used in the transformed ver­
sion, it is, e.g., always the case if a parameter is completely dynamic. Unused parameters
can be removed from the parameter list in both the functions definition and in all calls to
it.

The definition of D[e]al is more complex: though it might seem tempting to discard static
sub-expressions "as they are found in e.", this is not always correct since they may very well be
needed to find the dynamic part of the result. It is however possible to eliminate the complete
e.xpression if it is in a context where it will definitely not be needed to find the dynamic part of
the value. We thus still use a as a context, but a smaller context now means that more data. is
needed rather than less. vVe must also take care that the division triple we use as the conte.xt of
an expression is in fact smaller than the division triple found for that expression in the binding
time analysis.

Here it is sometimes necessary to let some compositions of projection and pairing functions
explicitly remain in the transformed expressions. Due to the simple structure of the projection
functions it is straightforward to ma.ke an efficient symbolic composition of the pairs ('Do 'P').
The definitions of these new functions must be added to the functions in the program unless
they are simple enough to be expanded in place. Often the combined function uses only one of
its arguments, in which case the other argument can be removed.

D[e]fJ-y =
if a= S or 8 =?then (QUOTE .L)
else case e of

(QUOTE c)

(CAR _e')

(CDR e')

(ATOM e')

(EQUAL e' e")

(CONS e' e")

(IF e' e" e"')

if fJ CX: Xi then xf
else (CALL ('Do 'Px;) x1 xf)

where a"' (S, 'D. 'P)
and Xi "' (Sx;, 'Dx;, 'Px;)

: (QUOTE'D c) where fJ"' (S, 'D, 'P)

: (CAR D[c')fJ'-y')
where 8' = D,-y' = "Y iffJ = D,

-y' = "Y + a' -+ ettomS I (a . ?) otherwise

: (CDR D[e']fJ'-y')
where 8' = D,-y' = "Y if a= D,

-y' = "Y + a' --;. atomS I (? . 8) otherwise

:(ATOM D[e1]D-y) if BT[e']"Y = D,
(ATOM S[e18'-y') otherwise
whe1·e-y' = "Y + a' ~ atomS I (? . ?)

:(EQUAL D[e']D-y D[e"]D-y)

: (CONS D[e']a'-y D[e"]a"-y)
where (8', a") =

if a= D then (D. D)
else (.4., B) where a--;. atomS I (A. B)

:(IF D[e']D-y D[e"]o-y D[e"']fJ-y), if BT[e']"Y = D
(IF S[e']fJ'At' D[e"]81 D[e"']fJ-y) otherwise
where At'= "Y + 8' ._atomS I(? . ?)

(CALL/ e1 ... en): if a ex: 1 then
(CALL /d S[ei]Xl"'f ... S[en]Xn"'f D[e1]x1 "Y ... D[en]Xn"'f)

else
(CALL ('Do 'PJ}(CALL/& S[ei]XIi' ... S[en}Xn"Y)

(CALL /d S[e1]x1 "Y ... S[en]Xn'Y D[ei]x1 "Y ... D[en]Xn"'fJ)
where xi are the formal pa.rameters of f
and a"' (S, 'D, 'P),!- (SJ, v,, Pj)

Using S[] and D[] to transform functions. we obtain a.liew version of the program, where binding
times are separated. This is an example of a staging transformation [Jorring et al. 86]. If the
parameters and result of the goal function of a program are completely static or dynamic, then
the new program will have the same input/output function as the original. If not. then the
projection functions for the argument and the pairing function for the result must be used when
calling the goal function from outside.

7.5 Example

A detailed example of binding time analysis and transformation of a single function is given
below. The function, which is the same as used in the introduction, constructs a list of pairs
from a list of names and a list of values:

(Make-A-list (nantes values) =­
(IF (ATOM names) (QUOTE nil)

(CONS(CONS (CAR names) (CAR values))
(CALL Make-A.-list (CDR name$) (CDR values))

)))

For binding time analysis we annotate the parameters of CONS-expressions with non-terminals:

(Make-A-list (names values) =
(IF (ATOM names) (QUOTE nil)

(CONSnl : (CONSn2: (CAR names) n3 :(CAR values))
Make-A-list : (CALL MaA:e-A-list (CDR names) (CDR values))

)))

Note that we can use Make-A-list as one of the added non-terminals to the inner CONS. As we
assume the list of names is static and the list of values is dynamic, we start with the following
grammar:

After one iteration we get:

names-+ atomS I (S. S)
values-- D
Make-A-list-- atomS I (S. S)
nl-- atomS I (S. S)
n2 atomS I (S. S)
n3 ~atomS I (S. S)

names - atomS I (S . S)
values- D
!o.fCLke-.4-list---- atomS I (Sinl . S)
nl ~atomS I (S. D)
n2 ~atomS I (S. S)
n3--- D

Note that the completely static and dynamic values of n2 and n.3 are propagated into the right­
hand side of nl. The next iteration yields:

names- atomS I (S. S)
values -;. D
Make-A-list atomS I (Sjnl . SI.Make-.4-list)
n.l- atomS I (S. D)
n2 - atomS I (S . S)
n3-D

which is a fixed point. In this case transformation to restricted form is easy as we can use the
fact S n X = X to get:

56

names- atomS I (S. S)
values- D
Ma~~e-A-list.....,. atomS I (nl. Make-A-list)
nl- atomS I (S. D)
n2 - atomS I (S . S)
n3-D

Using S[eXJJ]l\fake-A-list "Y , where 'y is the grammar shown above we get the static function:

(Make-A-lists (nanuss valu.ess) =
. (IF (ATOM namess) (QUOTE nil)

(CONS(CONS(CAR namess) (QUOTE .L))
(CALL Make-A-lists (CDRnames") (QUOTE .L))

)))
We can remove the parameter valuess, a.'> it is never used. The dynamic part of the function is
obtained by D[exp]Make-A.-list '"(:·

(Make-A-listd (namess values8 namesd valttesd) =
(IF (ATOMnamess) (QUOTE .L)

(CONS (CONS (QUOTE .L) (CAR values d))
(CALL Make-A-listd (CDR namess) (QUOTE .L) (QUOTE .L) (CDR valuesd))

)))

The parameters valuess and ncnnesd can be removed .. The reduced versions of both functions
are:

(Make-A-lists (nam.es8) =
(IF (ATOM na.mes8) (QUOTE nil)

(CONS (COXS (CAR nam.ess) (QUOTE .L))
(CALL Make-A-lists (CDR namess))

)))

(Make-A-listd (names 5 valuesd) =
(IF(A.TOMnames 5) (QUOTE .L)

(CONS (COjVS (QUOTE .L)(CAR valuesd))
(CALL Make-A-listd (CDR nam.es5) (CDR valuesd))

)))

In this example it was not necessary to use S or ('D o P) projections on variables or function
calls in the transformations. This is the typical case, but such explicit references can occur e.g.
in places where a partially static value is used in a context where a. completely dynamic value
is expected.

7.6 Conclusion

\Ve have presented a method for separating binding times in a program. The method uses two
phases: first a. binding time analysis is used to obtain a program division, then this is used to
transform the program.

57

When used in a partial evaluation system this transformation is done prior to function
specialization and can thus be done a.t compiler generation time, having no adverse affects on
the speed or size of the generated compilers.

Here we used a grammar based method for doing binding time analysis for an untyped
language, but other ways of obtaining program divisions could be used. Launchbury's domain
projections ([Launchbury 88] and chapter 8) would he suitable for typed lambda. calculus.

Both the static and dynamic parts of a value can contain some unnecessary l. 's. These
can in some cases be removed-by variable splitting ([Sestoft 86], [Romanenko 88], chapter 6,
section 9.3). The method described in [Sestoft 86] uses user annotations to guide splitting a
variable containing a list of values into separate variables for each value, in chapter 6 we used
the structure of a P.artia.lly static variable to define new variables for each dynamic part of this.
[Romanenko 88] uses a type inference of residual programs to see where va.riables could be split,
an idea that is further investigated in section 9.3 of this thesis. Using a. combination of these
ideas, the results of the binding time analysis can be used to annotate the dynamic parts of
partially static variables. This information can then be used either during specialization (as in
[Sestoft 86] or chapter 6) or after specialization in place of the result of the type inference in
[Romanenko 88] or section 9.3.

58

Chapter 8

Binding Time Analysis for
Polymorphically Typed Higher
Order Languages

8.1 Introduction

Binding time analysis determines when the variables of a program are bound to their values.
A typical distinction is compile time versus run time. 'Vhen using partial evaluation for gen­
eration of compilers [Jones et al. 85], [Jru1es et al. 88], [Romanenko 88] explicit binding time
annotations are essential, as argued in section 4 of this thesis and in [Bondorf et al. 88]. Nielson
& Nielson argue in [Nielson 86] that binding time information is important when genera.ting com­
pilers from denotational semantics. Binding time analysis will be able to provide the necessary
information.

Binding time analysis is essentially a dual problem to strictness analysis. Where strictness
analysis finds how much of the parameters of a function is needed to produce a certain part of
the result, binding time analysis finds how much of the result will be known, given which parts
of the parameters are known. Experience shows that precision is more important in binding
time analysis than in strictness analysis. An intuitive understanding of this can be found by
considering the interdependence between functions in a program: given fog, lets assume that
a strictness analyzer fails to recognize that f is strict, meaning that g is in a lazy context.
Even so, the strictness analyzer may find that g is strict. since it need not consider the case
where g is not called (the code for g will not be called in that case). But if a binding time
analyzer fails to recognize that the result of g is known, even if only part of the input is known,
it will be assumed that f is called with an unknown argument, and will thus (very likely)
have an unknown result. In this way a,n ·imprecise result will be propagated throughout the
program being analyzed. Another reason for requiring better precision in binding time analysis
is the purpose ~f the analysis: determining which computations should be done at compile
time. Movin.g c<Jmputations from compile time to run time ca.u have disastrous effects on the
efficiency of a program, whereas using lazy evaluation instead of strict evaluation has a more
limited penalty.

Most previous work in binding time analysis [Jones et al. 85], [Jones et ctl. 88), (chapter 6),
and [Romanenko 88) have used untyped first order languages. The notable exceptions are
[Nielson 88) and [Schmidt 88] that uses typed lambda calculus a.ud [Launchbury 88] that uses a

59

first order typed functional language. This chapter is in one way best comparable to Schmidt's
and Nielson & Nielson's works as it uses a higher order language, but the method used is derived
from Launchbury's use of projections (domain retracts) to describe binding times. Launchbury's
paper describe the domain constructions and proves some properties about them, giving only
hints as to how to actually perform the analysis. This chapter examines tllis problem in d~
tails, and finds that there are some non-trivial problems involved, especially in connection with
recursive data types and higher order types.

The goal of this chapter is to provide an analysis with very precise results, aiming at a higher
information content than the analysis of Nielson & Nielson.

Outline

In section 8.2 we present the type system and the principle of using projections for describing
binding times. In section 8.3 we construct finite projection domains for each type in the system
and define the greatest lower bound of projections. Section 8.4 presents the binding time anal­
ysis algorithm by constructing abstract versions of the operators in a functional language and
proving these correct. Section 8.5 shows two examples ofthe analysis, section 8.6 discuss some
implementation issues and in section 8.7 we round off with some conclusions.

8.2 Preliminaries

Since the binding time analysis is intended to be used in connection with partial evaluation of a
language similar to the modern strongly typed functional languages like Lazy ML or Miranda,
we will in this chapter use a simplified version of such languages, essentially typed curried
combinators.

We use the Hindley /Milner type system as used in several functional languages (e.g. Lazy
ML). This is a type system with sum, product, higher order types and polymorphism which we
describe using an explicit ixed-point operator (Jt) to construct recursive types, rather than by
referencing to names in a global recursive type definition. We use this notation:

where Cl!i are type variables and int is the type of integers. There can be other base types. The
sum is separated and the product is non-strict to allow lazy evaluation. void is an one-element
type containing only .L Type variables bound by a p. are used for recursive types, and free type
variables are used for polymorphism. The free variables are implicitly universally quantified. To
restrict this to the Hindley/Milner type system (as known from e.g. ML), not all type formulas
will be legal. Recursive types must be sum types (to lift the domain, it might be a "sum of
one type"), and the injection tags used for sum types must be unique (i.e., no two types can
use the same tag). In addition to this we require that there must be finite polymorphism, i.e.,
there can only be finitely many instantiations of polymorphic type variables. This is no great
restriction, as eJ~.-tremely few programs use unbounded polymorphism. The Hindley /Milner type
inferencer will only accept finitely polymorphic functions, if explicit user declarations of the
types of functions are not used.

A polymorphic list can with this notation be expressed as:

a list = Jl /3: nil void + cons ax /3

60

where a, being ~free type variable, is used for polymorphism.
John Launchbury [Launchbury 88] used projections to describe binding times. A projection

Pa is a retract, i.e., a mapping from a domain A to itself such that:

Pa !; IDA
Pa 0]Ja = Pa

where IDA denotes the identity mapping on A. Projections can be used to describe information
content: a projection (IDA) that maps all elements of A to themselves, describes full infor­
mation, whereas a projection (ABSENT A) that maps all elements to .l will describe total lack
of information. Thus it is natural to use projections to describe the amount of information
available at partial evaluation time (compile time): whatever is left intact by a projection is
considered static, whereas the parts mapped to .l are considered dynamic.

Binding time analysis consists of finding a projection P& for the output of a function, given
the function f : A --+ B, and a projection 1Ja for its input, so that

P& o f o Pa = P& o f

This means that whatever P& retains of the output off is not dependent of the part of input
that Pa discards. Note that we are interested rn the P& that discards as little as possible of its
value, i.e., the largest if we use the normal partial ordering of functions.

It might seem strange that we want to find the greatest solution, as it is normal in abstract
interpretation to look for the least solution. However projections are not the same as sets of
values, rather a projection describes information content. 'Vhen using projections (with the
normal ordering), it would seem natural in a. forwards analysis to look for ·the strongest post­
condition (i.e., the greatest solution) and in a backwards analysis to look for the weakest pre­
condition (i.e., the least solution), as in strictness analysis using projections [Wa.dler et al. Si].
The choice between forwards and backwards analysis will depend on the problem. Strictness
analysis "which parameters need to be known to find the result of the function" seems to be a
kind of pre-condition, whereas the Pb above represents a post-condition for f with respect to the
pre-condition represented by Pa·

Note that it will in general not be possible to find a ma..ximal P&· Consider the function:

f x = if g x then x else x

where we assume that the conditional is strict in the condition. If g x never ~erminates then
f = >.x . .l, so Pb = ID is safe by the equation above. If g x sometimes terminates P& = Pa is
the largest safe r.esult. Thus, ifp4 :f:. I D then finding the largest p, would involve solving the
halting problem! We will in our analysis assume termination of programs, so the results of the
analysis will be the same for strict and lazy languages.

The result of the binding time analysis can be used by a partial evaluator, either by an­
notating expressions with their binding time, as in [Jones et al. 85] and [Jones et al. 88] or by
transforming the program to separate the binding times, as in chapter i.

8.3 Projections

Given a type formula for a type .4.. we want to construct a finite doma.in of represent.ations of
projections PA for A. Any PA should contain representations of ID..t· and ABSENTA, where

61

ABSENT A = .Xx.J.A. ID and ABSENT will be used polymorphically to represent IDA and
ABSENT A for any A. We will assume the existence of an implicit semantic function, mapping
representations to projections. We allow several representations of the same projection, but we
will be able to identify these. We will in the descriptions below allow ourselves to be a bit sloppy
in distinguishing projections and their representations. When the difference is important, we
will state which meaning is used. We will order the representations by comparing the projections
they represent.

'Pvoid = {ID} = {ABSENT}
'Pint = {ID, ABSENT}
'PAxB ={(!,g) I f E 'PA, g E 'Ps}

where (!,g) represents .X(a, b).(! a, g b).

'Pta.g1 A1 +···+ ta.gn An = {ABSENT} U {tag~ ft + · • • +tag~ fn I /i E 'P A; }

Where we use tag~ ft + · · · +tag~ f n to represent

.Xx.case X of tagl v: tagl (It v); .•. tagn v: tagn Un v)

where the case expression is strict in its sum-type argument (i.e., case J. of.,. = J.). Note
that·

I Dta.g1 A1 +···+Cog, An = tag~ 1 D A1 + • • • + tag~ I DAn

ABSENTta.g1 A1+···+ta.gn An :F tag~ A.BSENTA1 + • • • + tcLgn ABSENT An

For recursive types we have:

= {fix.Xfi.p I p E 'P A}
= {li} if cti is bound by a J.'

Here we require consistency in the choice of identifiers. Free type variables have no fixed set of
projections, rather they inherit the projection domain of any type that instantiates them1 • The
above definitions gives the following set of projections for the ct list type:

'Pali.t = {fix.Xg.ABSENT} U {fix.Xg.nil' ID +cons' (!,g) I f E 'Pa}

So the projection will either return J., or map a projection onto the elements of the list.
So far we have not defined projections on functional types. A projection on a function must

return a smaller function: a function that always returns a smaller value. This can be done
in several ways, it e.g.,. by composing it with a projection (in either end). It is however more
useful (as we will see) to think of the function as a closure, and then replace parts of the closure
by J.. If we have th.e program in named combinator form, all free variables are converted to
parameters, so a closure is just a function name and a partial list of parameters. A projection
(ABSENT A-s) can replace the complete closure by J., or another projection can, depending
on which function name the closure contains, apply projections to the parameters, giving a
projection of the form:

1This is only safe because we assume finite polymorphism. Otb.erwise we migbt generate infinitely many
projections during binding time analysis.

62

AC. case c of

[f Vt • • • Vn) :[/(PI V1) • • • (Pn Vn))

which can be represented by a set of abstract closures:

{[J]Jl • • • Pn), • • · '[g ql • • • qm)}

In this way the domain of projections for higher order types are not only dependent on the type,
but also on the program. The set need not contain closures for all functions in the program, as
it can be a default that any closure not represented will have the identity projection.

Whereas the projections· for the first order values have a meaning independent of the progra.m
being analyzed, thus being extensional, the projection for functional values is strongly dependent
on the actual program text, thus being very intensional. This makes the analysis less "clean",
but it also greatly increases the quality of the result of the analysis. We believe that this
increased precision is worth the price paid in loss of conceptual clarity.

Greatest Lower Bound

During a binding time analysis we will often want, given two or more projections, to find a.
projection that discards all that any of these discards and keeps all that all of these keep. This
is the greatest lower bound (n) of the projections. The greatest lower bound of two projections
PI and P2 can be defined a.s:

Note that in general the greatest lewer bound of two projections need not be idempotent, and
thus not a projection. In the domains of representations we will, however, be able to construct
a representation of a lower bound that will represent a projection, and that (with the exception
of the functional types) will represent the greatest lower bound in the domains of projections as
well.

W~ will now construct the greatest lower bound for each P A·

For all types and all projections p we will have:

ID n p = p
ABSENT n p = ABSENT

This completely defines n for the types void and int, so we will continue with the remaining;
types, showing only the cases not defined by the above rules.

PAxB:

(Pat, Pbl) n (J1a2, Pb2) = (Pat n 11a2, Pbt n J1b2)

tagl Pau + ... + tagn Pa,,. n tagl Pa2, + ... + tagn Pa2n =
tag1 (Pa11 n Pa 21) + · · · + tagn (Pa,,. n Pa2n)

63

All these are trivial. For recursive types we have:

P#Ja;:A :

hi n hi = hi

In the rule for a bound type variable we can assume that the same identifier is used, as a
preceding use of the rule for recursive types will have performed alpha-conversion to ensure this.
The rule for recursive types requires that n is continuous in the domains of representations of
projections. It is trivially monotonous, so only the limits of chains needs to be investigated. For
the finite domains this is again trivial, and for the function space projections it can be proven
by induction (omitted here).

For projections on functions we have:

PinP2 = {clAP21 clEpi}u{clApi I clEP2}
otherwise

where
[/ Pn .. ·Pin.] A P =

[/ (Pn n 1121) ... (Pin. n 112n.)]
if there is a closure [f P2l ... P2n.] E p

[! Pn · · ·PIn.]
otherwise

It is easy to see that the constructed projection p3 = 111 n 112 is in P A-B if the arguments
(PI, P2) are. To see that it is the greatest lower bound of these consider the result of applying
Pi to a closure [g v1 ••• vn.]· If there is no abstract closure of the right structure in either of PI
or P2, there will not be in P3 either, so all of them would map the closure to itself. If there
are appropriate abstract closures (g]Jn ... Pt n.] a.nd (g P2t .. ·112n.] in p1 and P2 then there is an
abstract closure [g (p11 n P2I) ... (p1n. n P2n.)] in113. Hence what we need to show is that

[g (Pn vi) ... (Pin. vn.)] n [g (P2I vi) ... (P2n. vn.)] =
[g ((pn n]J2I) VI)·· · ((11I n. n 112n.) Vn.)]

If the closure is seen as a data structure, this is certainly true. If it is seen as a function, that
is not necessarily the case. If g is monotonic we have

(g (pn t'I) ···(pin. Vn.)] n (g (1121 VI).·· (P2n. Vn.)] ;;:;!
[g ((pn n 112I) VI)· .. ((Ptn. n P2n.) Vn.)]

but the converse is not always true. Thus we have a lower bound, but not necessarily the
greatest. It is however the greatest in the required form. Also, the functions g for which it isn't
the greatest lower bound would behave similar to parallel OR, and are thus not expressible in
lambda calculus. So for the language presented below, the construction will indeed yield the
greatest lower bound.

64

8.4 Binding Time Analysis

Binding time analysis consists (as mentioned earlier) of, given a definition of a function and a
projection for its input, to find a projection for its output so that

Pb 0 I 0 Pr~ = 1Jb 0 I

where Pr~ is the projection for the input to f and Pb is the projection for the output. As mentioned
in section 2, it will not be possible to find a maximal safe]Jb, so we will just try to find a safe Pb

while taking care not to make it needlessly small. This will be done by constructing an abstract
function j# for each function f, such that j#]Ja = Pb. where Pb is the greatest projection
in Ps that has the required property. The j# is constructed by replacing each operator op
in f's definition by an abstract operator op#. We must for each op# prove that it has the
correct relation to op. We will do this by first defining the syntax, then for each operator in the
expression synta.x define the abstract operator, and then prove that the properties hold.

<program> ::= !I < varictbleu > ... < va1·iable~n1 > = < exp1 >;

fm < variableml > ... < variablem.nm > = < expm >;

< exp > ::= < variable >
I <function name>
I (<eXJJ>,<exp>)
I fst < exp >
I snd < exp >
I tagi < exp >
I case < exp > of tag1 < variable>:< eXJJ >;

tagn < variable > : < exp >
I < exp > < exp >

Thus we can define tf as:

where /i is defined by

and ef is ei where all operators have been replaced by their abstract (hashed) counterpart, all
variables Xj have been replaced by projection variables P:e, and all named functions fk by a
constant singleton set of abstract closures {{/k}}.
The operators can be given polymorphic types:

(_,_):AxB-A.xB
fst :Ax B- A
snd :Ax B- B
tagi : A.i --+ (tag1 A1 + · · · + ta.gn An)
case : (A1......,. B) X··· X (An......,. B)-+ (tag1 A1 + ···+ tagn.4n)- B
apply : (.4- B) x .4- B

6.5

where we look at the branches of the case operator as functions of the "pattern" variables. Note
that the tagi and case operators are not really polymorphic in the sum type arguments. This is
because we required unique iujection tags, so we could say we have a family of case functions.
The branches of a case expression are seen as functions from the summand types to the result
type. These functions are seen as a part of the case operator. The apply operator is invisible
in the actual syntax, where < e:cp > < e:cp > is application of a function to an argument. In
addition to these, we will also have constants and operations on the base types (1,2,'a',+,-, ...).
We can now give types for the abstract operators:

(_,_)'#:PAx Ps-+ PAxB
fst# : PAxB-+ PA
snd# : PAxB- Ps

tagf : P A; - Ptag1 A1 +··+tag,. An
case# : (PA 1 - Ps) X··· X (PAn- Ps)- Ptag1 A1+··+ta9 .. An- Ps
apply#: PA-B x PA-+ Ps

Note that the parameters of case# corresponding to the branches are of type PA; - Ps rather
than P A;-B as one could expect. This is because the branches in case# will be abstract expres­
sions {built from abstract operators), and thus projection transformers rather than projections
of value transformers. We will now give definitions of the abstract operators. The abstract
version of a base type constant is the identity projection and the abstract version of a strict
base type operator (like +,• etc.) returns ABSENT unless all parameters are ID, in which case
it returns ID

(-,-)# = .X(pa, Pb).(Pa. Pb}
f st# = APab•Pa where]Jab = {JJa, Pb}
snd* = APab·Pb where Pab = {JJa,]Jb}

\ 'ID- - I - - 'ID tagi = -"Pa·tag1 + · · · + tagi Pa + · · · + tagn
case# = .X(F:b, ... ,F!,b) . .XJJa.

case]Ja of
ABSENT : A.BSENT
tag~ It+···+ tag~ In: (F:b It) n ·· · n (F!,.b In)

In the abstract expressions variables (e.g. x) have been replaced by projection identifiers (e.g.
Pz). Function names (e.g. f) are replaced by projection constants (e.g. {[f]}). The rules have
assumed the absence of fix in the projections. 'Vhen decomposing projections on recursive
types we convert J.LCX: r[cx) to r[J.La:: r[cx)) and fix.Xf.p[f] to JJ[fix.Xf.p[f]]. As fix is used only on
sum type projections, it is only case# that bas to worry about this. Similarly it is only tagf
that have to worry about introducing fix. We will use the fact that the tags are unique to find
the type they inject into, specifically if it is a recursive type. In case it is we will extract the
projection corresponding to the type variable by the method below, and create a new recursive
projection by taking the greatest lower bound of this and the projection obtained by replacing
the extracted parts by a projection identifier (f) using the replace function below, and adding
a. fix.Xf around the resulting projection.

66

extract a:[r] p =
if a: does not occur free in r then I D
else if p = ABSENT then ABSENT
else case (r, p) of

(a:' p)
(Tt X T2 , {JJl, P2})
(tag! Tt + · · · + tagnTn ,

:]J

:(extract a:[rt] PI) n (extract a:[r2) P2)

tag{pt + · · · + tag~Pn) : (extract a:{rl] 1Jt) n · · · n (ext1·act a[rn] Pn)
(r1 - r2 , JJ) : I D
(J..L f3 : r1 , [1X>.f~Pl) : extract a:[r1] PI

replace a: f fr]p =
if a: does not occur free in r then p
else if p = ABSENT then ABSENT
else case (r, p) of

(a:' p)
(Tt X T2 , {Pt. P2})
(tag! Tt + · · · + tagnTn,

:f
: {rezJlace a f [rt] PI , replace o: f [r2] P2}

tag~pl + · · · + tag~]Jn) :tag~ (re]Jlace a: f [rt] PI)+ · · ·
+tag~(replace o: I [rn] Pn)

:p (rt - r2, JJ)
(J..L {3 : Tt , fix>.g.pl) : fzx~g.rezJlace a: I [rt] PI

apply# must have the property:

apply#(Pa.b.Pa.) o (Pa.b f) o Pa. = apply#(JJab.Pa.) of

for any function f : A - B and any projection Pa. E 'P A· If this should hold for any imaginable
/, it is fairly easy to see that app[y#(Pa.bdJb) = ABSENT unless both Pa.b and Pa. are the
identity projections (in which case it is I D). But by relaxing the condition to hold for only
the functions that actually occur in a given program, we can obtain better results. For the
previously mentioned projection structure we can define:

if Pa.b = ABSENT

c E~ab appf cPa. otherwise
where

appf [/ 1Jt • • • Pn] Pa. = J# Pt · · · Pn Pa.
{[/ Pt · • · Pn Pa.]}

if f has n + l parameters
otherwise

Essentially we add parameters to all the. closures involved, producing new closures. \Vhen the
final element in a closure is given we use the abstract function f# on the argument projections
giving a result projection. Since it is possible that some of the abstract closures will be given
their final argument and others not, we produce a. result projection for each closure (which can
be just by adding a parameter to the closure) and take the greatest lower bound of these.

This definition gives ·us

67

for first-order functions /, as one would expect. f'* must be defined to handle polymorphism.
This is done by letting it be polymorphic over projection domains. As mentioned above the type
system ensures that there will only be finitely many instantiations of any given polymorphic type,
so this will not cause non-termination.

8.4.1 Correctness

To prove the definitions of op# correct, we must first prove that for an operator op A - B
that

Pb = op* Pa => Pb o op o Pa =]Jb o op

for all Pa (the safety criterion). The abstract versions of base type constants and operators are
trivially correct, so we will continue straight away with the remaining cases:

Pb o (_, -) o (plll,Pa2}
= (J1at,]Ja2} 0 (Pat,]1a2}
= (Pat 0 Pab Pa2 0 Pa2}
= (Pab Pa2}
= (Pat. Pa2} 0 (-,-)

0

op = f st : Pb = f st# Pa = Pat where Pa = (Pat.]1a2}

Pb o fst o Pa
=Pat o fst o (Pat,Pa2}
=Pat o fst o (..\(x, y).(Pat X,Pa2 y))
=Pat o (..\(x,y).]Jal x)
=Pat o Pat o (..\(x,y).x)
=Pat o fst

0

op = snd : Pb = snd# Pa = Pa2 where Pa = (Pat. Pa2}

Pb o snd o Pa
= Pa2 0 snd o (Pal,]Ja2}
= Pa2 o snd o (..\(x, y).(Pal x, Pa2 y))
= Pa2 O (..\(x,y).Pa2 y)
= Pa2 O Pa2 o (..\(x, y).y)
= Pa2 o snd

0

68

op = tagi : Pb = tagt Pa = ta.g~ID + · · · + tag:]Ja + · · · +tag~ID

Pb o tagi o]Ja
(I ID- - I - - I ID) = tag1 + · · · + tagj]Ja + · · · + tagn o tagi o]Ja

tag1 v : t.agl v;

= >.x.case x of t.agi v : tagi(Pa v); o tagi o Pa

tagn V : tagn v
= (>.v.tagi (pa v)) o Pa
= tagi o Pa 0 Pa
= tagi o Pa
= Pb o tagi

0

For the case operator we will look at CCLSe (It, ... , f n) and the corresponding case# ut, ... , gf).
We will consider the functions fi as part of the case operator and the abstract functions Jf as
part of the case# operator. vVe will assume by induction:

Cff]Ja) o /i o]Ja = (If Pa) o /i

for all/i and all Pa· We will make use of a lemma:

f!; g => fog = f for all projections f and g

proof:

J!;g
=>fof!;fog
=>/!;Jog

g!; ID
=>fog!;JoiD
=>fog!;/

0

We will start with the case where jJa = .4BSENT:

op = case (It , ... , f n) :
Pb = case# (ff, ... , J!) ABSENT = ABSENT

Pb o case (ft, ... , f n) o Pa
= ABSENTo case (ft, ... ,/n) o ABSENT
=ABSENT
= ABSENTo case (ft, ... ,/n)

0

and then the case where Pa = tag~p01 + · · · + tag~Pan:

69

op = case (ft, .•. ,/n) :
Pb = case'* (If, ... , J!) (tag1 Pa1 + · · · + taonPan)

= uf PAl) n ... n U! Pan)

p,ocase(ft, ••. ,fn)o(tagtPa1 + ··· +tagn]Jan)
= Pb o (Ax.case x of tag1 v: It v; ... tag" v: fn v)

o (Ax.case x of tag1 v: tagt(Pa1 v); ... tagn v: tagn(Pan v))
= Pb o (Ax.case x of tag1 v: ft{JJa1 v); .•• tag" v: /n(PAra v))
= (Ax.case x of tag1 v: Pb o Ito Pa1 v; ... tag" v: Pb o In o PAn v)

= (Ax.case X of tagl v : Pb 0 uf Pal) 0 It 0 PAl Vj by the lemma. as Pb!: ut PaJ

tag" V: Pb o (If Pan) o fn o Pan v)
= (Ax.case X of tagl v: Pb 0 uf PA~) 0 It Vj

tagn v: Pb 0 U! PAn) 0 In v)
= (Ax.case x of tag1 v: Pb o It v; ... tag" v: Pb o fn v)
= Pb o (Ax.case x of tag1 v: It v; ..• tag" v: /n v)
= Pb o case (It, ... , In)

0

Proving safety for apply'* is proving the property:

by the inductive assumption

by the lemma again

for any functional value f : A -+ B that can occur while executing the program. If the function
projection Pab is ABSENT then apply'*(JJab,]ia) is ABSENT as well, making the property trivially
true. Otherwise that f is a closure [g Vt ... vn], and Pab is a set of abstract closures. Then Pab f
is [g (Pt Vt) ... (Pn vn] where [g Pt ... Pn] is the abstract closure for g in Pab, or [g ID ... ID] if
there is no such abstract closure. apply'*(JJAb, Pa) will be less than apzJf [g p1 ... Pn]PA, so by the
lemma given above, all we have to prove is that

(apzJf [g]Jt · · · Pn] PA) o [g (Pt vt) · · · (Pn Vn)] o PA =
(appf [g Pt · · · Pn] PA) o [g Vt . · · Vn]

We will consider the two cases: g has n + 1 parameters, and g has more than n + 1 parameters.
In the first case

apzJf [g Pt · • · Pn]]JA = g# Pt · · · Pn PA

and

By induction we can assume that

70

which is what we needed to prove the property. In the case of g having more than n + 1
parameters

and

and since

we have what we want.

app~ (g PI · · .]Jn] Pa = {[g]JI • • • Pn pCJ]}

{[g PI • • .]Jn Pa]} [g (JJt VI) • • • (Pn Vn) (]Ja Va)]
= [g (Pl (PI vt)) .. . (]Jn (JJn Vn)) (JJa (Pa Va))]
= [g (PI VI)··· (Pn Vn) (JJa Va)}
= {[g PI • • .]Jn Pa]} [g VI • • • Vn Va]

8.4.2 Recursive function space projections

A function space projection may contain abstract closures that have parameters that again are
abstract closures etc., so an analysis might run infinitely by building larger and larger nested
structures. To solve this we propose to approximate infinite nested structures by recursive
definitions. This will be done by recognizing similarities between different levels in the closures
and construct a recursive definition by identifying the levels. This might lead to a less precise
(smaller) projection, but will not make a safe projection unsafe, so the correctness proofs will
still be valid.

When a recursive projection is used it is unfolded one step (which will not change the value).
After application the result is made recursive a.gain if necessary.

For recursive types the type structure determines when recursion needs to be introduced in
the projection. For functional types this is not so easy. However, abstract closures can only be
infinitely nested if a function's arguments can contain a closure of that same function. This can
to some extent be decided by the type structure, in the sense that the type of a function must
allow a parameter that contain a function of the same type. There are several ways of tying
the recursion. One is to make a recursive definition every time the type would make it possible,
another is to do it when a closure a.ctually occur nested inside one of the same structure. The
tighter we tie the recursion, the less information we obtain, but the analysis is likely to be faster,
as we have made the set of possible values smaller. We have chosen a compromise: if in a set of
closures, one of the closures contain a set of closures that overlap the top-level set, then make
the set recursive. The recursion is made by replacing the inner set of closures by an identifier,
adding the extracted closures to the top level and making the projection recursive in the inserted
variable.

8.4.3 Fixed-point iteration

Binding time analysis will be done by a fixed-point iteration using minimal function graphs
[Jones et al. 86]. In this strategy we use a minimal function gra]Jh (lviFG) which contain map­
pings of abstract functions to their result for specific argument sets (those that are actually
needed). The initial lVIFG will contain only one mapping: the goal (abstract) function with its

71

parameters, binding the result to the top value {ID). Iteration proceeds by re-evaluating all
mappings in the MFG. When a function call is needed, its value froiJl the MFG is used. If there
is no mapping for a call, one is added that maps the call to ID. If re-evaluation gives a result
different from the one in the MFG, the mapping is changed to the greatest lower bound of the
previous and the new value. As all changes are monotonic and there are only finitely many
possible argument value combinations the iteration will terminate when a fixed-point is reached.
This will then be a consistent solution, and it will be the largest possible as values start with
the top element (JD) and are only made lower when necessary.

8.5 Examples

An example using polymorphism is shown below. First we define functions:

a list = IJ. {3 : nil void+ cons a X {3

f : (a list)- ((a X int) X int list)

fx = m(mx)

m : (a list)--+ (ax int list)

m x = case x of nil v: nil v;
cons v: cons ((fst v,42), m (snd v))

Then the abstract functions:

f# : 'P(olist)--+ 'P((oxint)xint list)

m# : 'P(olist) --+ 'P(oxint list)

m# p~ = case# v~ of nil v :nil# v ;
cons v: cons# ((fst# v, ID), m# (snd# v))

Note that we have called m# directly instead of using apply# which we can do, as m is first
order.

To find f# fix>..g.ABSENT we construct an initial minimal function graph (MFG):

[(!# fix>..g.A.BSENT,.. ID)]

Initially assuming the result is I D. During the fixed-point iteration we add function calls to the
MFG, initially mapping them to ID. \Vhen we evalua.te them we change their value to the new
value. This yields the following sequence in the iteration:

i2

[(!# fix:Ag.ABSENT ID))

[(!# fix:Ag.ABSENT...,. ID),
(m# fix:Ag.ABSENT 1-+ ID)]

[(!# fix:Ag.ABSENT- ID),
(m# fix:Ag.ABSENT ~-+ ABSENT))

[(!# fix:Ag.ABSENT ABSENT),
(m# fix:Ag.ABSENT ~--+ ABSENT)]

[(J# fix:Ag.ABSENT ~-+ ABSENT),
(m# fix:Ag.ABSENT ~--+ ABSENT))

As expected, changing the elements of a completely unknown list results in a completely unknown
list. if we start with a list of unknown elements we get the following sequence:

[(!# fix:Ag.nil' ID +cons' (ABSENT, g) ~-+ ID))

[(!# fix:Ag.nil' ID +cons' (ABSENT, g) ID),
(m# fix:Ag.nil' ID +cons' (ABSENT, g) ..- ID))

[(!# fix:Ag.nil' I D +cons' (ABSENT, g) I D),
(m# fix:Ag.nil' ID +cons' (ABSENT, g)

fix>.g.nil' ID +cons' ((ABSENT,! D), g)))

[(!# fix:Ag.nil' I D + cons' (ABSENT, g) I D),
(m# fix:Ag.nil' ID +cons' (ABSENT, g)

fix:Ag.nil' ID +cons' ((ABSENT,ID),g)),
(m* fix>.g.nil' ID +cons' ((ABSENT,ID),g) ID)) .

[(!# fix>.g.nil' ID +cons' (ABSENT, g) ID),
(m# fix>.g.nil' JD +cons' (ABSENT, g)_

fix>.g.nil' ID +cons' ((ABSENT,ID),g)),
(m# fix:Ag.nil' ID +cons' ((A.BSENT,ID),g)

fix:Ag.nil' ID +cons' (({ABSENT,ID),ID),g)))

[(!# fix:Ag.nil' I D + cons' (ABSENT, g) ~--+
fix>.g.nil' ID +cons' ({{ABSENT,ID), I D), g)),

(m# fix:Ag.nil' ID +cons' (ABSENT, g)
fix>.g.nil' ID +cons' ((ABSENT,ID),g}),

(m* fix>.g.nil' ID +cons' ((ABSENT, I D), g) ~-+
fix>.g.nil' ID +cons' (((ABSENT,ID},ID},g}))

i3

[(!# jix)..g.nil' I D +cons' (ABSENT, g} .-
jix)..g.nil' ID +cons' (((ABSENT,! D}, ID},g}),

(m# jix)..g.nil' ID +cons' (ABSENT, g),.
jix)..g.nil' ID +cons' ({ABSENT,ID),g)),

(m# jix)..g.nil' ID +cons' ((ABSENT, I D), g),.
jix)..g.nil' ID +cons' (((ABSENT.ID),ID},g})]

Note that the two mappings for m# are of different instances of the polymorphic type. There
need not always be a mapping for every instance, as all mappings where the projection for the
polymorphic part is I D or ABSENT will be shared by all types.

Now we will show an example with higher order functions. In the example closures can be
built to an arbitrary depth, which means that recursive function projections will be needed.

tree = J.t a: leaf int +node a X a

mazt : tree - tree
mazt t = maz1 (maz2 t)

maz1 : (int- tree) X int - tree
maz1 t = (!st t)(snd t)

maz2 : tree - (int - tree) x int
maz2t = casetof leafn: (fl,n);

node p: maz3 (maz2 (fst]J)) (maz2 (snd p))

maz3: (int-tree)xint- (int-+tree)xint- (int-tree)xint
maz3tlt2 = (f2(fsttl)(fstt2),maz(sndtl,sndt2))

/1 : int - tree
/1 n = leaf n

/2 : (int- tree) - (int- tree) - int - tree
/2 g1 g2 n = node (g1 n,g2 n)

The function mazt takes as argument a binary tree with integer leaves and returns a tree with
the same structure but with all the leaves replaced by the ma."<imum value of the leaves of the
input tree. This is done by constructing a function that given an integer will build the tree with
that integer and then supply this with the ma.ximum value that was found in the same passage
of the input tree as the function. Now follows the abstract functions (this time without type
declarations):

74

maxt# t = maxl# (max2# t)

maxl* t = apply# (fst# t)(sncl# t)

max2# t = case# t of
leafn: ({[fl]},n};
node p: maxJ# (max2* (Jst# p)) (m.ax2# (snd# p))

maxJ# t1 t2 = (apply# {[f2)} (fst# tl) (fst# t2),(snd# tl) n (snd# t2))

fl# n = leaf# n

f2# gl g2 n = node# (apply# gl n, apply# g2 n}

In the iteration below we start by giving m.axt a projection that keeps the structure of the
tree but discards the leaves. 'Ve would thus expect a result projection of the same type. This
projection has the form:

fixA.pa .leaf' ABSENT+ nocle' (Pen Pew}

and will be referred to as pp in the example. For simplicity unrea.chable configurations are
removed as soon as they are no longer reachable.

[(maxt# JJP, ID)]

((m.axt# JJP, ID),
(max2*]Jp, I D)]

((maxt# JJP, ID),
(max2* pp, ({[fl]},ABSENT)),
(maxl# ID ..- ID),
(max3*IDID ID)]

((maxt# pp ID),
(max2# pp ({[fl]},ABSENT}),
(maxl# ({(!1]}, ABSENT), ID),
(maxJ# ({(fl]},ABSENT) ({(fl]},ABSENT) - ID)]

((maxt# pp, ID),
(max2# pp, ({[fl]},ABSENT}),
(maxl# ({[/1]},.4BSENT},. ID),
(max3# ({[fl]},ABSENT) ({{fl]},ABSENT}

....... ({{!2 {[fl]} {[fl]}}}, ABSENT}),
(Jl# ABSENT,. ID)]

75

[(maxt# pp - ID),
(max2# pp- (fix.Xc.{[/1],[!2cc]},ABSENT)),
(maz1# {{[/1]},ABSENT) - ID),
(maz3# {{[/1]},ABSENT) {{[/1]},ABSENT)

- { {[/2 {[/1]} {[/1]}]}, ABSENT)),
(11# ABSENT- J1p)]

[(maxt# pp - ID),
(max2* pp - {fi.r.Xc.{[/1], [/2 c c]}, ABSENT)),
(maz1# {fir.Xc.{[/1],[12cc]},ABSENT) - ID),
(maz3# {fir.Xc.{[/1], [/2 c c]}, ABSENT) {.fix.Xc.{[/1], [/2 c c]}, ABSENT)

...... {fi.r.Xc.{[/1], [/2 c c]}, ABSENT)),
(/1 # ABSENT - pp),
(/2* {[/1]} {[/1]} ABSENT - /D)]

[(maxt* pp - ID),
(max2* pp - {fir.Xc.{[/1], [/2 c c]}, ABSENT)),
(maz1# {fix.Xc.{[/1],[/2cc]},ABSENT) - ID),
(maz3# {fir.Xc.{[/1], [/2 c c]}, ABSENT) (fix.Xc.{[/1], [12 c c]}, ABSENT)

- {.fix.Xc.{[/1], [/2 c c]}t ABSENT)),
(11# ABSENT- PJJ),
(12# .fix.Xc.{[/1], [/2 c c]} fir.Xc.{[/1], [/2 c c]} ABSENT - I D)]

[(maxt# pp - ID),
(max2# pp - {fi.r.Xc.{[/1], [/2 c c]}, ABSENT)),
(max1* {fir.Xc.{[/1], [/2 c c]}, ABSENT) - ID),
(maz3# {fir.Xc.{[/1], [/2 c c]}, ABSENT) (.fix.Xc.{[/1], [/2 c c]}, ABSENT)

- (fir.Xc.{[/1], [/2 c c]}, ABSENT)),
(/1 # ABSENT - pp),
(12# fir.Xc.{[/1), [/2 c c]} fix.Xc.{[/1), [/2 c c)} ABSENT - pp))

[(maxt# pp - pp),
(maz2# pp- (fir.Xc.{[/1],[/2cc]},ABSENT)),
(maz1# (fir.Xc.{[/1), [/2 c c]}, ABSENT) - ID),
(max3* (fir.Xc.{[/1], [/2 c c]}, ABSENT) (fix.Xc.{[/1), [/2 c c]}, ABSENT)

....... (.fix.Xc.{[/1], [/2 c c]}, ABSENT)),
(/1# ABSENT- pp),
(12# fir.Xc.{[/1), [/2 c c]} fir.Xc.{[/1), [/2 c c]} ABSENT - pp))

This gave the expected ·result for the -result of m.ctxt. The·interesting part is however the result
of max2 which shows a recursive function projection. If we couldn't make recursive closures the
iteration would yield larger and larger nonrecursive nested approximations.

76

8.6 Implementation Issues

In the rules for greatest lower bound and in other places we have either a.o;sumed that there
are no name conflicts in the variables used to make recursive types and projections or else
explicitly alpha-converted the names. In an implementation this can be be made simpler by
using DeBruijn indexing of these variables. This also makes comparison of projections easier.

In some cases where higher order functions are used to build continuations the minimal
function graph will contain separate mappings for all possible continuation structures (down
to the depth where recursion is tied). As well as making the at,alysis slow, this also makes
the result less useful, as we are really only interested h1 a single mapping using all possible
continuations. A way of achieving this is to combine mappings in the MFG tha.t have identical
arguments except for the functional arguments, where the sets of closures a.re overlapping. The
overlap requirement makes the chance of combining mappings that are really used in different
contexts small. Note that the condition for combining mappings is the same as the condition
for making a function projection recursive. Alternatively, a static analysis can find the set of
closures that are possible values at a given program point. as sets of (function name, number of
parameters) pairs. This can be used to determine when recursively nested closures are possible
and when it is pertinent to combine mappings for a given function.

In the examples shown, the value of a mapping is always taken from the previous MFG, even
if a new value has alrMdy been computed in the new MFG. Using the new value instead, in case
it is already evaluated, will make the iteration shorter. If this strategy is used, re-evaluating the
latest additions to the MFG first will improve iteration speed further.

8. 7 Conclusion

\Ve have presented an algorithm for binding time analysis of a higher order functional language
with a polymorphic type system. It extends the ideas of [Launchbury 88] to higher order func­
tions and polymorphic types, and compares well to [Nielson 88] by handling values that are
partially static, containing both compile time and run time information in a single variable,
which the present version of Nielson & Nielson cannot do (though I believe their basic frame­
work could be extended to do so). By restricting the projection domains to contain only ID
and ABSENT, a result similar to that of Nielson & Nielson can be obtained. The analysis is
not as conceptually clean as Nielson & Nielson's, but we believe the increased precision is worth
the cost.

7i

Chapter 9

Miscellaneous Topics

This chapter contains a. collection of ideas related to the subject of this thesis. Mainly they
describe extensions to the methods shown in the previous chapters.

9.1 An optimization fQr grammar. based binding time analysis

One of the reasons the gra.mma.r based BTA takes so long for large programs, is that there is
a. large number of variables tha.t has the sa.me biuding time structure, a.nd yet be represented
by different non-terminals. This means tha.t the right ha.nd sides of ma.ny productions contain
a. large list of equivalent non-terminals, a.nd this takes time to build. A simple example of this
is the gra.mma.r:

x-+ S I P(D,x) I P(D,y) I P(D,z)
y-+ S I P(D,y) I P(D,x) I P(D,z)
z-+ S I P(D,x) I P(D,z) I P(D,y)

which ca.n be reduced significantly by combining non-terminals:

xyz-+ S I P(D,xyz)

If this observation is to ma.ke a.uy difference for the time taken to build the gra.mma.r, the non­
terminals must be combined before BTA. This ca.n be done by recognizing identifiers tha.t will
definitely ha.ve the sa.me binding time, regardless of wha.t tha.t might be. Identifiers x and y will
ha.ve the sa.me binding time if x is directly dependent on y and vice versa.. Direct dependence is
defined by:

i) a. formal parameter x to a function f is directly dependent on a. va.ria.ble y if y is used in a.
result position in a.n actual parameter to f in the position corresponding to x.

ii) a. formal parameter x to a. function f is directly dependeut on a. fuuction g if a. call to g is
used in a. result position in a.n actual parameter to f in the position corresponding to x.

iii) a. function f is directly dependent on a variable y if y is used in a. result position in the
body of f.

iv) a. function f is directly dependent on a function g if a call to g is used in a. result position
in the body of f.

iS

v) a variable x in a let-binding is directly dependent on a variable y if the expression defining
x contain y in a result position.

vi) a variable x in a let-binding is directly dependent on a function g if the expression defining
x contain a call tog in a result position.

vii) an identifier a is directly dependent on an identifier c if there is an identifier b, such that a
is directly dependent on b and b is directly dependent on c.

where we use "variable" both for formal para.meters and variables in let-bindings. Identifiers
also include function names. An expression e is in a result position in an expression d if:

dis e.

or dis (IF d1 d2 d3) and e is in a result position in d2 or d3.

or dis (LET bindings dl) if e is in a result position in d1 and e is not shadowed by a.ny of the
bindings in bindings.

These rules can be used to group identifiers in equivalence classes of mutually directly dependent
identifiers. Each of these equivalence classes are given a common non-terminal for use in BTA.
H one of the classical efficient algorithms for finding strongly connected components in a graph
is used, the construction of equivalence classes can be done relatively fast.

9.2 Extension of grammar based binding time analysis to higher
order functions

This section describe a possible extension of the grammar based method for binding time analysis
from chapter 6 and chapter 1 to higher order functions. 'Ve first sketch a value domain to use
during partial evaluation and use tl1is to construct an infinite binding time domain, which will
be approximated by grammars as described in chapters 6 and 7.

9.2.1 The language

The language we will use is a curried form of the language used in section 3.1. A program is
thus a set of untyped curried combinators using LISP primitives. The syntax is given below.
We assume call-by-value, LISP-like semantics.

79

program .. - It Zn ••• Ztn1 = ezp1

ezp

fm Zml• •• Zmnm = ezpm

Zij

/i
(QUOTE constant)
(CAR ez1J)
(CDR ez1J)
(ATO.Mezp)
(CONS ezp ezp)
(EQUAL ezp ezp)
(IFezp ezp ezp)
ez1J exp

During normal evaluation we have the following value domain:

value ··­.. - at~m
(value . value)
[h value ... value]

where [/i v1 ... vn] represents a closure of the function /i with the partial list of arguments
v1 ••. Vn· We assume that constants and input/output to the program are first-order values,
that is they do not contain closures.

9.2.2 Partial evaluation

As in chapter 6 we will during partial evaluation use a tagged sum consisting of values (represent­
ing static values) and expressions (representing dynamic values) and partially static structures
build from these. In addition to these we will also use closures with partially static arguments,
yielding this partial evaluation domain:

p_value ::= S(first-order value)
I D(ea:p)
I (p_value . p_value)
I [h p_value ... p_value]

Partial evaluation of expressions can then be done like this:

Peval[xi;]env = env Zij

Peval[fi]env = [/i]

Peval[(QUOTE c)]en.v = S(c)

80

Peval[(CAR e)]env =
case Peval[e) of S((a. b)) : S(a)

D(el) : D((CARel})
(a.b) :a
otherwise : error

end

Peval[(CDR e)]env =
case Peval[e]env of S((a. b))

D(el)
(a. b)

: S(b)
: D((CDR el))
: b

otherwise : error
end

Peval[(ATOM e)]env =
case Peval[e]env of S(a) : S(atom(a))

D(el) : D((ATOM el))
otherwise: S(fal~e)

end

Peval[(CONS el e2)]env =
case (Peval[el]env,Peval[e2]env) of (S(a), S(b)): S((a. b))

(a, b) :(a. b)
end

Peval[(EQUAL el e2)]env =
case (Peval[el]env,Peval[e2]env) of (S(a), S(b)) : S(a = b)

(a. b) : D((EQUAL dyn(a) dyn(b)))
end

Peval[(IF el e2 e3)]env =
case Peval[el]env of S(a) :·if a then Peval[e2]env else Peval[e3]env

D(el) : D((IF el dyn(Peval[e2]env) dyn(Peval[e3]env)))
(a. b) : Peval[e2]env
otherwise : error

end

Peval[el e2]env =
case Peval[el]ent• of [/i VI ..• vk] : ifni > k + 1 then

end

{/i v1 ... Vk Peval[e2]env]
else if unfold? then

Peval[ex ·][Xil,.. VI, ••• , Xi(n;-1),.. Vk,]
p, Xin;,.. Peval[e2]env

else suspend call, deta.ils below
D(el) : D(el dyn(Peval[e2]env))
otherwise : error

81

The function dyn(.. .) converts a (partially) static value to a dynamic value by converting it to an
expression. This might require suspension of closures constructed from incomplete applications.
When suspending a closure or a call, the static parts of the parameters are added to the function
name, yielding the name of the residual function. The dynamic parts become the parameters to
the residual call. Details can be found in chapter 6.

When a residual expression has been generated, it is searched for suspended calls a.nd closures.
These are added to the list of functions that are needed in the residual program, and definitions
for these will be generated later. Suspended closures are filled with dynamic parameters up to
the full number of parameters to the function.

9.2.3 Binding time analysis

Binding time analysis will (as seen in section 4.3) make it possible to avoid a lot of the tests
on the form of the partial values that form the parameters to base operators. This is done by
approximating the set of possible partial values in a static analysis done before partial evaluation.
We construct first this domain of binding time values, each of which approximates a set of partial
values:

b_value D I $.value*

s_value .. - S
(b_value . b_value)
[!, b_value ... b_value]

So a binding time value is either D, representing all sets of partial values containing dynamic
values or it is a list of descriptors: S describing all sets of first order static values, {bl . b2)
describing the set of pairs of elements from bl and b2 and [/i bl ... bn] describing the set of
closures of fi with parameters in bl ... bn. Even if we assume the lists contain no repetitions,
these values can be arbitrarily large, giving an infinite binding time domain. However, by
using grammars as described in chapters 6 and 7, we can generate finite recursive descriptions
approximating these binding time values. In this way the list of s_values in a b_value will refer
to non-terminals instead of to other b_values. In closures it is natural to use non-terminals
associated with the parameters to the function in question, whereas it may be necessary to
associate parameters of CONS-expressions with non-terminals to have appropriate non-terminals
for the pairs in the list of s_values. Having a finite number of non-terminals thus ma.kes the set
of possible lists of s_values finite (if we avoid repetition).

Discussions of how to use the result of the binding time analysis can be found in chapters 6
and 7, [Bondorf 89] and [Bondorf et al. 88].

9.2.4 Signatures as higher order functions

In [Bondorf 88], the free signature of a term-rewriting system was reported to give problems
for compilation by partial evaluation and for self-application. This was due to the fact that,
although the language allowed arbitrarily many different constructors. each program would
have a fixed finite set of constructors. So, a self-interpreter would have to simulate an infinite
set of constructors using a finite set. This required a self-interpreter to use coded forms of
data-structures, so any residual form of it would also use coding. This made it impossible to
make compilation by partial evaluation of a self-interpreter yield satisfactory results: any object
program would add a level of coding to the source programs data. Similar problems occured

82

when self-applying the partial evaluator. These problems made Bondorf drop the free signa.ture
in favor of a LISP-like data-structure in [Bondorf 89].

When having higher order functions it is possible to simulate a signature by a set offunctions.
Consider for example the signature

list = nil
I cons value list

and a function using it:

append a b = case a of
nil : b
cons al a.2 : cons al (append a2 b)

This can be converted to the following set of definitions:

append a b
appendl b al a2
nilfg
cons vI f g

= a b (appendl b)
=cons al (append a2 b)
=f
= g vI

where the definitions of "nil" and "cons" corresponds to the declaration of the sort "list". This
method is easily applicable to any signature, and is' indeed used in some implementations ofla.zy
functionallangua.ges [Peyton Jones et al. 89]. You will still have a. finite set of "constructors" for
each program, but now a residual program can have a different and larger set than the original!
This is because, being functions, the constructors can be specialized. A self-interpreter need not
code data-structures; if strong typing is not required, functional values can be represented by
functional values with the same i/o properties. Indeed, it is possible to define a function that
given a definition of a function returns the defined (curryed) function. As the type of the result
of such a function is dependex1t on the value of the argument, this can of course not be done in
any of the traditional strongly typed functional languages (ML, HOPE, Miranda etc.).

9.3 Retyping

To achieve variable splitting in the :t-.UX-system, we propose to do arity raising using Sergei
Romanenko's ideas from [Romanenko 88], where it is called arily mising.

83

The retyping consists of two phases: a type inference and a transformation.
The type inference will find types of variables as fixed tuple structures with either nil or

general structures at the leaves.
The transformation transforms the program by splitting each tuple variable into a list of

variables - one for each non-nil leaf of the tuple, and then change all function calls and bodies
to confer to the changed parameter lists.

9.3.1 Type inference

The type inference uses a simple domain of types:

(Type) ::= nil
I any
I ((Ty1Je) . (Type))
I ..L

nil means that the value is always nil. any is the top element in the domain and means that
the value can be any structure. (t1 • t2) means that the value always is a pair of two values of
type t 1 and t2 • ..L is the bottom element aud is used as initial value in, the analysis and as error
value.

The values are reflexively partially ordered as follows

..L !;; t for all t
t t; any for all t

(t1 . t2) !; (t3. t4) iff t1 t; t3 and t2 !; t4

the operator U is used for least U1tper bound in the type domain.
Given an environment p binding variables to types. the function T computes the type of an

an expression.

T[variable v]p = p(v)
T[(quote S- expr)]p = C[S- expr]
T[(car e)]p = any if T[e]p = any

tl if T[e]p = (h. t2)
..L otherwise

T[(cdr e)]p = any if T[e]p = any
t2 if T[e]p = (t1. t2)
..L otherwise

T[(atom e)]p = any
T[(cons e1 e2)]p = (T[et]P. T[e2]P)
T[(equal e1 e2)]p = any
T[(if e1 e2 e3)]p = T[e2]P U T[e3]p
T[(call e1 ... en)]p = any

C[nil] = nil
C[a] = ctny if a. is an atom
C[(c1. c2)] = (C[c1] . C[c2])

Type inference is done as a fixed-point itera.tion similar to the binding time analysis. using
information about the types of the parameters of the goal function.

84

The reason for the type of a function call being any is that we do not attempt to split
functions, but only parameters. An environment giving the types of functions could be added to
the analysis if splitting of functions is wanted (as is perfectly possible using similar strategies).

9.3.2 Transformation: splitting of variables

Using the result of the type inference, variables with types different from any will be split. It is
assumed that no type contains .L, as this would imply that the program always would fail, or
that a function would never be called.

A variable is split into a list of variables, one for each any leaf in the type of the variable. A
variable x of type (any any) (short for (any.(any.nil))) would thus be split into x1 and x 2 • Now
a building expression, building the value of the old variable from the values of the new variables
and defining expressions, defining the new variables in terms of the old are constructed. In the
above example the building expression is x = (cons x1 (cons x2 (quote nil))), and the defining
expressions are x1 = (car x) and x2 = (car (cdr x)).

In the body expression of the function of which x is a parameter all occurrences of x is
replaced by the building expression. In all calls to the function (from anywhere in the program)
the argument corresponding to x is replaced by a list of arguments constructed by substituting
x by the original argument into the defining expressions of Xi, and using these new expressions
as arguments. If (using the above example) the argument corresponding toxin a call is y, that
argument is replaced by the argument list ((cary) (car (cdr y))). Then reduction is done using
rules like

(CAR (CONS a b))= a
(CDR(CONSab))=b
(CAR(!Fabc)) =(IFa(CARb)(CARc))
etc.

The reduction rules and the type inference are dual in the sense that the reduction rules ensures
that all the construCtors that was introduced in the building expressions on the basis of the type
inference will be eliminated by selectors from the defining expressions.

As an example consider the residual function

(Append1 (v) =
(if (equal (car v) 'nil) then (car (cdr v))
else (cons (car (car v)) -

(call Append1
(cons (cdr (car v)) (cons (car (cdr v)) 'nil))

))))

and assume that the type of vis (any any). Then the transformed version (before reduction) is

(Append1 (vi v2) =
(if (equal (car (cons v1 (cons v2 'nil))) 'nil)

85

then (car (cdr (cons Vt (cons v2 'nil))))
else (cons (car (car (cons Vt (cons 112 'nil))))

(call Appendt
(car (cons (cdr (car (cons Vt (cons v2 'nil))))

(cons (car (cdr (cons Vt (cons v2 'nil)))) 'nil)
)

)
(car (cdr (cons (cdr (car (cons v1 (cons v2 'nil))))

(cons (car (cdr (cons Vt (cons v2 'nil)))) 'nil)
)))

))))

and after reduction

(Appendt (vt v2) =
(if (equal v1 'nil) then v2
else (cons (car v1) (call Appendt (cdr v1) v2))

))

If an expression (if a (cons b (cons c) 'nil) (cons d (cons e 'nil))) is split into two expressions
it could cause repeated calculation of a, e.g., if it was split into (if a b d) and (if a c e). To
avoid this we note that as we only split expressions inside function calls, we can simply move
the conditional outside the call, transforming (call f ... (if a b c) ...) into (if a (call f ... b ...)
(call f ... c ...)) before splitting the expressions in the argument list. This strategy might give
some code duplication, but no repeated calculations, and assuming call-by-value, no unnecessary
calculations either.

9.3.3 Results

The retyper has been implemented, and gives good results. With a self-interpreter it is now
possible to make compilations where the number of parameters to functions in the object program
is the same as in the source program, giving essentially an identity mapping.

Tests on compilers and cogen show that the parameter containing the dynamic argument
values is split, but not the parameter containing the sta.tic values. This is because the static
valueS are obtained from the list of needed functions, a variable the type inference can't find a
composite type for, as the elements vary in length. The problem can be solved by sending the
static val~es from through a "filter" .contr~lled by the list of static va.riable names. This will
give it a recognizable length, thus helping the type inferencer.

Below are tables of size and speed differences before and after retyping. The sizes are counted
as number of cons-cells + number of non-nil atoms. The times are in seconds using le-Lisp on
a SUN 3/50. After retyping, selfint.obj is as fast as selfint (but a little larger). The reason for
the lack of size difference for cogen is due to the incomplete variable splitting in the "unfiltered"

86

version. cogen1 is cogen produced by a fsp with the above mentioned "filter". Neither cogen
nor cogen1 show any speed improvement from variable splitting. This is propably because most
of the work in cogen is done in functions that have no split parameters.

Since the call-graph analyzer (CGA) [Se&toft 88] unfolds calls only if no variable is used
more than once, the retyper may, by splitting a variable into several, each of which is used
only once, increase the number of calls that the CGA can unfold. By running the CGA after
retyping (as well as before) the size of cogen1 can be further reduced to 8190, and the time for
L cogen1 (fsp1) to 13.9 s. Using the retyper yet auother time yields no difference.

Program Size before R.T. Size after R.T.
selfin t.ob ject 1494 849
cogen 10976 10084
cogen1 11430 8994

Program Time before R. T. Time after R. T. Time used for re-typing
L selfint.object (input) 33,6 21.7 0.5
L cogen (! sp) 12.7 12.7 4.8
L cogen1 (fsp1) 16.7 16.7 5.2

9.3.4 Retyping in CL

In [Mogensen 86] a language called CL was used. CL is similar to the above extended with a
simple type system:

(type) ::= integer
I real
I string
I structure

where the structure type is similar to S-expressions, but with atoms being either nil, integers,
reals or strings. CL contains for testing the type of atoms and for converting atoms to values of
the corresponding type and vice versa. Note that an integer is not the same as an integer atom.
the form~r is a machine integer, whereas the latter is a pointer to a record containing a. type tag
and a machine integer.

Retyping in CL consists of splitting structure typed variables into several new variables,
some of which may have non-structure types, or changing the type of structure typed functions
and variables into non-structure types, if their values ahvays are atoms of a specific type.

The type domain used for the type inference is now:

(Tyzx;) ::= nil
I integer Atom
I realAtom
I stringAtom
I any
I ((Type). (TyjJe))
I .L

87

Note that type inference is only done on structure typed variables, so no type inference domain
is specified for the non-structure types. Type inference is done similarly to what was described
above, with obvious extensions for operators that convert non-structure values to atoms. The
Main difference is that, since we want to retype func;tions as well as variables, we can no longer
just use any as the type of function results. Instead, we must use an environment of function
types in addition to variable types. As we still don't want to split functions, we must convert
any function result type of the form (Tl . T2) into any.

As an example consider the residual function:

~ (v : structure) : structure =
(IF(= (INTOF(CAR v)) 0)

(CAR (CDR v))
(CALL f (CONS (INTATOM (- (INTOF (CAR v)) 1))

(CONS (CAR (CDR (CDR v)))
(CONS(INTATOM(+ (INTOF (CAR (CDR v)))

(INTOF(CAR (CDR (CDR v))))
))
'nil

)))))

The type inference will find:

v: (int...atom. (int...atom. (in.t...atom. n.il)))
f : in.t...atom

giving this transformed program:

f (vl : int, v2 : int, v3 : int) : int =
(IF(=vlO)

v2
(CALL f (- vll) v3 (+ v2 v3))

)

which is now recognizable as the fibonacci function.
The partial evaluator for CL was mainly used to specialize a ray-tracer program. For residual

ray-tracer programs, the size a.nd runtime was reduced by 25- 30 percent (after the specialization
reduced runtime by 80 percent).

9.3.5 General retyping

What we have seen are special cases of retyping; replacing a value by an equivalent value in
another representation, modifying the program accordingly. In the retyper described above,
particular instances of the general list type are replaced by fixed-length tuples, which are made
part of the argument tuples of functions. Inlangua.ges with richer type systems. more interesting
transformations can be done, e.g., creating new signatures from instances of a more general
coding signature. This corresponds closely to specializing data structures, see section 9.2.4 for
more ideas on this subject.

88

9.4 Dynamic Choice of Static Values

In all the previously described binding time analyses, the binding time of the result of a condi­
tional with dynamic condition is dynamic, regardless of the binding times of the branches. This
is a logical choice, as even if both branches contain static values, it will not be known at partial
evaluation time which of these will be chosen. It is, however, possible to extend both the partial
evaluator and the binding time analyzer to handle such values almost as static.

The main idea is to use the re-write rule:

(f (if a b c)) => (if a (f b)(f c))

during partial evaluation to move a value cw1sumer (f) into a place where the consumed value
is static.

9.4.1 Extending the two-point domain

If we initially forget about partially static values, we can extend the two-point binding time
domain with a third value C (for choice), obtaining:

where S and D represent the usual completely static and dynamic values, and C represent values
that are a dynamic choice between static values. In other words, S, C and D represent sets of
expressions obtainable at partial evaluation time:

(S) ::= (quote (value))

(C) ::= (S)
I (if (D} (C) (C})

(D) ::= (any expression)

An expression can represent a set of values: the set of values obtained by evaluating it with
arbitrary values for the free variables in it. In this way S can be seen as the set of singleton sets
of values, C as the set of finite sets of values and D as the set of all sets of values. This gives
a more extensional view of the binding times, and makes it easier to justify some of the rules
used in binding time analysis.

Binding time analysis must be extended to handle the extra C value. The propagation of
binding times through ~xpressions is shown below:

bta(exp,e11v) =
case exp of

name
(quote v)
(car e)
(cons el e2)

: lookup(name,env)
s

: bta(e,env)
: bta(el,env) U bta(e2,env)

other base operators similarly

89

(if el e2 e3) : case bta(el,env) of
S : bta(e2,env) U bta(e3,env)
C : C U bta(e2,env) U bta(e3,env)
D : C U bta(e2,env) U bta(e3,env).

Function calls are handled as usual: update the parameters in the global environment and return
the value of the function as found the global environment. The usual fixed-point iteration is used.
There is, however; an interesting fact that we can use during binding time analysis: if a function
has a C parameter, we know that we at partial evaluation time can move the conditionals in that
parameter outside the call, leaving only static values in that parameter position. This allows us
to convert the binding times of parameters from C to S when updating the global environment.
No similar thing can be done for the result of a function.

This idea has been implemented (in 1985) as an extension to an early version of the MIX
system, yieldin·g results for compiler genetation and self-application similar to those for the
standard MIX. The main visible difference was that some programs could be non-trivially par­
tially evaluated on the extended MIX, that couldn't be on the standard MIX. It was, however,
normally possible to rewrite these programs to forms suitable for the unmodified MIX .. Nothing
was ever published about this system, and no later versions of MIX use the idea. Independently
of this, Sergei Romanenko 1:1sed almost exactly the same idea (down to calling the new binding
time C) in an extension of the system described in [Romanenko 88}. As far as I know, no de­
tails of this has been published in the western world. My knowledge of it stems from personal
discussions at the workshop of partial evaluation and mixed computation in October 1987.

9.4.2 Extension to partially static structures

The grammar based method for doing binding time analysis with partially static structures, can
also be extended to handle binding times similar to the C above. "When thinking of binding
times as sets of sets of values, terminal symbols in the binding time grammars corresponds to
specific sets of sets, and the grammars corresponds to recursive set equations. So, for e.xample,
the rule:

X - atomS I (D . X)

correspond to the set equation:

X = atomS U {(a. b) I a ED, bE X}

where atomS is the set of singleton sets of atoms and D is the set of all sets (of values, this will
be assumed implicitly from now on). Thus "I'' in the grammar rule is a union operator. It is
generally used to combine the branches of a conditional with static test. We now introduce an
operator ''II", to be used when combining branches of a dynamic conditional. II is defined as the
point-wise union operator:

A II B = {aU b I a E A, bE B}

This immediately gives us the rules:

90

AIID = D

A II B = B II A

(A II B) II c = A II (B II C)

A II (B I c) = (A II B) I (.4 II c)

Note that while A I A = A, A II A is generally not equal to A. The distributivity of II over
I allows us to reduce any expression using these operators to a normal form. Using the us,ual
techniques for building binding time grammars, we can build a grammar -With these no-rmal
forms as right hand sides. Examples are:

S _. atomS I (S . S)

X - s II s
L - atomS II (S . L)
c- c II cIs

any sta.tic value
either of two static values
a list of known elements, but unknown length
as the C value in the S - C - D domain

Due to the large number of possible normal forms (given a reasonably sized set of non-terminals),
it is likely that a fixed-point iteration will take very long time. It will therefore be a good idea
to restrict the set in some way, e.g., by limiting the number of ll's on a right hand side.

91

Chapter 10

Conclusion

\Ve have in this thesis argued the necessity of explicit binding time information when partial
evaluation is used for compiler generation, and we have presented a collection of algorithms for
finding this binding time information. Furthermore, we have discussed how this information
may be used to produce annotations describing different properties of parts of the program in
question. In addition to actual binding time annotations, annotations can be used to guide
unfolding of function calls and local bindings.

Chapters 6, 7 and 8 show rather different approaches. It is not intended that the latter
chapters supercede the earlier, rather the methods have each their a.dvantages and disadvanta.ges,
and in a given situation the method best suited for the problem must be used. An obvious
example of this is the fact that the binding time analysis algorithms in chapter 6 and chapter 7
are suited for untyped languages, whereas the algorithm in chapter 8 is strongly tied to the type
system of the language.

Most of the ideas presented in chapter 9 have not been implemented, but some of these will
be natural to use for projects that are planned for the immediate future.

92

Bibliography

[Aho et al. 86] A. V. Aho, R. Sethi, J. D. Ullman, Compilers, Princi]Jles, Techniques,
and ToOls Addison-Wesley 1986.

[Bendorf 88] A. Bendorf, Towards a Self-Applicable Partial Evaluator for Term­
Rewriting Systems in the Proceedings of the Workshop on Partial Evalu­
ation and Mixed Computation, Denmark, October 1987, eds. D.Bj0rner,
A.P.Ershov and N.D.Jones, North-Holland 1988.

[Bendorf 89] A. Bendorf, A Self-Applicable Partial Evaluator for Term-Rewriting Sys­
tems in the Proceedings of CCIPL'89, Springet Verlag, 1989.

[Bendorf et al. 88] A. Bendorf, N.D. Jones, T. JE. Mogensen, P. Sestoft, Self-application as
a Tool for the Generation of Program Generators, unpublished

[Bulyonkov 84] M.A. Bulyonkov. Polyvariant Mixed Computation for Analyzer Programs,
Acta Informatica 21 pp.473-484, 1984.

[Bulyonkov 88] M. A. Bulyonl..-ov. A Theoretical Approach to Polyvariant Computation
in the Proceedings of the Workshop on Partial Evaluation a.nd Mixed
Computation, Denmark, October 1987, eds. D.Bj0ruer, A.P.Ershov and
N.D.Jones, North-Holland 1988.

[Dybkjrer 85] H. Dybkjrer, Parsers and Partial Evaluation, student report, DIKU 1985.

[Ershov 82] A. P. Ershov. Mixed Computation: Potential Applications and Problems
for Study, Theoretical Computer Science 18 pp.41-67, 1982.

[Futamura 71] Y. Futamura. Partial Evaluation of Computation Processes- An Approach
to a Compiler~compiler, Systems, Computers, Controls 2(5) pp.721-728,
1971.

[Holst 88] N. C. K. Holst, Language Triplets: the AMIX Approach, in the Proceed­
ings of the Workshop on Partial Evaluation and Mixed Computation, Den­
mark, October 1987, eds. D.Bjorner, A.P.Ershov and N.D.Jones, North­
Holland 1988.

[Hughes 88] R. M. J. Hughes, Backwards Analysis of Functional Programs, in the Pro­
ceedings of the Workshop on Partial Evaluation and :Mixed Computa­
tion, Denmark, October 1987, eds. D.Bjorner, A.P.Ershov a.nd K.D.Jones,
North-Holland 1988.

93

(Jones 86)

[Jones 88)

[Jones et al. 86)

[Jones et al. 85]

[Jones et al. 88]

[J0rring et al. 86)

[La.unchbury 88]

[Marvell]

{Mogensen 86]

[Mogensen 88]

[Mogensen 89b]

[Mycroft 80)

[Nielson 86]

N.D. Jones. Flow Analysis of Lazy Higher Order Functional Programs, in
S. Abra.msky and C. Hankin, editors, Abstract Interpretation of Declara­
tive Languages, Ellis Horwood, London, 1987.

N. D. Jones, Automatic Program Specialization: a Re-examination from
Basic Principles in the Proceedings of the Workshop on Partial Evalua­
tion and Mixed Computation, Denmark, October 1987, eds. D.Bjemer,
A.P.Ershov and N.D.Jones, North-Holland 1988.

N. D. Jones, A. Mycroft, Data Flow Anctlysis of Applicative Programs
Using Minimal Function Graphs in the Proceedings of the Workshop on
Programs a.s Data. Objects, Copenhagen, October 1985, Springer Verlag
LNCS 217, 1986.

N. D. Jones, P. Sestoft, H. S0nderga.ard, An Experiment in Partial Eval­
uation: the Generation of a Compiler Generator in Rewriting Techniques
and Applications (ed. J.-P. Joua.nna.ud), Dijon, France 1985, Springer Ver­
lag LNCS 202, 1985.

N. D. Jones, P. Sestoft, H. S0nderga.ard, Mix: a Self-Applicable Partial
Evaluator for Experiments in Compiler Generation in LISP and Symbolic
Computation 1 3/4, 1988.

U. J0rring and W. L. Sherlis, Compilers and Staging Transformations, in
the Proceedings of the Thirteenth ACM POPL Symp., St. Petersburg,
Florida. 1986, pp. 86-96.

J. Launch bury. Projections for specialisation, in the Proceedings of the
Workshop on Partial Evaluation and Mixed Computation, Denmark, Oc­
tober 1987, eds. D.Bj0rner, A.P.Ershov and N.D.Jones, North-Holland
1988.

A. Marvell, To His Coy]l.fistress

T. JE. Mogensen, The Application of Partial Evaluation to ray-tracing,
masters thesis, DIKU 1986.

T. 1£. Mogensen, Partially Static Structures in a Self-Applicable Partial
Evaluator in the Proceedings of the Workshop on Partial Evaluation and
Mixed Computation, Denmark, October 1987, eds. D.Bj0rner, A.P.Ershov
and N.D.Jones, North-Holland 1988. See also chapter 6 of this thesis.

T. JE. Mogensen, Binding Time Analysis for Polymorphically Typed
Higher Order Languages in the Proceedings of CCIPL '89, Springer Verlag,
1989. See also chapter 8 of this thesis.

A. Mycroft. The Theory and Practice of Transforming Call-by-Need into
Call-by- Value, Springer Verlag LNCS 83, 1980.

H. R. Nielson, F. Nielson, Semantics Directed Compiling for Functional
Languages in the Proceedings of the ACM Conference on LISP and Func­
tional Programming 1986.

94

[Nielson 88] H.R.Nielson, F.Nielson, Automatic Binding Time Analysis for a Typed>.­
Calculus in Science of Computer Programmin_g 10, North-Holland 1988.

[Peyton Jones et al. 89] S. L Peyton Jones, J. Salkind The Spineless Tagless G-Machine in the

(Reynolds 69]

[Romanenko 88]

(Schmidt 88]

[Sestoft 86]

(Sestoft 88]

[Turchin 79]

(Turchin 82]

(Turchin 86a]

[Turchin 86b]

(Wadler 88]

(\\'adler et al. 87]

Proceedings of the 1988 Glasgow \Vorkshoj> on Functional Programming.

J. C. Reynolds. Automatic Computation of Data Set Definitions, Infor­
mation Processing 68 pp.456-461, 1969.

S. A. Romanenko, A Compiler Generator PrOilttced by a Self-Applicable
Specializer can have a SurzJrisingly Natural and Understandable Structure,
in the Proceedings of the Workshop on Partial Evaluation and Mixed
Computation, Denmark, October 1987, eds. D.Bj0rner, A.P.Ershov and
N.D.Jones, North-Holland 1988.

D. A. Schmidt, Static Properties of Partial Reduction in the Proceedings of
the Workshop on Partial Evaluation and Mixed Computation, Denmark,
October 1987, eds. D.Bj0rner, A.P.Ershov and N.D.Jones, North-Holland
1988.

P. Sestoft. The Structure of an Self-applicable Partial Evaluator, in H.
Ganzinger and N.D. Jones, editors, Programs as Data Objects, Copen­
hagen, Denmark, 1985, pages 236-256, Springer Verlag LNCS 217, 1986.

P. Sestoft, Automatic call Unfolding in a Self-Applicable Partial Et,aluator,
in the Proceedings of the Workshop on Partial Evaluation and Mixed
Computation, Denmark, October 1987, eds. D.Bjorner, A.P.Ershov and
N.D.Jones, North-Holland 1988.

V. F. Turchin, A Supercompiler System Based on the Language Refal,
SIGPLAN Notices 14(2) pp. 46-54, 1979.

V. F. Turchin, Experiments with a SupercomzJiler, in 1982 ACM Sympo­
sium on LISP and Functional Programming, pp. 47-55, ACM, 1982.

V. F. Turchin, Program Transformation by SupercomzJilation, in H.
Ganzinger and N.D. Jones, editors, Programs as Data Objects, Copen­
hagen, Denmark, 1985, pages 236-256, Springer Verlag LNCS 217, 1986.

V. F. Turchin, The Concept of a SupercomzJiler, ACM transactions on
Programming Languages and Systems, 8(3) pp. 292-325, ACM 1986.

P. \Vadler, Deforestation: Transfomling Programs to Eliminate Trees, in
the proceedings of ESOP'88, Springer Verlag LNCS 300, 1988.

P. \Vadler, R. M. J. Hughes Projections for Strictness .4 nalysis in the
Proceedings of 1987 Functional Programming La.ngua.ges and Computer
Architecture Conference, Springer Verlag LNCS 274, September 1987.

9.5

