
PARA11ETER SPLITTING IN A HIGHER
ORDER FUNCTIONAL PROGRA1111ING

LANGUAGE

Bjarne Steensgaard 1 11orten l\1arquard 2

DII\:U
Depart1nent of Con1puter Science

University of Copenhagen
Universit.ctspa.rken 1

1e-mail: rusa@diku.dk
2e-mail: marquard@diku.dk

2100 Kobcnhavn 0.

August 7, 1990

Variable Splitting in a Higher Order Functional Language

This project is a part of a larger one consisting of constructing a Miranda to 'C'
compiler. This compiler is to be constructed by first implementing a Miranda-interpreter
in Scheme, then using a partial evaluator to generate a Miranda to Scheme compiler
written in Scheme, and finally generating 'C'-code from the Scheme-code.

Vve will develop a theory for doing parameter splitting in a higher order functional
programming language based on a theory for doing parameter splitting in a first order
functional programming language [Romanenko 90].

A reason for doing parameter splitting in connection with program specialization IS

given the abstract of [Romanenko 90]. It states:

Experiments on generating compilers by specializing specializers with re­
spect to interpreters have shown that the compilers thus obtained have a
natural structure only if the specializer does vm·iable splitting. Variable split­
ting can result in a residual program using several variables to represent the
values of a single variable of the original program. In the case of functional
programming, variable splitting is done be raising the a.rities of functions.

The language to be transformed is to be a subset of Scheme.
\Ve intend to implement a. parameter splitting program based on the theory we develop.

The program will be implemented to work in a.n environment with Anders Bondorf's
Similix-2 [Bondorf 90].

Instead of only handling the constructor cons and the selectors car and cdr we want
the parameter splitting program to be able to handle (abstract) datastructures like Similix-
2 does. The theory we are going to develop will of course reflect this.

We will describe the theory in a paper. This is done in the hope that the paper might
be published some time. The paper will be the main result of this project, but we will
nevertheless describe the developed programs in a report.

Bjarne Steensgaa.rd-Madsen & Morten Marquard, July 1 'st, 1990.

References

[Bondorf 90] Bondorf, A. Automatic Autoprojection of Higher Order Recursive Equa­
tions. In Jones, Neil D. (editor), ESOP '90. S1·d Eumpean Symposium
on Programming, Copenhagen, Denma1·k, May 1990. (Lecture Notes in
Computer Science, vol. 432), pages 70-87. Springer-Verlag, May 1990.

[Romanenko 90] R.omanenko, Sergei A. Arit.y Raiser and Its Use in Program Special­
ization. In Jones, N. (editor), ESOP '90. S1·d Eu1·opean Symposium
on Programming, Copenhagen, Denma1·k, May 1990. (Lect.u1·e Notes in
Com]Juter Science, vol. 432}, pages 341-360. Springer-Verlag, 1990.

Contents

1 Introduction 2

2 The theory behind parameter splitting 3

3 How to use the program 4
3.1 'What can the program do? . 4
3.2 Using the different features . 5

4 Description of the program 7
4.1 The abstract syntax (abstract.ss) 8
4.2 Generating the new program (pre.ss) 8
4.3 Performing the forward analysis (forward.ss) 9
4.4 Performing the backward analysis (backward.ss) 9
4.5 Performing the parameter splitting (varsplit.ss) 10
4.6 Generating the Scheme program (post.ss) 10
4.7 Miscellaneous functions (misc.ss, system.ss and ps.ss) 11

5 Tests of the programs 12

6 Future work 14

7 Summary 15

A The paper 17

B Program Listings 18

c Test programs and testresul ts 19

D Output from larger examples 20

1

Chapter 1

Introduction

This report has been produced during the authors' work with parameter splitting in a
higher order functional language durii1g t.he spring semester of 1990. The work originates
in a groups attempts to implement. a Miranda t.o C compiler. This should be done by
implementing a Miranda interpreter in Scheme that can be specialized with the aid of a
automatic program specializer, Simili.r-2 [Bondorf 90]. The specializer can transform the
Miranda interpreter to a Miranda to Scheme compiler. \~'ith the addition of a. Scheme to
C compiler we should in effect have a Miranda. to C compiler.

~'hen compiling programs with a compiler produced in this way from an interpreter,
the resulting program often has an unnatural structure. ~1any values are kept in lists
or other composite datastructures. \iVith a parameter splitting program these composite
datastructures can be split into several pieces. This often improves the readability of
the program and makes certain local optimizations possible. Furthermore the parameter
splitting process can in some cases make certain optimizations possible that are connected
with partial static datastructures.

In [Romanenko 90] an algorithm is given that can be used to do parameter splitting in
a first order functional language. V\le have generalized the theory to handle higher order
constructs in a strict functional programming language. Furthermore we have generalized
the theory to handle (abstract) da.tastructures in general rather than only handle the
constructor cons and the selectors car and cdr. \Ve have then written and implemented
a parameter splitting program that handles the subset of Scheme used in Simili.x-2. This
subset. is a higher order language.

During the work with generalizing the theory for doing parameter splitting we pro­
duced a paper describing the results. This paper should be regarded as a part of this
report. The report also includes a. description of the developed programs, gives a descrip­
tion of how they have been tested and gives a description of how to use them.

The authors regard the paper as the main result of this project. Vv"e have worked quite
a lot with the paper in order to give it a reasonable quality. The rest of the report is not
by the authors regarded as important as the paper and has not been subject to the same
amount of work.

2

Chapter 2

The theory bel1.ind para1neter
splitting

We have described our work with the th(.3ory behind parameter splitting in a paper. This
paper appears as appendix A. In the paper we describe an algorithm to perform parameter
splitting in a higher order functional language. How to perform parameter splitting in a
first order functional language is described in [Roma.nenko 90).

The theory is described in an article style paper in order to submit it for publication
sometime in the future. The subject and the theory should be interesting enough to be
published.

Most of the text in the paper could of course be reformatted and included in the main
part of this report. Vl/e have chosen not to do so. This is because we believe that we can
put our time to better use than trying to rephrase certain parts of the paper in order to
make them fit better into this report.

The paper is still regarded as the main result of our work.
The closure-analysis described in the paper treats closures as part of a composite

datastructure better than all other closure-analysises we have seen. Yet, it can be im­
proved by retaining some closure and structure information when generalizing the type of
a variable or when finding the least upper bound of a. set of variables. \Ve haven't done
this since it might lea.d to even slower execution times of the parameter splitting program.

During the implementation of the algorithms we have also done some experiments
with lambda lifting. The analysises that are performed give all the information needed
to perform lambda lifting.

\Ve haven't described the theory behind lambda lifting anywhere. VVe have just played
with some ideas and tried to implement them as part of the parameter splitting program.
It seems to be working correctly even though we haven't tried working out a formal theory.

It is very probable that we will write something about lambda lifting in the near
future.

3

Chapter 3

How to use the program

Using the parameter splitting program is very simple. Any program that can be or has
been specialized by Simili.r-2 can be trausformed by the parameter splitting program
simply by issuing the following commaud:

(ps "file-name")

The transformed version of the program will be written into a file with the same name as
the original one, except that the prefix "ps-" has been added to the name.

3.1 What can the progran1 do?

The program can of course perform parameter splitting as described in the paper (func­
tions returned as (part of) the result of the goal function may be split). But it can also
do more than that.

As mentioned in our paper, it is possible t.o add a lambda. lifting routine to the pa­
rameter splitting program. \Ve have in fact done this. There is a flag that can be used to
control whether or not the parameter splitting program shall perform lambda lifting as
part of the transformation.

There is another flag that controls the amount of output the parameter splitting
program shall provide while transforming a program. \~'hen the flag is set, the program
outputs timing information for each phase of the transformation. During the splitting
phase it also outputs information on what parameters are being modified. No attempts
to make the output readable has been done.

In order to be truly compatible with the Simili:r-2 program specializer, the programs
to be transformed ma.y include load statements and syntactic extensions.

The load statements may only appear a.t the outmost level. The files to be loaded
may include other loadt conunands, syBt.act.ic extensions, function definitions and other
load statements. The goal-function is still the first function to appear in the original file.

The syntactic extensions used in Simili.r-!.! resemble those of Chez-Scheme very much.
They are limited in the way, that they don't have the ... notation, doesn't accept addi­
tional keywords, doesn't accept ajende1·ancl doesn't do pattern ma.tching. The routine for
doing syntactic extensions in the parameter splitting program is more general. It works

4

exactly like the Chez-Scheme syntactic extensions. The parameter splitting program of
course accepts those syntactic extensions that Simili:r-2 does. A set of standard syntactic
definitions is read from the file extend-syntax. ss.

The parameter splitting program can thus handle more programs than Similix-!J can.
There are still many programs that the parameter splitting program might not treat
correctly. If any functions has side-effects in the form of set!, set-car! or set-cdr! the
parameter splitting program may produce incorrect results.

One consequence of the missing capability to handle programs with side-effects is that
the parameter splitting program doesn't accept programs with definitions of the form:

(define name c:rp)

at the outmost level. In Chc::-Schemc this will be expanded to a set! expression. vVe
haven't defined that syntactic extension since the parameter splitting program doesn't
treat side-effects in a correct. manner. define statements at the outmost level defining
functions are dealt with specifically and are thus not a problem.

It is possible to define a syntactic extension that allows definitions (with define) of
functions and non-functions within other functions, but we haven't done this. It can be
done by modifying the syntactic extension for begin.

A part from the programs that have side-effects (directly or indirectly), the parameter
splitting program can, as far as we can see, (potentially) transform all programs that are
written in Chez-Scheme. Some constructs hasn't been defined yet by extcnd-synt.a..r but
that is just a question of modifying the file extend-syntax. ss.

3.2 Using the different features

As already mentioned the parameter splitting program can transform any program that
can be or has been specia.lized by Simili.T-2. This is done simply by issuing the command:

(ps "file-name")

To manipulate the flag that controls whether or not the program shall do lambda lifting
in the program being transformed we have defined three functions:

(rll)
(ell)
(pll)

raise the flag - turn lifting on
clear the flag - turn lifting off
print the current value of the flag

'Ne have also defined three functions to manipulate the flag that controls whether the
parameter splitting program shall give timing information or not:

(rtime)
(ctime)
(ptime)

raise the flag - turn output on
clear the flag - turn output off
print the current value of the flag

5

The parameter splitting program makes use of the adt-files that are loaded with the
loadt statement. The program can use almost the same adt-files as Simili:r-2 does. The
only restriction is that there must only be one constructor associated with each sort. If
there is more than one constructor definition in a sort definition an error message will be
issued.

In order to have the parameter splitting program perform any parameter splitting the
adt-files must be changed in one other way. For each sort supposed to be split, there
has to be a rule defining the relationship between the constructor and the selectors in the
sort. The rule consist of a list. of se)<.'ctor names accessing the different components of the
datastructure built by the constructor. The• order in the list must reflect the components
accessed. This extra information is added as a fifth field in the define-constructor part
of the define-sort construction. For the sort pair in the file scheme. adt (taken from
Simili:r-2) the definition of the constructor cons becomes:

(define-constructor
cons
((any any) pair)
transparent
cons (car cdr))

This modification does not interfere with Sim.ili3.~-!2 in any way.
We have further added the possibility of giving a define-predicate-is-sort defi­

nition in the define-sort construction. The predicates defined in this way must return
true if its argument is an element of the corresponding sort and false otherwise. This mod­
ification is not absolutely necessary, but it can lead to better results if the program to
be transformed contain constant da.ta. The disadvantage is that Sim.iliJ:-2 doesn't accept
this kind ofdefinition.

6

Chapter 4

Description of tl1.e progra1n

V•/e have implemented a fully automatic parameter splitting program handling the subset
of Scheme used by the specializer, Simi/i;r-!.!. We have retained the idea of us·ing adt-files
to specify which selectors, constructors, predicates and operators are to be included in the
treated language. In this chapter we will describe the program that we have produced.

The programs total approximately 4000 lines of Scheme code and is larger in size than
Similix-2. The description will therefore not be of details in the program but rather of the
general ideas. The theory behind the program is described in chapter 2 and in appendix
A.

The program consists of 5 almost independent subprograms and some functions tying
the whole thing together. The program is listed in a total of 8 files. \Ve will describe
what the different files contain and '"'hat actions the different subprograms perform. A
program listing is given in appendix B.

One important issue is that we first generate a new program with an abstract syntax
from the program to be transformed. The abstract syntax contains several extra fields
supposed to contain extra information. The subprograms then work on this abstract
syntax, destructively updating different fields of the abstract syntax of the program.
When the analysis and program transformation have been performed on the program
with the abstract syntax, then the program is transformed to a program with a. Scheme
syntax.

The program is written in the same style as the Sim.ili:r-!J program is. Anyone who
has read the Similix-2 .program text shouldn't have any trouble reading ours. Everybody
who hasn't read the Similix-2 program text will probably find the program difficult to
read.

There are only a few places in the program where we have used dirty programming.
Most of the program is written in such a manner that we can defend giving it to other
people. The program is intentionally not commented in a large degree. To understand
the program, you have to understand the theory. If you understand the theory in full,
then you should have no trouble understanding most of the program (the lambda lifting
parts excluded).

7

4.1 The abstract syntax (abstract.ss)

\Ve have defined an abstract syntax that most of the subprograms work with. \Ve have de­
fined several predicates, selectors, modifiers and lookup-functions working on this abstract
syntax. All these functions are listed in the file abstract. ss.

In the top of the file we have given the actual syntax of the lists representing the
program to be transformed. This is to aid the reading of the functions listed below in the
file.

The program is everywhere reachable because it is given in lists pointed to by global
variables. All user defined procedurPs (udp) are given in the list nvs-udp***· All
user defined nameless lambda abstractions (ucla) and let-statements are given in the lists
vs-uda* and **vs-let***· All applications are given in the list nvs-app*n. The
elements of the list are shared whene\'er possible. That means that if a part of one of the
elements in a list is modified, then the corresponding part (if any) in the other lists is also
changed.

In the analysis phases of the parameter splitting proe<."Ss, type and context information
is stored in the abstract program. All functions used to build and retrieve this information
is also defined in the file abstract. ss. The actual syntax for the stored information is
listed just before the functions used to build and access the information.

The information contained in loaded adt-files is a.lso kept in abstract datastructures.
Functions used for obtaining information from these abstract datastructures are listed at
the end of the file. All needed information about predicates and operators can be found
in the lists **vs-Predicate*** and **vs-Operator***· All needed information about
constructors and selectors can be found in the list **-vs-csd***·

For practical reasons we have separated basic (or "builtin") sorts and all other sorts.
All information about basic sorts can be found in the list. **vs-isBasicSort***· The
list **vs-isNormalSort*** contains information about all the other sorts. All the infor­
mation from the loaded adt-files are kept in the list **vs-AdtFile***·

4.2 Generating the new progra1n (pre.ss)

The Preprocessing of a program is done in two steps. First the program is macro ex­
panded according to the rules given by the extend-syntax clauses in the program and
in the file extend-syntax. ss. Then the program with the abstract syntax as defined in
abstract . ss is generated from the macro expanded program.

In the top of the file we have given both t.he concrete syntax before and after macro
expansion of the lists representing the program to be transformed. This is to aid the
reading of the functions listed later in t.he file.

The macro expansion of the concrete syutax is done according to the rules given by the
extend-syntax clauses of the program plus the clauses found in the file extend-syntax. ss.
This is to make our syntax as similar t.o both Chez-Scheme's and Simili:r-!ts. Our extend­
syntax mechanism is fully compatible with the mechanism given in Chez-Scheme. Given a.
clause, it first tries to match the clause's pattern to a given expression, binding variables
in the pattern to its corresponding subparts in the expression. If the match succeeds,

8

the pattern matching function returns an environment, i.e. an association list. Then the
fender (if any) is evaluated. If the evaluation of the fender returns false the clause does
not match the expression. If it succeeds, the clauses' expansion is returned, with all oc­
currences of variables in the expansion bound to the values given in the environment. If
the expansion contains a with-expression, then the environment is augmented with the
values found by evaluating the with-expression (i.e. binding values to names) and then
the expansion in the with-expression, is expanded according to the new environment.

The macro expansion part of the preprocessor is easy to move to Sirnilix-2. \Ve have
already talked with Anders I3ondorf (one of the authors of Simili.r-2) about it and he
seems ve1·y interested.

The generating of the program with the abstract syntax is straightforward. All user
defined procedures (udp) are converted to equi,·alcnt procedures with the abstract syntax
and added to the list **vs-udp***· All user defined abstractions (ucla) are added to the
list **vs-uda***, all let-expression t.o the list **vs-let*** and finally all applications
to the list **vs-app***· All fields in the abstract syntax that is supposed to have an
initial value is also set during the generation of the program with the abstract syntax. As
mentioned before, the elements of the lists is shared whenever possible.

There is some superfluous functions defined in the file pre. ss. Most of them are relics
from the time when the program didn't support syntactic extensions.

4.3 Performing the forward analysis (forward.ss)

In our paper we have described the functions B and D that are used to perform the forward
analysis. The two functions are implemented almost as described in the paper.

Instead of updating an argument type description that is passed as parameter between
function calls, the function D updates fields in the abstract data-structure. This is of course
done with the functions implementing the abstract syntax of the treated program. The
environment is represented by the name of the lambda. abstraction that the expression is
part of. By using the lookup functions defined in abstract. ss it is possible to retrieve all
the information supposed to be in the environment and in the argument type description.

The functions used to implement the lea.st upper bound operation is listed in the top
of the file. The least upper bound is not defined exactly a.s in the article. This is because
we have taken number, lambda and atom to be sortdescriptors with one argument.

The functions used to control closure-sets and closure-super-sets are defined in the
bottom of the file. Most of the complicated work related to ensuring that all lambda
abstractions in the closure-super-set have the same argument types is done in the function
_vs-maintain-monovariant-invariant.

4.4 Performing the backward analysis (backward.ss)

In our paper we have described the functions TypeToContc:rt. GenType and C used to
perform the backward analysis. The three functions are implemented as described in the

9

paper. The three function are fully applicative, i.e. no updating is done destructively in
the abstract syntax.

Further, we have implemented a routine, that iteratively finds the contexts of pa­
rameters of all functions, abstractions and let-expressions, and destructively updates the
abstract syntax, until a fixed point is found.

For technical reasons we have to start by calculating the types of the parameters at
each application point. These types are taken from the result type description from the
forward analysis based on information of which functions may be applied at the application
point in focus. The types from the forward analysis is cha.uged to the types in the paper.
This is done in the function _ vs-calculate-application-types!.

To perform the iterations we need a first "guess" at all the contexts of parameters.
These contexts are calculated in the function _ vs-find-context!

Finally, having found the context of all parameters, these are generalized according to
their type and context, aud the a bstra.rt. syntax is destructively updated.

4.5 Perforn1.ing the paran1.eter splitting (varsplit.ss)

In our paper we have described the functions CountGa.bs, ExpandVar and SplitArg that
are used to perform the actual splitting of the program. The three function are imple­
mented basicly as described in the paper.

The parameter splitting program has the ability to perform lambda lifting. The lifting
of lambda. abstractions is also performed by the functions given in this file. The parts
that perform lambda. lifting is intermingled with the other parts of the functions so the
functions might be difficult to understand.

4.6 Generating the Sche1ne progra1n (post.ss)

The postprocessing functions of the system uses the abstract syntax to generate concrete
Scheme syntax. In an attempt to give more readable programs as output the functions
try to find expanded and, or and cond expressions in the transformed program. If any
such expressions are found they are transformed back into concrete and, or and cond
expressiOns.

\Vhen generating the concrete syntax all names are changed in the following ways:

1. The names from the adt-files remain unchanged.

2. Functions (udp's) are given a new name, which equals the old name with the suffix
"-global".

3. All other names (Yariable names) are changed. The new names equals the old
names with a suffix consisting of the name of the procedure, lambda abstraction
or let expression in which it is defined. an offset number that equals the offset in
the list of formal parameters before variable splitting, and finally a number that
equals the split parameters number in the list of new variables given a.s parameter

10

to ExpandVar. Given a variable x used as the second formal parameter in the
definition of the function f, splitting this parameter will result into 2 new formal
parameters with the names x-f-1-1 and x-f-1-2 in the residual program. Note
that this way of renaming restricts the choice of names in the adt-files if it must
be guaranteed the there will be no name clashes. The names of variables used in
programs to be transformed is not. restricted in any way.

4. 7 Miscellaneous functions (n1isc.ss, system.ss and
ps.ss)

The file ps. ss contain the function ps that calls all the parts of the parameter splitting
system. It also contains all the functions needed to set or clear the flags controlling the
different kinds of output.

The file system. ss is the file to load when you want to use the parameter splitting
system. When it is loaded it loads all the other files in the system.

In the file mise. ss the miscellaneous functions not used by any part of the system in
particular is listed.

11

Chapter 5

Tests of the prograiilS

\Ve have written a lot of small program that each test one or more propcrti<.>s of the
parameter splitting program. In A ppcndix C we have listed all the source programs and
the corresponding transformed programs. Each source program has been commentf'd in
order to show what property of the parameter splitting program that specific program
test.

In our paper we have given several examples of programs to be split. \Ve have tried
transforming all theses examples in order to see if the transformation is performed as we
expect. In appendix C we have also listed all the programs used as examples in the paper
and the corresponding transformed programs.

\Ve have also tried executing the parameter splitting program with specialize1· and
cogen from Similix-2 as input. \Ve ha.ve also tried with a compiler generated by Simili:r-2
as input. V\Te refrain from giving input and output from these tests due to the size of the
files (The size of the transformed version of cogen is > 4001\:b). Instead we give timing
information and information about how much is being split in appendix D.

The parameter splitting program seems to be working exactly as it should. At least
we haven't been able to find any discrepancies bet\veen what we expected and what the
actual results are.

Since we started working on this project the program specializer Similix-2 has been
changed so it does some kind of parameter splitting when self-applied. It does this by
using a higher order environment instead of lists. \Vhen self-applied it can unfold these
higher order environments and thus remove the list-accesses. Part of the goal of this
project has therefore been solved by Simili:r-2.

Because Similix-2 has been changed to do these reductions there is little use for a
parameter splitting program in an environment \\'ith Similix-2. It is possible to perform
some parameter splitting in the specializer, in some generated compilers and in cogen, but
it is not much. In most cases where the parameter splitting program can do real work,
the program is the result of a less than optimal design of the source program.

The parameter splitting program can still find good use in environments with special­
izers not using higher order environments. It can also improve a specializers treatment of
programs with partially static da.ta.structures. If any partially static datastructures occur
in the program to be transformed, the parameter splitting program can split these into

12

several parts. The static and dynamic parts of the datastructure will thus be separated.

13

Chapter 6

Future work

The parameter splitting program is almost completely compatible with the program spe­
cializer Simi/ix-2. The parameter splitting program can also do some things in a better
way than Simi/ix-2 does. An obvious job is to make the two programs completely com­
patible with each other.

The parameter splitting program performs splitting in a monovariant way. In the
future the program may be extended to perform splitting in a. polyvariant way.

We might also want to occupy ourselves with splitting functions into two or more
functions if the result of the original function is a composite data.structure. \:Vhen l\1asami
Hagiya from the Research Institute for Mathematical Sciences, Kyoto University, visited
DIKU in may 1990 he asked us if that was possible. He wanted t.o use a result splitting
program to extract programs from constructive proofs. \Ve are both interested in the idea.
and in working on that project. Vve asked Sergei A. Roma.nenko if he knew something
about the subject, but he told us that it. is a whole new area that hasn't been investigated
yet. This just makes it more interesting for us.

14

Cl'lapter 7

Summary

Vve have generalized an algorithm us<>d to perform parameter splitting in a first order
functional programming language to an algorithm that can be used in a higher order
functional language. This higher order language is the same as the source language of the
Similix-2 program specializer.

The theory concerning parameter splitting in a higher order language has been de­
scribed in a paper. The theory involves a. forward and a. backward analysis of the program
to be transformed. We are very satisfied with the report except for the first introductory
section. We believe that we can't write a significantly better paper without receiving
extensive constructive criticism.

\Ve have designed, implemented and tested a program performing parameter splitting
using the developed algorithm. The program can perform parameter splitting as described
in the paper of all programs that can be or has been specialized by the program specializer
Similix-2.

The program can also perform lambda lifting as part of the program transformation.
The theory concerning lambda. lifting isn't described in the paper or in this report. This
is because we haven't developed a suitable formal description yet. \Ve consider writing a
paper about lambda lifting in the near future.

The program is also able to accept more advanced syntactic extensions than Simili:r-2.
The syntactic extensions can be just as advanced as they can be in Che::-Scheme.

The program appears to work the way it should. At least we haven't been able to find
any errors in the output from the examples we have tried. The examples we have tested
the program which range from small test-program testing special parts of the program to
programs as large as cogen from Simili:r-2.

15

Bibliography

[Bondorf 90] Bondorf, A. A ut.omatic A ut.oprojection of Higher Order Recursive Equa­
tions. In Jones, Neil D. (editor), ESOP '90. 31·d Eumpmn Symposium
on P1·ogram.ming, Copenhagen, Denmark, /llay 1990. (Leciu1-e Noles in
Comptde1· Science, t'ol. 43!!}, pages 70-87. Springer-Verlag, ~tay 1990.

[Romanenko 90] R.omanenko, Sergei A. Arity Haiser and Its Use in Program Special­
ization. In Jones, N. (edit.or), ESOP '90. 31·d· Eumpcan Sym]wsittm
on Pmgmmming, Copenhagen, Denmm·k, May 1990. (Lecture Noles in
Comput.c1· Science, vol. 432), pages 341-360. Springer-Verlag, 1990.

16

Appendix A

The paper

17

PARAMETER SPLITTING IN A HIGHER ORDER
FUNCTIONAL PROGRAMMING LANGUAGE

Bjarne Steensgaard l\1orten l\1arquard

August 7, 1990

1 Introduction

Parameter splitting is a program transformation that consists of splitting a parameter to a
function into two or more parameters. The object is to reduce the amount of calculations
that has to be done at run-time and in some cases to improve the readability of the
program. The idea is to replace a parameter whose value is a composite datastructure
with a number of variables whose values are the components of the datastructure.

Parameter Splitting was first suggested in [Sestoft 86]. The background was the Copen­
hagen partial evaluator Mix. Given an interpreter, int, it could compile programs, s, by
specializing them with respect to the interpreter, i.e.

target := L Mix <int,s>

However, the residual program, target, had a rather unnatural v·:ay of representing
values of the program, s.

The interpreter, int, is supposed to handle any program written in the programming
language implemented by the interpreter. \Vhen implementing the interpreter the number
of variables in the source program, s, is usually not known in advance and therefore the
values of the variables from the program, s, is usually kept in a list.

The specializer Mix does not specialize list accesses and therefore the variables from the
original program is represented in the residual program as a list of values, corresponding
to the interpreters internal representation. A reasonable residual program would keep
each value in a separate variable. .

An additional phase to the Copenhagen specializer was suggested in [Romanenko 88].
This phase should do parameter splitting. In [R.omanenko 90] a complete algorithm for
a parameter splitter is presented. The language of the parameter splitter is the same as
used in the Copenhagen MIX-project; a pure subset of first order LISP.

Parameter splitting is referred to as arif.y raising in the papers by Romanenko. In
[Mogensen 89] the more general term retyping is used.

Parameter splitters have been implemented as post phases to different partial eval­
uators. A parameter splitter implemented by T.Mogensen is based on [Romanenko 88,
Mogensen 89]. Romanenko also reports that parameter splitters have been implemented
[Romanenko 90].

1

1.1 Parameter Splitting in a higher order language

Until recently, all autoprojectors (i.e. self applicable partial evaluators), could only han­
dle first order functional languages. Lambda-mix [Gomard 89,Gomard 90,Jones 90] and
Similix-2 [Bondo1-f 90a] are two of the first autoprojectors for higher order languages.
Similix-2 is based on the first order autoprojector Similix [Bondorf 90b].

In this paper we describe an implementation of a parameter splitter a.s a post process
to Similix-2.

The algorithms described in [Romanenko 90] has been used as a basis for the work. The
type and parameter access analysis has been extended to handle the higher order language.
Given an application, (c.rp0 e:rp1 ••• e:rpn), we must first find all lambda abstractions
that e:rp0 might e\·aluate to, and then perform the analysis. Given this set of lambda
abstractions, the algorithms can be generalized to the higher order case.

1.2 Outline

The rest of the paper is organized as follow. Sections 2 gives some background and
introduces the main issues of this paper. In section 3 we describe what we mean by
parameter splitting. The terms defined in this section will be used in the rest of this paper.
Section 4 describes the type analysis, and in section 5 the type analysis is augmented with a
closure analysis, that can find the lambda abstractions that a given expression c:rp0 might
evaluate to. In section 6 we describe the parameter access analysis, which is a backward
analysis. In section 7 we describe how we can use the information we have obtained to
actually split the parameters of functions. In section 8 we describe that lambda lifting is
a possible part of parameter splitting, and in section 9 we summarize the paper.

The notation and way of presentation used in this paper in inspired by the notation
used in [Romanenko 90].

1.3 Prerequisites

Some knowledge about partial evaluation is required, e.g. a.s presented in [Jones 85]
or [Jones 89), and preferably also about higher order autoprojectors [Bondorf 90a] or
[Jones 90).

2 Background and Issues

2.1 The Language

Sirnilix-2 processes a higher order language and is an extension of the language treated
by Similix [Bondo1-f 90b). Lambda abstractions and higher order applications have been
added to the language. The language is a subset of Scheme and can be executed directly
in a Scheme environment. Similix-2 provides the user with the possibility of defining
which operators to use in the language.

2

In the following we will consider programs written in the Similix-2 subset of the Scheme
language. The exact contents of the subset will be specified by the contents of the loaded
adt-files as done in Similix-2. Here is the syntax of the language:

pgm · · = ldl ld2 . . . ldn fdt fd2 . · · fdn
ld : := (loadt "filename")
fd : : = (define (j Xt . . . Xn) c:rp)
c:rp - X

constant
(if c:rp1 e:rp2 cxp3)

(predicate c:rp 1 • • • expn)
(opcmtor· c:rp 1 • • • cxpn)
(constructor e:rp1 • • • e:rpn)
(seleclor c:rp)
(let ((name 1 exp 1) ••• (namen cxpn))
(lambda (name 1 • • • namen) c:rp)
(exp0 exp1 • • • cxpn)

- variable

- conditional
- predicate

c:rp0) - let-expression
- abstraction
- application

All functions in the language are strict. The only exceptions is the if-statement.
In addition to the datatype "S-expressions", it is often practical to have integers,

strings and possibly also vectors in the language. Exactly what datatypes, predicates,
operators, selectors and constructors that are to be included in the language is specified
in adt-files loaded by the program. The adt-files are loaded by the loadt commands.

\Ve call all loaded functions that are not predicates, selectors or constructors for op­
erators.

It is possible to specify constant values of loaded ''builtin" (basic) datatypes (e.g. num­
ber or string). Further it is possible to specify constant values of loaded abstract data­
structures (e.g. triple or matrix). All constants must be first order constants.

2.2 Selector and constructors

As mentioned in [Bondorf 90b, page 33] a consequence of the open-ended design of user
defined operators is that parameter splitting is no longer restricted to handling the oper­
ators cons, car and cdr, but may handle any (user) defined abstract data types that can
be split.

Not all possible user defined sorts can be split. \Ve have to define rules about the
constructors and selectors of the sorts that are to be split. As for the binary constructor
cons we have the selectors car and cdr selecting the first and the second component of the
cons-element. \Ve can write this rule as cons (car cdr). \Ve require that a corresponding
rule must be defined for constructors and selectors in the same sort, if the sort is intended
to be split. We also assume that there is only one constructor associated with each sort.

3

2.3 Mono- or polyvariant splitting

At some point we have to decide whether we will do parameter splitting in a mono- or
polyvariant way. For example, given 3 functions, f, g and h, if f and g can both be
applied to some parameters at one application point, and g and h can both be applied
at another application point, in the monovariant case all 3 functions must be split in the
same way. In the polyvariant case, we can duplicate the function g and split one copy of
g in the same way as f and the other copy of g in the same way as h. Since the language
is higher order this is not as simple as it sounds.

\Ve will only consider splitting functions in a monovariant way.

3 Splitting a paratneter to a function

By parameter splitting we mean replacing a parameter whose value is a composite data­
structure with a number of variables whose values arc the components of the datastrurture.
The following illustrates the principle.

Suppose the definition of a function f in a program has the form

(define (/ ... Xk •••) exp).

and we have constructors (e.g. cons) and selectors (e.g. car and cdr) for administrating
data-structures. The phrase "splitting of the function f's k'th parameter with respect to
the constructor c" will be used to refer to a two-step transformation of the definition and
all applications off.

At the first step, the original definition

(define (j ... Xk •.•) e:rp)

is replaced by

((! (1) (2) (n)) [((1) (2) (n))J) define . . . xk xk . . . xk . . . exp xk - c :rk xk ... xk

where "exp [xk - (c x~1) :r~2) .•• x~n))]" denotes the expression obtained from e:rp by
1 · · h ((1) (2) (n)) (1) (2) (n) rep acmg Xk w1t c xk xk ... xk . The new formal parameters, xk xk ... xk ,

must all be different from all global variables and all the other formal parameters to the
function f. The constructor c is assumed to be n-ary. The transformation might make
certain local optimizations possible.

At the second step, all calls of the function f:

(j . . . e:rpk ...)

are replaced by

4

The selectors sel11 sel2 , ••• , seln all select a part of the data-structure produced by the
constructor c.

It is possible, if need be, to reconstruct the original value of the parameter Xk· This
can be done by evaluating an expression of the form (c x~1) xk(2) ... x~n)).

Of course the new formal parameters may be split again. This may continue to arbi­
trary depth. In practice we will not first split a parameter with respect to one constructor
and then split one of the new formal parameters with respect to another constructor, but
rather split the whole thing at once.

It is assumed that the selectors sel11 sc/2 , ••• , scln all select a part of a data-structure
that exactly matches one of the parameters to the constructor of the data-structure and
that there are as many selectors as parameters t.o the constructor. \Ve will in fact only
consider splitting variables with respect to constructors satisfying the following condition.
The constructor must belong to a sort having a set of selectors where each selector se­
lects what corresponds to one of the parameters to the constructor. In other words, the
constructor and selectors in the sort must satisfy this equation:

(c exp 1 ••• expn) = (c (se/ 1 (c exp1

(se/ 2 (c exp 1

(seln (c CX]J 1 ••• expn)))

Functions in the adt-files belonging to sorts not satisfying this condition are classified
as predicates or operators.

Example 1 Splitting a formal parameter
We consider the program

(loadt "scheme.adt")
(define (f x) (g (cons x x)))
(define (g u) (cdr u))

The standard Scheme constructor cons and constructors car and cdr are defined in the file "scheme. adt"
as well as other standard functions. We will split the formal parameter u of the function g with respect
to the constructor cons. After performing the transformations, we have the program

(loadt "scheme.adt")
(define (f x) (g (car (cons x x)) (cdr (cons x x))))
(define (g ul u2) (cdr (cons ul u2)))

This program can evidently be optimized. After local optimization we get:

(loadt "scheme.adt")
(define (f x) (g x x))
(define (g ul u2) u2)

The splitting of the parameter u has left us with an unused parameter to the function g. Further analysis
may detect this and the parameter can be removed.

Splitting should only be performed if it can be guaranteed that no error is introduced
into the program. That implies that we should not split a parameter that might be
assigned atomic values.

5

Example 2 Erroneously splitting ftn fttomic value
It would not be correct to split the parameter to the function g with respect to the constructor cons in
this program:

(loadt "scheme.adt")
(define (t x) (g 'a))
(detine (g u) u)

If the splitting were performed, the program would look like this:

(loadt "scheme.adt")
(define (t x) (g (car 'a) (cdr 'a)))
(define (g u1 u2) (cons u1 u2))

It it obvious that the two programs are not equivalent. The original program would have given the atom
• a as a result while the transformed program will result in an error-condition, trying t.o take car or cdr
of the atom 'a.

To ensure that it is possible to split a parameter without introducing errors in the
program, we need a description of the structure of the actual parameters t.o functions.
We will call this a description of the parameter types.

4 Analysis of the paran1eter types

To describe the structure of values tha.t can be used as parameters, we use the following
set of types:

t .. = .l

I u
u · ·= any

atom(A)
lambda(£)
sortdesc (u 1 , u2 , ..•)

The symbol A denotes an atomic value in the used subset of Scheme, the symbol .C
denotes a lambda abstraction, and sortdesc denotes a sort-descriptor, where a. sort is
an (abstract) data-structure in t.he used subset of Scheme. Different atomic values are
denoted by different A's and different lambda abstractions are denoted by different Cs.

\Ve use the set of types to describe what we want to know about the structure of
values. If we don't know or don't want to know anything about the structure of a. value
we use the type any to describe the structure.

In Scheme, there is a sort consisting of pairs. It has a constructor cons and selectors
car and cdr. Besides constructors and selectors there might be predicates (e.g. pair?)
and operators associated with a. sort. In this paper we will use the name pair as the name
of the sort of pairs.

A type describing the structure of the Yalue obta.ined by evaluating the expression
(cons nil nil) is paidatom(nil), af.om(nil)). The structure of the value may also
be described by the types pai1·(any, any) or any.

6

\Ve equip the set of types with a partial ordering " !;;;; " recursively defined by the
following rules:

• t !;;;; any, for all types t.

• .L !;;;; t, for all types t.

• sortdesc(t~, t~, .. .) !;;;; sol'idesc(t~, t~, .. .), if t~!;;;; t~, t~!;;;; t~, ...

If t'!;; t" and t' -:f. t", the type t" is said to be mor·e gcneml than the type t'.
It is easily seen that there is no chain of infinite height in the set of types.

4.1 Con1bining type infonnation

We want to use the type information to determine how every variable can be split. Proper
use of the types should prevent erroneous splitting of atomic values.

If an analysis reveal that a particular formal parameter can be assigned values that
have either the structure

pair(atom(nil).

pair(atom(nil).
atom (nil)))

or the structure

pai1· (pair (atom (nil) •

atom (nil)) •

atom (nil))

then splitting is only possible with respect to the outermost pair. An attempt to split one
of the inner pairs after performing the first splitting, will result in attempting to split an
atomic value.

If the analysis reveals that a particular variable can be assigned values that have either
the structure (where "_" represents an arbitrary type)

pair(_, _)

or the structure

triple(_, -• _)

then the splitting would have to depend on the actual implementation of the abstract
datatypes pair and triple. Since splitting should be independent of such details, we will
not attempt to split the variable in this situation.

If we take the least upper bound (e.g. as described in [Schmidt 86]) of the two first
types we get the type:

pair(any. any).

7

Equivalently we get the type

any

if we take the least upper bound of the type with the structure pair(_, _) and the type
with the structure triple(_, _, _).

\Ve see that these types are good substitutes for the types they were derived from, if
we only need the type information to decide how to split variables. This result can be
generalized to all types. That means that we only need the least upper bound of the set
of types instead of the whole set of types describing the structures of the values that can
be assigned to a particular \'ariable.

\Ve use the symbol U to denote the least upper bound operator.
Another way to go about the problem is to duplicate functions called with actual pa­

rameters with different structures. This amounts to performing polyvariant splitting. \Ve
believe that this would destroy the structure of the program completely and furthermore
give very large and almost unreadable programs. We intend to take the least upper bound
of types to be combined (i.e. perform monovariant splitting).

4.2 Preventing call-duplication

If the type analysis reveals that one particular variable is always assigned a value with
a composite structure, then it is still not sure that splitting will be an advantage. If the
actual parameter expression is a call of a function, then splitting the parameter may result
in code duplication and call duplication.

Example 3 Splitting can result in call-duplication
We consider the following program:

(loadt "scheme.adt")
(define (f z) (svap (unzip z nil nil)))
(define (unzip u x y)

(if (null? u)
(cons x y)
(unzip (cdr u)

(cons (car (car u)) x)
(cons (cdr (car u)) y))))

(define (s~ap v) (cons (cdr v) (car v)))

It is evident that any result produced by the function unzip can be described by the type pair(any,
any). This type will also be assigned to the parameter v of the function svap. We are thus allowed to
split v. Splitting v gives the program

(loadt "scheme.adt")
(define (f z)

(s~ap (car (unzip z nil nil))
(cdr (unzip z nil nil))))

(define (unzip u x y)
(if (null? u)

(cons x y)
(unzip (cdr u)

8

(cons (car (car u)) x)
(cons (cdr (car u)) y))))

(define (swap vl v2) (cons v2 vl))

We see that the transformation has resulted in two copies of the expression

(unzip z nil nil).

This is bad since it leads to repeated evaluation of the expression. One could of course introduce a
let-expression, but this is not always desirable since it doesn't lead to any local optimizations.

The risk of code duplication and repeated evaluation can be avoided by ensuring that
all selectors produced by parameter splitting are eliminatable by local optimization.

This can be done by assuming that all functions, operators and predicates return values
of type any. The structure of the values assigned to variables will then only depend on
explicitly written constructors and selectors thus ensuring that optimization is possible
whenever a variable is split.

Equivalently we must describe the result of let-expressions and conditionals with the
type any.

4.3 Generating the type-information

VVe assume that we have a function Type tha.t given a (first order) constant returns the
type of the constant. How this function is to be implemented will not be addressed.

If x is a variable in the program then we want to find the least general type describing
the structure of all the values that can be assigned to x when the program is run. This
can be done by abstract inte1·pretation of the program, which amounts to performing the
program's computations using abstract values in place of the actual ones.

Since the language is higher order there might be applications where the function to
be applied might be one of several possible. Vv'e therefore need some kind of information
about which functions can be applied at a given application point. A way to obtain this
information will be explained in section 5. For the moment we just assume that if exp is
an expression, then the function closure-set(exp) gives us a set containing the names of
all the lambda abstractions that the expression exp might evaluate to.

\Ve assume that every lambda abstraction has a unique name. The names can be
internally generated labels (for "nameless" lambda expressions) or names of functions.
This assumption serves only technical reasons and does not restrict the language in any
way.

\Ve have here used the term lambda abst.mction to denote either a function specified
in the adt-file, a user defined (named) function or a user defined (nameless) lambda
abstraction. \Ve will continue to use the term in this sense throughout the paper.

Suppose we have a program defining functions with ;,he names f 11 ... , fh· Let F be
the set containing the names of these functions and all nameless lambda abstractions in
the program, and for each f E F, param(f,j) be its j'th parameter, arity(f) be its arity,
and body(f) be its body. Iff is a named function then the definition off has the form:

9

(define (j param(f, 1) ... param(f, arity(f))) body(!))

Let l'Name be the set of all variable names and let

0 E Env = VName ~ Type

be an environment with information about the type of each variable that can appear in
a given function, and let

o E A 1·gDcscr = F ~ Env

be an a1·gument type description describing the types assigned to each function's param­
eters.

\\'e now define two functions R and A to perform the abstract interpretation.
The function R, gi\'en an expression exp and au environment 0 computes the type of

what the expression evaluates to.

R E exp ~ En v ~ i ype

R [x] 0 = O(x)
R [constant] 0 = Type[constant]

R [(if exp0 exp1 exp2)] 0 = any

R [(predicate exp1 • . • expn)] 0 = any

R[(operat.or exp 1 ... expn)] 0= any

R[(constructor exp 1 ... expn)] 0 =

{
..L if any one of R[exp1] 0 ... R[cxpn] 0

so1·tdesc(R [exp 1] 0, ... , R [expn] 0)

otherwise

if R [exp] 0 = ..L

are ..L

t;
R [(selector exp)] 0 =

if R [exp] 0 = sortdesc(it, ... , th) and
sort(selccior) = sort(sortdesc) and
selector is the i'th selector in this sort.

· any otherwise

R [(let ((name 1 cxp 1) ••• (namen cxpn)) exp0)] 0 = any

R [(lambda (name 1 • • • namen) exp)] 0 = lambda(label), where
label is the name of the lambda abstraction

R [(exp0 exp 1 • • • expn)] 0 = any

In the equation for lambda abstractions we have used the symbol label to denote the
name of the lambda abstraction in focus. This terminology will also be used later.

The expression, exp0 , in the last equation may of course evaluate to a constructor, a
predicate or an operator. \Ve will of course not use the last equation in these cases. This
way of reasoning will also be used later.

The function A, given an expression exp, an environment 0, and an argument type
description a, computes a new approximation to the final description of each function's

10

parameter values. It does this by traversing the expression and updating a as it encounters
applications. It uses a global environment, 00 , mapping names of all defined functions to
the corresponding lambda abstractions.

\Ve use the notation

M [name ~ something]

to denote the mapping M with the addition {or modification) that name maps into the
Yalue something.

A E e:rp --+ Env --+ A 1-gDescr --+ ArgDescr

A[x] Oa=a
A [constant] 0 a = a

A [(if c:rp0 c:rp 1 c:rp 2)] 0 a= A [cxp0] 0 a U A [c:rp 1] 0 a U A [c:rp 2] 0 a

A [(predicate exp1 • • • cxpn)] 0 a= Ui::1 A [c:rpJ 0 a

A [(opemtor exp1 • • • expn)] 0 a= U?= 1 A [e:rpJ 0 a

A [(constructor exp 1 ••• expn)] 0 a= U?= 1 A [expJ 0 a
A [(selector exp)] 0 a =A [exp] () a

A [(let ((name1 exp1) ••• (namen expn)) e:rp0)] 0 a· =

{Ui:,1 A [expJ 0 a} U A [exp0] Onew a, where

Onew = O[namei ~ R [expJ O)i=l, ... ,n

A [(lambda (name1 • • • namen) exp)] () a = A [e:rp] Onew a, where

()new = O[a{label)]
A [Cexp0 exp 1 ••• expn)] 0 a=

A [expo] () 0' U O'new [! ~ { O'newU) U Onew,J)]. where
f E closure-set (exp0) and m·ity(f) = n and.

O:new = U~=l A [expJ ()a and

Onew,J = (param(J,j) ~ R [e:rpJ o] ._
J-l, ... ,n

\Ve want a final argument type description, a:, that is consistent and as low as possible.
This description can be determined by finding the least fixed point for the following system
of simultaneous equations and relations:

a:= U {A [body(!)] a:(J) a:}JeF,

where a0 is defined as follows:

a:o = [!1 ~ Oo[param(Jl~ j) ~ any]i=l, ... ,arity(JJ)] U
[f ~ Oo[param(J,J) ~ l.]i=l, ... ,arity(J)LeF

The description a0 assigns the type any to the parameters of the goal function, f 1 , to
prevent these parameters from being split. All other parameters are assigned the type l.,
indicating that we have no a priori knowledge about their structure.

11

The least fixed point for the system of equations above does exist and can be reached
in finite time. This is because the functions R and A are monotonic and because for any
given (finite) program, there does not exist any chains of infinite height in the ordered set
of values that can be assigned to the a's.

5 Generating the closure-information

The method used in this section for obtaining the closure-information is inspired by the
method used in [llondorf 90a). The method was originally introduced in [Sestoft 88). The
actual way of obtaining the information is drasticly modified to be easier to read and to
understand. Furthermore the closure analysis is combined with the abstract iuterpretation
to ease the task of performing the computations.

Tlie closure information that we need is just another kind of type information. \\'e
need to know all the lambda abstractions that a given expression might e\·aluate to.
In the above analysis we generalized the type information, throwing some information
away. If we instead collect and keep all information about lambda abstractions assigned
to variables, then we have what we need. \Ve can use the same type system as before
with the modification that we can annotate every part of the type tree with information
about which lambda abstractions might be assigned to that part of the tree. The set of
annotated types look like this:

t - _!_{ }
u

u . ·= any{ Annotations}

I atom (A) { }

I lambda (.C) { .C}

I sortdesc (u1 • u2 • ...) { }
Annotations ::= Setofnames.

The annotations are sets of names of lambda abstractions which may appear in the cor­
responding part of the value described by the type.

To retrieve information about the annotations of the type tree, we use two functions
collect and collect-all. The function collect retrieves the set of lambda abstractions that
the root of the tree is annotated with. The function collect-all retrieves the set of all
lambda abstractions that some part of the type tree is annotated with. In practice collect
will work as collect-all since the tree won't have any leaves, when collect is applied.

\Vhen generating the closure-information we cannot afford ignoring the type of the
values returned by functions, since the result might be a lambda abstraction. \Ve therefore
introduce a result type description:

p E ResDescr = F--+ AnnotatedType

assigning a type to each function's result. The definitions of 0 and a also have to be
changed to reflect the annotation of the types. These changes are trivial.

12

It is assumed that predicates defined in the adt-files return values of type any with
no annotations. Operators defined in the adt-files are assumed to return values of type
any annotated with all the names that are part of the annotated types describing the
parameters to the operator.

\Ve define two functions B and D serving the same purposes as the functions Rand A.
The function B, given an expression e:rp, an environment 0, and a result type descrip­

tion p, computes the type of the expression's result.

B E e:rp --+ Env --+ ResDescr--+ A nnotattdType

B[x] Op=O(x)
B [constant] 0 p = Type[constant] { }

B [(if e:rpo CX]Jl c.rp2)] 0 p =any { u~=l collcct-all(B [c:rp;] 0 p)}

B [(p1·edicate e:rp 1 • • • expn)] 0 p = any{ }

B [(operator exp1 ••• c:rpn)] 0 p =any { Ui:1 collcct-all(B [cxp;] 0 p)}
B [(constructor e:rp 1 • • • expn)] 0 p =

{
1.{ } if any one of B [e:rp 1] 0 p ... B [c:rpn] 0 p are 1.{ }
sortdesc(B[cxp1] Op, ... , B[expn] Op){}

otherwise

B [(selector exp)] 0 p =

1.{ } if B [c.rp] 0 p = 1. { }

if B [Cl"P] 0 p = so1'ldcsc(t 1 , ••• , tn){ } and

sort(sclector) = sori.dcsc and

selector is the i'th selector to this sort.

any { collcct-all(B [c:rp] 0 p)}
otherwise

B [(let ((namc1 exp1) ••• (namen cxpn)) exp0)] 0 p =
any{ col/ect-all(B [exp0] Onew p)}, where

Onew = 0 [namei f-+ B [expJ 0 P].
s=l, ... ,n

B [(lambda (name 1 ••• namen) exp)] 0 p = lambda(label){label}

B [(exp0 exp1 • • • cxpn)] 0 p = U {p(f)}. where

f E collect (B [exp0] 0 p) and arity(J) = n

It should be noted, that we have assumed that an operator cannot return a value
containing a lambda abstraction not contained in any of the parameters to the operator.

The function D, given an expression exp, an environment 0, an argument type de­
scription a:, and a result type description p, computes a new approximation to the final
description of each function's parameter values.

DE exp--+ Env--+ ArgDescr--+ ResDescr--+ ArgDescr

D[x] Oa:p=a:

D [constant] 8 a: p = a:

13

D [(if exp0 exp1 cxp 2)] 8 a p = D [exp0] 0 a p U D [exp 1] 8 a p U D [exp 2] ()a p

D [(predicate expl . . . expn)] e Q p = U?:l D [expJ e Q p

D[(opcrator exp 1 ••• expn)] Oap=U?:1 D[expi] Oap

D [(constructor expl ... expn)] e Q p = U?:l D [expJ e Q p

D [(selector exp)] 0 a p = D [exp] 0 a p

D [(let ((name 1 exp 1) ..• (namen cxpn)) exp0)] 0 a p =

{U~=l D [expJ 0 a p} U D [cxp0] Onew a p, where

Onew = O[namei 1-+ B [cxp;] 0 a p t=l, ... ,n

D [(lambda (name 1 ••• 11amen) cxp)] 0 a p = D [cxp] Onew a p, where

Onew = O[a-(label)]

D [(CX]Jo CX]J 1 • • • CX]Jn)] 0 a· p =

D[e;rpo] 0 0' P U Ctnew[ft-+ (D'newU)UO,.ew,J)], where

J E collect (B [ex]J0] 0 a p) and arity(f) = n and

D'new = U {o [cxpJ 0 a P}j=l, ... ,n and

()new,J = 00 [param(f,j) 1-+ B [cxp;] OL=l, ... ,n

Vv'e want a final argument type description, a, that is consistent and as low as possible.
This description can be determined by finding the least fixed point for the following system
of simultaneous equations and relations:

a·= U {D [body(!)] n(J) a·}JeF, a~ a:o

p = [.f 1-+ any{ collect-all(B [body(!)] a(f) p }]JeF,

where a:0 and p0 are defined as follows:

O'o = [!1 1-+ [param(Jl:j) 1-+ any{ }Ji=l, ... ,arity(Jl)] U
[J 1-+ [param(J,;) 1-+ .l{ }]j=l, ... ,arity{f)LeF

Po= [f 1-+ ..L{ }]JeF

P ~ Po

The description a 0 assigns the type any to the parameters of the goal function, f 1 , to
prevent these parameters from being split. All other parameters are assigned the type .l,
indicating that we have no a priori knowledge about their structure. The description p0

assigns the type .l to the results of all functions. ·
The result type description p is defined to reflect the assumption that all functions

return values of the type any. This is done to prevent call-duplication when splitting,
as described in section 4.2. The result type is (of course) annotated with all the lambda
abstractions that might appear in some part of the value returned by the function.

Special care must be taken when deciding how to split functions that are used as pa­
rameters to other functions. If the closure analysis reveals that at a particular application
point two different functions might be used then the parameters of these two functions
must be split in the same way. If they are not, an error may be introduced into the
program.

14

Example 4 Splitting higher order functions
Consider the following program:

(loadt "scheme.adt")
(define ('! x)

(cons (g h (cons x x))
(cons (g j (cons x x))

(h x))))

(define (g x y) (x y))

(define (h u) (car u))
(define (j v) (cdr v))

The type analysis will assign the type (leaving out the annotations)]lair(any, any) t.o the formal
parameter y, the type any to the formal parameter u and the type]lair(auy, any) to the formal param­
eter v. If we attempt to split t.he parameters y and v with respect to the constructor cons we get t.he
program:

(loadt "scheme.adt")
(define ('! x)

(cons (g h x x)
. (cons (g j x x)

(h x))))

(define (g x yl y2) (x (cons yl y2)))
(de'!ine (h u) (car u))
(define (j vl v2) (cdr (cons vl v2)))

This program is clearly erroneous. j will be applied with the wrong arity in the body of g. We thus see
that if more than one function might be used at a particular application point, then all parameters to
these functions must be split the same way.

\\7e can get around this problem by assigning the same types to the formal parameters
of the functions that might occur at the same application point. The type to be used
instead of the "original" types can be the least upper bound of the original types or any
type that is more general than the original types.

Determining which functions may occur at an application point can be done in several
ways. One way is to traverse the type tree and put all lambda abstractions that a part of
the tree is annotated with in a group together. If the splitting is to be monovariant then
we further have to combine groups of lambda abstractions that have common elements.
If the splitting can be polyvariant we can just make a copy of each lambda abstraction
for each occurrence in a group and rename it. As a result, no lambda abstra~tion will
occur in more than one group, no matter what method is used.

If we want to be sure that every introduced selector is eliminatable by local optimiza­
tion, then the job of combining groups of lambda abstractions has to be done during the
type analysis described above. In the monovariant case this can be done by changing the
application rule for the function D to the following:

D [(exp0 exp 1 • • . expn)] () a p =

{U {p(f')}} U D [expo] 0 a P U anew[! f-T (anew(!) U Bnew,J)]. vhere

f E collect (B [exp0] () a p) and arity(f) = n and

15

anew = U { D [exp j] () a: p} j=l, ... ,n and

()new,J = Oo [param(f,j) ._ B [expJ 8]. , and
;=l, ... ,n

f' is a closure-super-set and f E f'

By a closure-super-set we mean a minimal set of closures that has the property that there
does not exist any closure not in the set that can appear at the same application point as
one of the closures in the set.

If we want to ensure that functions that might be given as (part of) the result of
the goal-function will never be split, then we have to add a rule that ensures that all
parameters of all functions in the set:

collect (p(f1))

are described by the type any.

6 The usefulness of parameter splitting

One purpose of parameter splitting is to pave the way to local optimization. Parameter
splitting based only on the type analysis described above, can cause "arity overraising",
by increasing the number of parameters without reducing the number of selectors in the
program.

Example 5 Arity overraising
Consider the following program:

(loadt "scheme.adt")
(define (f x) (rev x (cons 'a nil)))
(define (rev u v)

(if (equal? u nil)
v
(rev (cdr u) (cons (car u) v))))

The type analysis tells us that the parameter z of the function f has the type any, and that the parameters
u and v of the function rev has the types any and pair(any, any). It is thus possible to split the second
parameter, v, to the function rev. After performing the transformation rev[v - (cons vl v2)) we get the
program:

(loadt "scheme.adt")
(define (f x) (rev x •a nil))
(define (rev u v1 v2)

(if (equal? u nil)
(cons v1 v2)
(rev (cdr u) (car u) (cons v1 v2))))

We see from the program obtained from splitting v, that no selectors have disappeared, i.e. it was of no
use to perform the splitting.

We have used the notation "rev[v - (cons vl Y2))" to denote the splitting of the parameter v of the
function rev with respect to the constructor cons.

16

The example shows us that if there is no attempt to address the subparts of a given
parameter then it is to no use splitting the parameter. \Ve therefore need an analysis
revealing what parts of a given parameter are addressed. We can then use this information
for deciding when not to split a given parameter.

It is simple to avoid splitting some part of a parameter. Let the parameter x be
described by the type t. If some part of t has the form sortdesc(it. ... , tm) and we don't
want to split this part, this can be avoided by replacing sortdesc(t 1 , ••• , tm) with any.

If we lose all information about the structure of part of a value (i.e. it's described by
the type any) then we can't tell if it's possible to split it and consequently we will not do
so.

In the above example, the splitting rev[v -+ (cons vl v2)] can be avoided by general­
izing the type of the variable v to any.

\Ve now face the problem of when to retain or generalize a soridesc in the type of a.
parameter, i.e. when to perform the splitting corresponding the soddcsc and when not
to. The weakest reasonable requirement is that a soddcsc in the type description of the
parameters should be retained (only) if it causes a selector in the program t6 disappear.
This is to ensure that local optimization is possible. The strongest requirement is that a
sortdesc in the type description of the parameters should be retained only if it does not
lead to introduction of new constructors in the body of the lambda abstraction.

Example 6 Generalizing types
Consider the example:

(loadt "scheme.adt")
(define (f x) (g (cons 'a (cons 'b (cons •c 'd)))))
(define (g u)

(cons (cdr u)
(car (cdr u))))

If we split the parameter to the function g into four parameters, we will overraise the arity. If we generalize
the types according to the weakest requirement listed above and then perform the splitting then we get
the program:

(loadt "scheme.adt")
(define (f x) (g 'a 'b (cons •c 'd)))
(define (g ul u2 u3)

(cons (cons u2 u3) u2))

If we instead generalize the types according to the strongest requirement listed above and then perform
the splitting then we get the program:

(loadt "scheme.adt")
(define (f x) (g 'a (cons 'b (cons 'c 'd))))
(define (g ul u2)

(cons (car u2) u2))

There are obviously advantages and disadvantages connected with both solutions.
The weakest requirement may result in the fastests programs in most cases but it ca.n
also lead to slower programs in special cases. The strongest requirement will never lead

17

to introduction of extra constructors and will therefore not have this weakness. Instead
it might be too conservative in most cases. The problem seems to be analogous to the
call unfolding problem of partial evaluation.

In [Romanenko 90) the weakest requirement is used. Inspired by this we will also use
this requirement.

Given a parameter to a lambda abstraction, we now want to analyse how the parameter
is accessed by selectors in the body of the lambda abstraction.

6.1 Access paths and contexts

\Ve start with a simple case. For example, if the \'ariable x is used in an expression:

(...ell (sc/2 (se/3 x)))

then x is accessed by applying selectors in the order: sd3, .-;c/2, .-;ell. The component of
x to be accessed can be unambiguously identified by a sequence of selectors.

\Ve define an access path to be a finite list (which may be empt.y) of selector names.
The set of all access paths will be denoted by Path.

\Ve use the following notation. A finite list of elements a 1 ... an is written as [a1 ..• an]
and an empty list is written as [). The concatenation of two lists A = [a1 ••• an] and
B = [bt ... bm] equal to [at ... an b1 ... bm] is written as A- B.

The formal parameter x to a function f can be accessed at many different places in the
body of the function, i.e. by many different access paths. Therefore, instead of a single
access path, we define an access context.

An access context, IT, is a set of access paths, which satisfies the following requirements:

l.[)EIT

2. If 7r-[selector] E IT then 7r E IT

Requirement (1.) means that an attempt at accessing the parameter x as a whole must be
included into the context. This requirement is useful for technical reasons. Requirement
(2.) means th~t a subcomponent of x can only be accessed by accessing a component in
which the subcomponent is included. That is, an access context is a non-empty prefix­
closed set of access paths. The set of all contexts is denoted by Context.

6.2 Using contexts for type generalization

Let a parameter have the type t and the context IT. Then a function GenType can be easily
defined which generalizes t in accordance with IT by replacing all sortdesc(t 11 ••• , tn)
unaccessed by IT with any.

GenType E Type--+ Context --+ Type

GenType [t] IT = n { GenType' [t] 7l" I 7l" E IT}

18

The n is used to denote the greatest lower bound of a set of values (e.g. as described in
[Schmidt 86]).

GenType' E Type--+ Path--+ Type

GenType' [any] 1r = any
GenType' [atom(A)] 1r = atom(A)
GenType' [lambda(.C)] 1r = lambda(.C)
GenType' [soddesc(t 1 , ••. , tn)] [] = any
GenType' [so1'idesc(t 1 , ••• , tn)] ([sc/ccior·]-r.) l sortdcsc(any, ... , any, GenType' [t;] r., a11y, ... , any)

if sort(sclector) = soddcsc and
selector is the i'th selector in the sort

any ~therwise.

GenType' [l_] 1r = j_

It should be noted that for all t E Type and all paths r. the relation t ~ GenType' [t] r.

holds, therefore the set { GenType' [t] 1r I r. E TI} is finite. Consequently, the gr·catest /owe1·
bound of this set does exist.

6.3 Finding the context of a paran1eter

Given the program with all its lambda abstraction, let us now define a function t that
given a parameter, an expression, and a context for the expression, finds a context for the
parameter, i.e. can find the sequences of selectors accessing the parameter.

C E VName --+ Exp --+ Context --+ Context

In order to find the contexts of all formal parameters in the program, we apply this
function, C, to all parameters of each lambda abstraction with the body of the lambda
abstraction as the second parameter. The contexts of these expressions are the empty
context:

cont(J, k) = C x [body(!)] { [] }

Vve have here used the notation cont(J, k) to denote the context of the k'th parameter of
the function f.

\:Ve have to do the calculations for all parameters of both the named functions and
the unnamed lambda abstractions in the program.

Given a parameter, x, let us now, step by step, analyse the different forms of expres­
sions as given in section 2.1.

Expression ::= Variable
\Ve have 2 possibilities: (1) the variable is x, or (2) it is not. In the first case the new
context must be equal to the given context, in the second case the context must be empty.

19

Cx[y]II={~[J}
Expression ::= Constant

if X = y

otherwise

The parameter x doesn't occur m the expression. The context of the constant does
therefore not propagate to x. This gives us:

C x [conslant]II = {[]}

Expression ::= (if CX]Jo CX]J 1 exp2)

There is more than one way t.o treat this expression, so let us consider an example.

Example 7 Conditional
Suppose the context, ll, equals {[),[car)}. It is obvious that this context does not access the conditional
expression, exp0 , so the context for this must be empty. Ilut what is the context of e:r]li and CXJ12? The
context, ll, will operate on the result of these expressions. Therefore we could use the context for these
expressions. If we propag.at.e the given context., it would correspond to the following rewriting of the
function (suggested in [Mogensen 89)), causing code duplication but not call duplication.

The transformation in the example is however rather exotic. \Ve do not intend to include
this kind of transformation. That means that we can not use the context, II, we have
found already. The context of the parameter depends only on the three subparts of the
conditional expression. Therefore we end up with:

2

C x [(if exp0 exp 1 exp2)]II = U C x [c.rp;] {[J}
i=O

Expression ::= (predicate exp1 ••• expn)
Expression ::= (operator exp1 ••• expn)
The given context does not access any of the expressions exp1 ••• expn but access the
result of performing the operation. Therefore we find the new context as the union of all
the contexts of all occurrences of x in all the expressions, i.e.

n

C x [(predicate exp1 ••• expn)] II = U C x [exp;] { [] }
i=l

n

C x [Copemtor exp 1 ••• cxpn)] II = U C x [expJ {[J}
i=l

Expression ::= (constructor exp1 ••• expn)
There are two ways to treat constructors, depending on whether we want to perform some
reductions on constructors or not.

Example 8 Reductions on constructors
Suppose we have the expression

20

(cdr (car (cons exp 1 exp 2)))

The expression can be reduced to the expression

(cdr exp 1)

We thus see that it is reasonable to take the context of exp 1 to be {[),[cdr]}. The reduction can however
lead to a change in the programs termination properties. Similix-2 guarantees that it doesn't change the
programs termination properties so neither will we. Therefore we won't perform the reduction.

Consequently, given a constructor, we fi11d the new context by
n

c X [Cconst7·uctor e:rpl ... cxpn)] n = u c :r [c:rpJ {[J}
i=l

Expression ::= (selector e:rz1)
Given a selector in an expression, we have to add the selector to all access paths in the
given context:

C x [Cse/ e:rp)]II = C x [exp] ({[sci] - 1r I 1r E II} U {[J})

Expression ::= (lambda (v1 ... vn) exp)
Given a lambda abstraction, how do we find the new context? This, turns out to be
simple. \Ve have 2 possibilities, (1) xis a parameter to the lambda abstraction, or (2) it
does not. In the first case, the context must be empty, because the parameter can't be
used in the lambda abstraction because it is hidden by a new parameter. In the second
case, the context is the context in the body of the lambda abstraction:

{ { [] }
C x [(lambda (v1 •• • vn) exp)] II = C x [exp] {[J}

if X E { V1 •.• Vn }
otherwise.

It is possible to transform lambda-expressions in a manner similar to the exotic transfor­
mation of if-expressions described above. Vve will not do this.

Expression ::= (let ((v1 exp1) ... (Vn expn)) exp0)
Given a let-expression, let us rewrite the expression:

(let ((vl exp1) ... Cvn expn)) exp0) =
((lambda Cv1 ... Vn) exp0) exp1 ... expn)

Given how we find the context of an application, we can find the context of a let-expression
by the rewriting suggested above. The actual rule for let-expressions have to wait until
we have defined a rule for applications.

Expression ::= (expo exp1 ... expn)
·we could define the rule similar to operators, i.e.

n

C x [(exp0 exp1 ... expn)] II = U C x [exp;] { [] } WRONG!
i=O

21

because the given context doesn't access any of the subexpressions exp0 . .. e:rpn in the
application. This might lead to the conclusion, that to find the context of a given param­
eter, we only have t.o analyse the hody of the function, where the parameter is defined.
However, this conclusion turns out t.o be wrong, and we have to change the definition of
C for applications. In the next subsection we'll describe why and how the definition can
be changed.

6.4 Latent Selectors

ExRiuple 9 Introducing lnt.cnt scleet.ors
Consider the following simple first onler program:

(loadt "scheme.adt")
(define (f x) (g (cons x 'a)))
(define (g u) (h u))
(define (h v) (cdr v))

By the rule for application suge,est.t•d above, we find t.he following context. for t.he parameters:

coni(!, 1) = {[]} cont(g, 1) = {[]} coni(h. 1) = {[], [cdr·]}

We get the impression that it is useful t.o split]Jamm(h,v), since the split.ting h[v- (cons vi v2)] causes
a selector to disappear:

(loadt "scheme.adt")
(define (f x) (g (cons x 'a)))
(define (g u) (h (car u) (cdr u)))
(define (h vl v2) v2)

This result is far from being satisfactory since t.wo new selectors, car and cdr, have appeared.

The example makes us draw the conclusion that the pammeter access analysis has t.o
take into account not only the selectors explicitly appearing in the program, but also the
latent selectors to be introduced by parameter splitting.

Example 10 Improving the treatment of IH.t.cut selectors
Performing the parameter access analysis on the new program given in the example above, gives the
result:

cont(J, 1) = {[)} cont(g, 1) = {[], [ca1·], [cd1·]} con t(h, I) = {[]} cont(h, 2) = {[]}
These new contexts causes us to get a better program as result:

(loadt "scheme.adt")
(define (f x) (g x 'a))
(define (g ul u2) (h ul u2))
(define (h vl v2) v2)

The problem with the latent selectors has now disappeared.

\Ve can draw the conclusion from example 10 that it would be incorrect to assume the
context of each expression exp1 ... expn in an application (exp0 eXJJ1 ... expn) to be {[]}.
If we for example have the function

22

(define (g v) (. ..))

and an application of g

(g exp)

the splitting g [v --+ (cons vl v2)] would give the application

(g (car exp) (cdr exp))

i.e. the context must he changed to take this into account. All attempts at accessing exp
due to a possible splitting of the formal parameter corresponding to exp in the application,
must he taken into account.

Let type(!, k) be the type of the k 'th parameter of the function f. The type provides
us with information about how the parameter may be split, and the context provides us
with information about whether it is advantageous to perform the splitting.

Generalizing the type, type(!, k), with respect to the context, con.t(J, k), gives a new
type, type'(!, k) = Gen.Type [type(!, k)] cont(J, l·), with all information about how the
parameter should be split. Given the generalized type, we can define a function calculating
a context which accesses all the components of the type. This is the context due to the
splitting of the k'th formal parameter according to the type.

TypeToCon.text E Type --+ Context

TypeToContext [any]= {[]}
TypeToContext [atom(A)] = {[]}
TypeToContext [lambda(.C)] = {[]}
TypeToContext [sortdesc(t 11 ••• , tn)] =

n

{[]} U U {[sel;)-1r l1r E TypeToContcxt [ti]}, where
i=l

sort(seli) = soddesc and seli access the i'th component.
TypeToContext [1.] = {[]}

Given the type and the final context of the k'th parameter of the function f, the context

TypeToContext [GenType [type(!, k)] cont(J, k)]

provides us with information about how the k'th parameter off is to be split. Of course,
this final context is not known. Therefore we have to find the context by a fixpoint
iteration, as described in subsection 6.5 below.

In the above example only one function, f, is considered. In the case of a higher order
functional language, given an application:

23

we have t.o take into account all functions that e:rp0 may evaluate to.
The closure analysis provides us with a set of functions that exp0 may evaluate to.

Given this set, we can find the total context of the k'th parameter, by:

U { TypeToContcxt[GenType [type(!, k)] cont(J, k)]}, where f E closure-set(exp0)

i.e. the total context is all attempts at accessing the k'th parameter in the body of all
lambda abstractions in the set returned by the function closure-set.

\\'e only need one context for all lambda abstractions in a given closure-set. That is
because we use tlJe context information to decide how to split parameters and all functions
in the closure-set must be split tlJe same way. Therefore, instead of assigning a context
to each lambda abstraction we only assign contexts to each closure-set.

The same can be done for the types of the parameters of all lambda abstractions in
all closure-sets in the program by

type(cl, k) = U {type(!, k)}, k=l ... m·ity(f), for all closure-sets, cl, of the program.
Jecl

Given an expression exp the function clos1Lre-sct-name(cxp) returns the name of the
closure-set that exp is a member of.

\Ve use the terms cont.(cl,k) and type(cl,k) to denote the context and the type of the
k 'th parameter of members of the closure-set cl.

Given an application (exp0 exp1 ••• expn) we can now find the closure-set, cl, that
contains the lambda abstractions that exp0 may e\"aluate to, and then the context

TypeToContext [GenType [t.ype(cl, k)] coni(cl, /.~)]

provides us with a context that corresponds to the total context of the k'th parameter
given above.

Therefore we get the function C listed below:

c X [] II = { II if X = y
y { [] } otherwise

C x [constant] II = { [] }

2

C x [(if exp0 exp 1 exp2)]II = U C x [cxpJ{[J}
i=O

n

C x [(predicate exp1 ••• expn)] II = U C x [expJ {[] }
i=l

n

C x [(operator e:rp 1 ••• expn)] II = U C x [cxpJ {[] }
i=l

24

C x [(sel exp)] II = C x [exp] ({[sd] - 1r I 1r E II} U {[J})

n

C x [(constructor e:rp1 ••• expn)] II = U C x [exp;] { [] }
i=l

C x [(let ((namel e:rp 1) ••• (namen c:rpn)) c.rp0)] II =

if X E { Vt ... Vn}

otherwise.

Un [] {[]} { {[J} if x E {namel···namen}
C X CXJ>; U

i=I C x [c.rp0] { [] } otherwise

C x [(cxp 0 c:rp 1 ••• c.rpn)]II = C x [c.rp0]{[]} U
n

U C x [e.rp;] cont(cl,i), where cl = closure-set-namc(c:rp0)

i=l

6.5 Finding the context by fixpoint iteration

Due to the latent selectors, we cannot find the context by only analyzing the body of each
function. The type and context must be known, when finding the context. \Ve therefore
have to find the context iteratively.

Initially let all contexts be empty, i.e.

cont(cl,k) = {[]},for k=l, ... , a1-ity(f) where JE cl

for all closure-sets, cl, in the program.
As mentioned above, we intend to find a new approximation to the final context by

applying the function C to the body-expression of all functions and lambda abstractions,
I.e.

cont(f,k) = C param(f,k) [body(f)] {[] }, for k = 1, ... , arity(f)

Given the closures in the program we now have to find the context of all lambda abstrac­
tions in the closure-sets, i.e.

cont(cl,k) = U cont(f,k)
Jed

However it leads to fewer calculations if we find the context by the following equations

cont(cl,k) =

TypeToContext [G enType [type (cl , k)]

1~1 { C param(f,k) [body(£)] { [] } } J.=I, ~;•y(JJ

25

We have now defined an iterative algorithm that can find the context of all parameters
of all functions and lambda abstractions in the program.

\Ve assume the set Context to be equipped with the natural partial ordering. Then
the functions TypeToConfcxt, GcuType and Care monotonic with respect to contexts and
therefore the minimal fixed point for the above equations exist. Given that coni(cl, 1.:) ~
TypeToContext [type(cl,k)] and TypcToContext [type(cl,k)] is a finite set, we can see, that
only a finite number of con texts can be taken as value by coni (cl ,k), and therefore the
minimal fixed point can be found by a finite number of iterations.

Given the contexts we can now generalize the types of all parameters in the program,
i.e. find new types, using the following equations

type'(cl,k) = GcnTypc[lypc(cl,k)] cont(cl,k), for 1.·=1 ... a1·ily(cl)

for all closure-sets, cl, in the program. \Ve are now ready to perform the actual splittiug
of the parameters in the program.

7 Using Type Inforn1ation for Para1neter Splitting

Let us start by taking a closer look at the type f of a parameter, x. A type can be \'icwed
as a tree, with all its lea.ves being any, alom(A), lambda(.C) or l_, built using different
constructors.

HO\vever, let us suppose that one of the leaves in the tree is j_, This would mean that
no S-expression could be taken as value of the leaf, and thereby of the \'ariable. Therefore
the function to which the parameter belongs would never be called, so it could just be
removed from the program. Therefore we assume that no leaf is l_.

Therefore the leaves can only be one of a11y, afom(A) and la.mbda(.C). All leaves
assigned to any will be referred to as gaps.

A leaf containing lam.bda(.C) ca.n be regarded as a special constant. Therefore the
lambda abstraction, .C, can be lifted from the application points into the body of the
other lambda abstractions in the following \\'a.y:

Example 11 lifting lambda abstractions
Consider the following prograi'n:

(loadt "scheme.adt")
(define (:f x)

(g (lambda (y) (cons y 2)) x))
(define (g :fun x)

(:fun x))

The lambda abstraction occurring in the body of :f can be lift.ed into the body of the function g. This
will give the program:

(loadt "scheme.adt")
(define ('f x)

(g x)
(detine (g x)

((lambda (y) (cons y 2)) x))

26

Lambda lifting can however give some problems. For instance it will not be correct to perform this simple
lifting, if there are free variables in the lambda abstraction.

Due to the problems that might occur when lifting lambda abstractions into other
functions we will not in this paper describe how to perform the lifting. Lifting can be
prevented by generalizing all occurrences of lambda(.C) to any. In section 8 we will address
some of the problems with lifting lambda abstractions and suggest how they can be solved.

It is obvious that given two variables x and y described by the same type t, their actual
values can only differ at the places corresponding to the gaps, and must be congruent at
all other places. Given a leaf denoted by atom(A), both variables have the same atom
a.s value of the leaf, the \·alue being described by A. The least upper bound of different
atoms is any.

Assume that the type t contain m gaps. Any value described by the type, t, is
completely determined by the type, t and the value of the parts corresponding t.o the
gaps in the type. Therefore, it is reasonable to split a variable x of the type t into m new
variables where each new variable correspond to a gap in the type tree.

\Ve now define a function CountGaps that given a type, produces the natural number
equal to the number of gaps in the type, i.e. the number of any-leaves in the type tree.

CountGaps E Type --+ A!

CountGaps[any] = 1
CountGaps[atom(A)] = 0
CountGaps[sortdesc(tb ... , tm)] = CountGaps(ti) + ... + Count.Gaps(tm)

Let us now take a closer look at the parameter splitting method of section 3. Let
the original formal parameter Xk be described by the type sort.desc(t~1), t~2), ••• , t~m)).
Let [x~1) x~2) .•• x~m)] be a list of m new variables. In the first step the original actual
parameter, Xk, is replaced by the list of m new variables, and all occurrences of the
parameter in the body of the function is replaced by (constructor x~1) x~2) ••• x~m)). \Ve
want to generalize this strategy.

Let us suppose that the parameter Xk has the type t and m = CountGaps[t]. \\'e can

easily get a list of m new variables [x~1) x~2) ••• x~ml]. Replacing the actual parameter Xk

with the list of the m ne\\' parameters work as described above. All use of the original
formal parameter Xk in the body of the function body(f) must now be replaced by an
expression synthesizing the value of the original parameter Xk from the values of the new
parameters. To this purpose we define a function, Expandl'ar, which given a type, t,
and a list of m new variables, [x~1) x~2) ••• x~ml], where m = CountGaps[t], produces the
expression required.

Expandl'ar E Type--+ VName· --+ S-expression

ExpandVar [any] [x] = x
Expand Far [atom(A)] [] =quote A

27

ExpandFar [sortdesc(th ... , tm)] X=
(constructor Expandl'ar [t 1) X 1 ... E.rpand\'ar[tm]Xm), where

X 1 - .•• - Xm =X and sort (constructor) = sortdesc and

len(Xt) = CountGaps(t 1), ••• , len(Xm) = CountGaps(tm)

\Ve have used the term leu (A) to denote the length of the list A.
\Ve have now generalized the first step of the method described in section 3 t.o split a

parameter to a function. Assuming that the function f

(define (f ... Xk ..•) body!)

is defined in the original program, we will replace this definition with

(. ((I) (2) (m))
def1ne f ... :rk xk ... xk ...

(body(J)[xk--+ (E.rpandl'm· [type(!,/.·)] [.1·~1) x~2) ••. xim)])]))

The second step in the original method is to replace all applications of the function f

(f . . . expk ...)

with a. new application

This must also be generalized. Vole ha.ve to select the subparts of the expression cxp k

that correspond to the new variables, i.e. the gaps in the type t. To this purpose we
define a function, SplitA ry, that given a type t. and an expression exp produces a list of
expressions corresponding to the new m formal parameters. This can be done because we
for every sort know the selectors accessing each subpart of the constructed element.

SplitArg E Type x Exp--+ Exp·

SplitArg(any, exp) = [exp]
SplitA rg(atom(A), exp] = []
SplitArg(sortdesc(t 11 ••• , tm), exp) =

[SplitAry(t 11 selector1 (exp)))- ... -[SplitArg(tm, selectorm(exp)))
where sort (selector 1) = ... = sort (sdect.or m) = sortdesc

\Ve now have an algorithm that can be used to split parameters of all functions and
lambda abstractions in the program.

During the splitting ,..,.e may have introduced some selector-constructor combinations
that may be reduced. 1v1ost of these combinations can be eliminated in a trivial way.

28

8 Lifting lambda abstractions

If a leaf of the type tree is marked by lambda(£) then that part of the tree can almost
be regarded as constant. If there are free variables occurring in the body of the lambda
abstraction, then the free variables will have values depending on the environment in
which the lambda abstraction was defined. If we want to do lambda lifting we must
regard all free variables in lambda abstractions as gaps. The reason for this is illustrated
by the following example:

Example 12 Lifting lambda ~tbstr~tctious with f1·ee v~tri~tbles
Consider the following program:

(loadt "scheme.adt")
(de:fine (:f x)

(g (lambda (y)
(cons x y))))

(define (g :fun)
(:fun 3))

If we regard the lambda abstraction as a constant that may be freely copied, then we can get the following
program when we split the parameters of the program:

(loadt "scheme.adt")
(de:fine (:f x) (g))

(define (g)
((lambda () (cons x 3))))

The resulting program is obviously incorrect. The variable x is not bound to anything in the body of the
function g. One way of solving this problem is to propagate the free variables in the lambda abstraction
to the function g. If we do this we get the program:

(loadt "scheme.adt")
(define (:f x) (g x))
(define (g x)

((lambda () (cons x 3))))

Vve thus see that we have to propagate the free parameters of lambda abstractions to the functions where
the lambda abstractions are being used.

·Lifting anything else than name-less lambda abstractions can be done without consid­
ering free variables since there are none.

There are other problems associated with lambda lifting (e.g. what about lifting a
lambda abstraction into itself). \Ve will consequently not describe the whole theory here.

9 Summary

In order for the result produced by parameter splitting to be reasonable, we need infor­
mation obtained by two preliminary global analyses of the program. The first, forward,
analysis tells us whether the splitting is feasible, whereas the second, backward, analysis
tells us whether the splitting is useful.

29

The first, forward, analysis result in the parameters of the functions being assigned
types, which describe the structure of the argument expressions in the function calls.

The second, backward, analysis results in the parameters of the functions being as­
signed contexts, which provide information about attempts at accessing the parameters.

Then the information obtained is used to perform variable splitting. The type in­
formation is used to avoid introducing new selectors into the program a.s well as code
duplication, whereas the context information makes it possible to avoid useless parameter
splitting that does not cause some selectors in the program to be eliminated.

References

[Bondorf 90a] Bondorf, A. Automatic Autoprojection of Higher Order Recursive Equa­
tions. In Jones, Neil D. (editor), ESOP '90. 31·d European Symposium
on Progmmming, Copenhagen, Dr.:nmm·k, May 1990. (Lectur·e Notes in
Computer Science, vol. 4 32), pages iO-Si. Springer-Verlag, .1\Iay 1990.

[Bondorf 90b] Bondorf, Anders and Danvy, Olivier. A ut.omatic A utoprojcction of Re­
cursive Equations with Global l'al"iables and Abstmct Data Types. Tech­
nical Report 90/4, DIKU, University of Copenhagen, Denmark, 1990.

[Gomard 89] Gomard, C. K. Higher Order Partial Evaluation - HOPE for the
Lambda Calculus. Master's thesis, DII\U, University of Copenhagen,
Denmark, September 1989.

[Gomard 90] Gomard, Carsten K. Partial Type Inference for Untyped Functional Pro­
grams. In 1990 A CM Conference on Lisp and Functional Progmmming,
Nice, H·ance, ACM, pages 282-287. 1990.

[Jones 85] Jones, N.D., Sestoft, P., and S0ndergaard, H. An Experiment in Partial
Evaluation: The Generation of a Compiler Generator. In Jouannaud, J .­
P. (editor), Rewriting Techniques and Applications, Dijon, H·ance. (Lec­
ture Notes in Computer Science, Fol. 202), pages 124-140. Springer­
Verlag, 1985.

[Jones 89] Jones, N.D., Sestoft, P., and S0ndergaard, H. Mix: A Self-Applicable
Partial Evaluator for Experiments in Compiler Generation; Lisp and
Symbolic Computation 2(1):9-50, 1989.

[Jones 90] Jones, N.D., Gomard, C.K., Bondorf, A., Danvy, 0., and Mogensen,
T.JE. A Self-Applicable Partial Evaluator for the Lambda Calculus. In
1990 International Conference on Compute1· Languages, New Orleans,
Louisiana, Afarch 1990, IEEE Computer Society, pages 4.9-58. 1990.

[Mogensen 89] Mogensen, Torben .tEgidius. Binding Time Aspects of Partial Evalua­
tion. PhD thesis, DIKU, University of Copenhagen, Denmark, March
1989. 95 pages.

30

[Romanenko 88] Romanenko, S.A. A Compiler Generator Produced by a Self-Applicable
Specializer Can Have a Surprisingly Natural and Understandable Struc­
ture. In Bj0rner, D., Ershov, A.P., and Jones, N.D. (editors), Par­
tial Evaluation and Mixed Computation, pages 445-463. North-Holland,
1988.

[Romanenko 90] Romanenko, Sergei A. Arity Raiser and Its Use in Program Special­
ization. In Jones, N. (editor), ESOP '90. 31·d European Symposium
on Pmgramming, Copenhagen, Denma1·k, !1/ay 1990. (Leci1l1't Notes in
Computer Science, vol. 43!!}, pages 341-360. Springer-Verlag, 19DO.

[Schmidt 86] Schmidt, David A. Dcnotational Semantics, a Mctlwlogy for Language
Development. Allyn and I3acon, I3oston, 1986.

[Sestoft 86] Sestoft, P. The Structure of a Self-Applicable Partial Evaluator. In
Ganzinger, H. and Jones, N.D. (editors), Pmgrams as Data Objects,
Copenhagen, Denmar·k, 1985. (Lcciur·e Notes in Computer Science, Vol.
217}, pages 236-256. Springer-Verlag, 1986.

[Sestoft 88] Sestoft, Peter. Replacing Function Parameters by Global Variables.
Master's thesis, DIKU, University of Copenhagen, Denmark, October
1988.

31

